Articles | Volume 25, issue 22
https://doi.org/10.5194/acp-25-16263-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-16263-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
30 years of total column ozone and aerosol optical depth measurements using the Brewer spectrophotometer in Poprad-Gánovce, Slovakia
Peter Hrabčák
CORRESPONDING AUTHOR
Aerological and Solar Radiation Center, Slovak Hydrometeorological Institute, Gánovce, 058 01, Slovakia
Meritxell Garcia-Suñer
Department of Earth Physics and Thermodynamics, Universitat de València, Valencia, 46100, Spain
Violeta Matos
Department of Earth Physics and Thermodynamics, Universitat de València, Valencia, 46100, Spain
Víctor Estellés
Department of Earth Physics and Thermodynamics, Universitat de València, Valencia, 46100, Spain
Anna Pribullová
Aerological and Solar Radiation Center, Slovak Hydrometeorological Institute, Gánovce, 058 01, Slovakia
Jozef Depta
Aerological and Solar Radiation Center, Slovak Hydrometeorological Institute, Gánovce, 058 01, Slovakia
Martin Staněk
Solar and Ozone Observatory, Czech Hydrometeorological Institute, Hradec Králové, 500 08, Czech Republic
Martin Stráník
Solar and Ozone Observatory, Czech Hydrometeorological Institute, Hradec Králové, 500 08, Czech Republic
Related authors
No articles found.
Angelos Karanikolas, Natalia Kouremeti, Monica Campanelli, Victor Estellés, Masahiro Momoi, Gaurav Kumar, Stephan Nyeki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 6085–6105, https://doi.org/10.5194/amt-17-6085-2024, https://doi.org/10.5194/amt-17-6085-2024, 2024
Short summary
Short summary
Different sun photometer networks use different instruments, post-processing algorithms and calibration protocols for aerosol optical depth (AOD) retrieval. Such differences can affect the homogeneity and comparability of their measurements. In this study, we assess the homogeneity between the sun photometer networks GAW-PFR and SKYNET, analysing common measurements during three campaigns between 2017–2021, and investigate the main cause of the differences.
Klára Čížková, Kamil Láska, Ladislav Metelka, and Martin Staněk
Atmos. Chem. Phys., 23, 4617–4636, https://doi.org/10.5194/acp-23-4617-2023, https://doi.org/10.5194/acp-23-4617-2023, 2023
Short summary
Short summary
The study deals with ultraviolet (UV) radiation in southern polar conditions, where ozone depletion occurs each spring. A 10-year-long time series of UV spectra from Marambio Base, Antarctic Peninsula, has been studied, with a focus on the changes of UV radiation at different wavelengths and the effects of atmospheric and terrestrial variables like ozone, solar elevation, or cloudiness. At the very short wavelengths, the effect of ozone and its deficiency was clearly observed.
Eliane Maillard Barras, Alexander Haefele, René Stübi, Achille Jouberton, Herbert Schill, Irina Petropavlovskikh, Koji Miyagawa, Martin Stanek, and Lucien Froidevaux
Atmos. Chem. Phys., 22, 14283–14302, https://doi.org/10.5194/acp-22-14283-2022, https://doi.org/10.5194/acp-22-14283-2022, 2022
Short summary
Short summary
Intercomparisons of three Dobson and three Brewer spectrophotometers at Arosa/Davos, Switzerland, are used for the homogenization of the longest Umkehr ozone profiles time series worldwide. Dynamic linear modeling (DLM) reveals a significant positive trend after 2004 in the upper stratosphere, a persistent negative trend between 25 and 30 km in the middle stratosphere, and a negative trend at 20 km in the lower stratosphere, with different levels of significance depending on the dataset.
Marek Šmíd, Geiland Porrovecchio, Jiří Tesař, Tim Burnitt, Luca Egli, Julian Grőbner, Petr Linduška, and Martin Staněk
Atmos. Meas. Tech., 14, 3573–3582, https://doi.org/10.5194/amt-14-3573-2021, https://doi.org/10.5194/amt-14-3573-2021, 2021
Short summary
Short summary
We designed and developed a tuneable and portable radiation source (TuPS) to provide a reference wavelength scale, with a bandwidth of emitted radiation of 0.13 nm and uncertainty in wavelength of 0.02 nm. TuPS was successfully used for the in-field characterization of 14 Dobson spectrophotometers in campaigns in Europe. The line spread functions of Dobsons measured by TuPS in conjunction with the cross-sections from IUP improves the consistency between the Dobson and Brewer from 3 % to 1 %.
Cited articles
Arola, A. and Koskela, T.: On the sources of bias in aerosol optical depth retrieval in the UV range, J. Geophys. Res., 109, D08209, https://doi.org/10.1029/2003JD004375, 2004.
Bass, A. M. and Paur, R. J.: The ultraviolet cross-sections of ozone. I. The measurements, II. Results and temperature dependence, in: Atmospheric ozone, Proceedings of the Quadrennial ozone symposium, 3–7 September 1984, Halkidiki, Greece, 606–616, https://doi.org/10.1007/978-94-009-5313-0_120, https://doi.org/10.1007/978-94-009-5313-0_121, 1985.
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh Optical Depth Calculations, J. Atmos. Ocean. Tech., 16, 1854–1861, 1999.
Braesicke, P. and Pyle, J. A.: Changing ozone and changing circulation in northern mid-latitudes: Possible feedbacks?, Geophys. Res. Lett., 30, 1059, https://doi.org/10.1029/2002GL015973, 2003.
Braesicke, P., Neu, J., Fioletov, V., Godin-Beekmann, S., Hubert, D., Petropavlovskikh, I., Shiotani, M., and Sinnhuber, B. M.: Update on global ozone: Past, present, and future, in: Scientific Assessment of Ozone Depletion: 2018, Chap. 3, Global Ozone Research and Monitoring Project – Report No. 58, World Meteorological Organization, Geneva, Switzerland, https://ozone.unep.org/sites/default/files/2019-05/SAP-2018-Assessment-report.pdf (last access: 30 September 2025), 2018.
Brasseur, G. P. and Solomon, S.: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, D. Reidel, Norwell, Mass., 441 pp., https://doi.org/10.1007/978-94-009-6401-3, 1984.
Butchart, N., Scaife, A. A., Bourqui, M. S., de Grandpré, J., Hare, S. H. E., Kettleborough, J., Langematz, U., Manzini, E., Sassi, F., Shibata, K., Shindell, D. T., and Sigmond, M.: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation, Clim. Dynam., 27, 727–741, https://doi.org/10.1007/s00382-006-0162-4, 2006.
Carlund, T., Kouremeti, N., Kazadzis, S., and Gröbner, J.: Aerosol optical depth determination in the UV using a four-channel precision filter radiometer, Atmos. Meas. Tech., 10, 905–923, https://doi.org/10.5194/amt-10-905-2017, 2017.
Carvalho, F. and Henriques, D.: Use of Brewer ozone spectrophotometer for aerosol optical depth measurements on ultraviolet region, Adv. Space Res., 25, 997–1006, 2000.
Coldewey-Egbers, M., Loyola, D. G., Lerot, C., and Van Roozendael, M.: Global, regional and seasonal analysis of total ozone trends derived from the 1995–2020 GTO-ECV climate data record, Atmos. Chem. Phys., 22, 6861–6878, https://doi.org/10.5194/acp-22-6861-2022, 2022.
Damadeo, R., Hassler, B., Zawada, D. J., Frith, S. M., Ball, W. T., Chang, K.-L., Degenstein, D. A., Hubert, D., Misios, S., Petropavlovskikh, I., Roth, C., Sofieva, V. F., Steinbrecht, W., Tourpali, K., Zerefos, C. S., Alsing, J., Balis, D., Coldewey-Egbers, M., Eleftheratos, K., and Wild, J.: Chapter 4: The LOTUS regression model, In: SPARC/IO3C/GAW Report on Long-term Ozone Trends and Uncertainties in the Stratosphere (SPARC Report No. 9, GAW Report No. 241, WCRP-17/2018), edited by: Petropavlovskikh, I., Godin-Beekmann, S., Hubert, D., Damadeo, R., Hassler, B., and Sofieva, V., SPARC, 37–50, https://doi.org/10.17874/f899e57a20b, 2019.
De Bock, V., De Backer, H., Van Malderen, R., Mangold, A., and Delcloo, A.: Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle, Belgium, Atmos. Chem. Phys., 14, 12251–12270, https://doi.org/10.5194/acp-14-12251-2014, 2014.
Evans, R. and Komhyr, W.: Operations handbook – Ozone observations with a Dobson spectrophotometer (WMO/GAW Report No. 183), World Meteorological Organization, Geneva, Switzerland, 2008.
Filonchyk, M., Hurynovich, V., and Yan, H.: Trends in aerosol optical properties over Eastern Europe based on MODIS-Aqua, Geosci. Front., 11, 2169–2181, https://doi.org/10.1016/j.gsf.2020.03.014, 2020.
Fioletov, V. E., Kerr, J. B., McElroy, C. T., Wardle, D. I., Savastiouk, V., and Grajnar, T. S.: The Brewer reference triad, Geophys. Res. Lett., 32, L20805, https://doi.org/10.1029/2005GL024244, 2005.
Garane, K., Bais, A. F., Kazadzis, S., Kazantzidis, A., and Meleti, C.: Monitoring of UV spectral irradiance at Thessaloniki (1990–2005): data re-evaluation and quality control, Ann. Geophys., 24, 3215–3228, https://doi.org/10.5194/angeo-24-3215-2006, 2006.
Garcia-Suñer, M., Matos, V., Kumar, G., Estellés, V., and Utrillas, M. P.: 20 years of columnar aerosol properties at Valencia area (Eastern Spain) by ground-based sun-photometry, Atmos. Res., 300, 107198, https://doi.org/10.1016/j.atmosres.2023.107198, 2024.
Gilbert, R. O.: Statistical Methods for Environmental Pollution Monitoring, Wiley, New York, https://www.osti.gov/biblio/7037501 (last access: 30 September 2025), 1987.
Gorshelev, V., Serdyuchenko, A., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K, Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014, 2014.
Hussain, M. M., and Mahmud, I.: pyMannKendall: a python package for non parametric Mann Kendall family of trend tests [code], Journal of Open Source Software, 4, 1556, https://doi.org/10.21105/joss.01556, 2019.
Hrabčák, P.: Comparison of the optical depth of total ozone and atmospheric aerosols in Poprad-Gánovce, Slovakia, Atmos. Chem. Phys., 18, 7739–7755, https://doi.org/10.5194/acp-18-7739-2018, 2018.
Hrabčák, P.: Saharan dust over Slovakia in the years 2015–2020, Meteorol. J., 25, 3–15, https://www.shmu.sk/File/ExtraFiles/MET_CASOPIS/1658950036_MC_2022-1.pdf (last access: 30 September 2025), 2022.
Jarosławski, J., Krzyscin, J. W., Puchalski, S., and Sobolewski, P.: On the optical thickness in the UV range: Analysis of the groundbased data taken at Belsk, Poland, J. Geophys. Res., 108, 4722, https://doi.org/10.1029/2003JD003571, 2003.
Kasten, F.: A new table and approximation formula for the relative optical air mass, Arch. Meteor. Geophy. B, 14, 206–223, 1966.
Kasten, F. and Young, A. T.: Revised optical air mass tables and approximation formula, Appl. Optics, 28, 4735–4738, 1989.
Kazadzis, S., Bais, A., Amiridis, V., Balis, D., Meleti, C., Kouremeti, N., Zerefos, C. S., Rapsomanikis, S., Petrakakis, M., Kelesis, A., Tzoumaka, P., and Kelektsoglou, K.: Nine years of UV aerosol optical depth measurements at Thessaloniki, Greece, Atmos. Chem. Phys., 7, 2091–2101, https://doi.org/10.5194/acp-7-2091-2007, 2007.
Kendall, M. G.: Rank Correlation Methods, 4th edn., Charles Griffin, London, ISBN 0852641990, 1975.
Kim, J., Cho, H.-K., Mok, J., Yoo, H. D., and Cho, N.: Effects of ozone and aerosol on surface UV radiation variability, J. Photoch. Photobio. B, 119, 46–51, https://doi.org/10.1016/j.jphotobiol.2012.11.007, 2013.
Li, J., Carlson, B. E., Dubovik, O., and Lacis, A. A.: Recent trends in aerosol optical properties derived from AERONET measurements, Atmos. Chem. Phys., 14, 12271–12289, https://doi.org/10.5194/acp-14-12271-2014, 2014.
Li, Y., Feng, W., Zhou, X., Li, Y., and Chipperfield, M. P.: The impact of El Niño–Southern Oscillation on the total column ozone over the Tibetan Plateau, Atmos. Chem. Phys., 24, 8277–8293, https://doi.org/10.5194/acp-24-8277-2024, 2024.
López-Solano, J., Redondas, A., Carlund, T., Rodriguez-Franco, J. J., Diémoz, H., León-Luis, S. F., Hernández-Cruz, B., Guirado-Fuentes, C., Kouremeti, N., Gröbner, J., Kazadzis, S., Carreño, V., Berjón, A., Santana-Díaz, D., Rodríguez-Valido, M., De Bock, V., Moreta, J. R., Rimmer, J., Smedley, A. R. D., Boulkelia, L., Jepsen, N., Eriksen, P., Bais, A. F., Shirotov, V., Vilaplana, J. M., Wilson, K. M., and Karppinen, T.: Aerosol optical depth in the European Brewer Network, Atmos. Chem. Phys., 18, 3885–3902, https://doi.org/10.5194/acp-18-3885-2018, 2018.
Madronich, S.: The atmosphere and UV-B radiation at ground level, in: Environmental UV Photobiology, edited by: Young, A. R., Björn, L. O., Moan, J., and Nultsch, W., Springer US, Boston, MA, 1–39, https://doi.org/10.1007/978-1-4899-2406-3_1, 1993.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
Manney, G. L., Santee, M. L., Lawrence, Z. D., Lambert, A., and Livesey, N. J.: Record-low Arctic stratospheric ozone in 2020: MLS observations and comparisons with previous extreme winters, Geophys. Res. Lett., 47, e2020GL089063, https://doi.org/10.1029/2020GL089063, 2020.
Marenco, F.: On Langley plots in the presence of a systematic diurnal aerosol cycle centered at noon: A comment on recently proposed methodologies, J. Geophys. Res., 112, D06205, https://doi.org/10.1029/2006JD007248, 2007.
Match, A., and Gerber, E. P.: Tropospheric expansion under global warming reduces tropical lower stratospheric ozone, Geophysical Research Letters, 49, e2022GL099463, https://doi.org/10.1029/2022GL099463, 2022.
Matos, V., Sorribas, M., Segura, S., Utrillas, M. P., and Estellés, V.: Long-term (2011–2023) analysis of traffic and biomass burning contributions to black carbon in the third largest metropolitan area of Spain, Atmos. Pollut. Res., 16, 102527, https://doi.org/10.1016/j.apr.2025.102527, 2025.
Meng, L., Liu, J., Tarasick, D. W., Randel, W. J., Steiner, A. K., Wilhelmsen, H., Wang, L., and Haimberger, L.: Continuous rise of the tropopause in the Northern Hemisphere over 1980–2020, Science Advances, 7, eabi8065, https://doi.org/10.1126/sciadv.abi8065, 2021.
Nuñez, M., Serrano, A., and Larson, N. R.: A climatology of aerosol optical depths in the ultraviolet wavelengths for Hobart, Australia, as determined by a Brewer MKIII spectrophotometer, Int. J. Climatol., 43, 632–649, https://doi.org/10.1002/joc.7802, 2023.
Pisoft, P., Sacha, P., Polvani, L. M., Añel, J. A., de la Torre, L., Eichinger, R., Foelsche, U., Huszar, P., Jacobi, C., Karlicky, J., Kuchar, A., Miksovsky, J., Zak, M., and Rieder, H. E.: Stratospheric contraction caused by increasing greenhouse gases, Environ. Res. Lett., 16, 064038, https://doi.org/10.1088/1748-9326/abfe2b, 2021.
Pribullová, A.: Spectral UV aerosol optical thickness determinated from the Poprad-Gánovce Brewer spectrophotometer observations, Contrib. Geophys. Geodesy., 32, 291–307, 2002.
Redondas, A., Evans, R., Stuebi, R., Köhler, U., and Weber, M.: Evaluation of the use of five laboratory-determined ozone absorption cross sections in Brewer and Dobson retrieval algorithms, Atmos. Chem. Phys., 14, 1635–1648, https://doi.org/10.5194/acp-14-1635-2014, 2014.
Rosenlof, K. H.: Seasonal cycle of the residual mean meridional circulation in the stratosphere, J. Geophys. Res., 100, 5173–5191, 1995.
Salawitch, R. J., McBride, L. A., Thompson, C. R., Fleming, E. L., McKenzie, R. L., Rosenlof, K. H., Doherty, S. J., and Fahey, D. W.: Twenty questions and answers about the ozone layer: 2022 update, in: Scientific Assessment of Ozone Depletion: 2022, p. 75, World Meteorological Organization, Geneva, Switzerland, 2023.
Santer, B. D., Wehner, M. F., Wigley, T. M. L., Sausen, R., Meehl, G. A., Taylor, K. E., Ammann, C., Arblaster, J., Washington, W. M., Boyle, J. S., and Brüggemann, W.: Contributions of anthropogenic and natural forcing to recent tropopause height changes, Science, 301, 479–483, https://doi.org/10.1126/science.1084123, 2003.
Savastiouk, V., McElroy, C. T., and Lamb, K.: Calibrating the Brewer spectrophotometers with the travelling standard Brewer #017, in: Proceedings of the Quadrennial Ozone Symposium, edited by: Zerefos, C., pp. 577–578, ISBN 960-6301-01-X, ISBN 978-960-6301-01-8, 2004.
Savastiouk, V., Diémoz, H., and McElroy, C. T.: A physically based correction for stray light in Brewer spectrophotometer data analysis, Atmos. Meas. Tech., 16, 4785–4806, https://doi.org/10.5194/amt-16-4785-2023, 2023.
Schwartz, S. E. and Warneck, P.: Units for use in atmospheric chemistry, Pure Appl. Chem., 67, 1377–1406, 1995.
SCI-TEC Instruments Inc.: Brewer MKIV Spectrophotometer Operator's Manual, SCI-TEC Instruments Inc., Saskatoon, Canada, 1999.
Seabold, S., and Perktold, J.: Statsmodels: Econometric and statistical modeling with Python [code], in: Proceedings of the 9th Python in Science Conference, edited by: van der Walt, S., and Millman, J., 57–61, https://doi.org/10.25080/MAJORA-92BF1922-011, 2010.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968.
Serdyuchenko, A., Gorshelev, V., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence, Atmos. Meas. Tech., 7, 625–636, https://doi.org/10.5194/amt-7-625-2014, 2014.
Slovak Hydrometeorological Institute (SHMI): World Meteorological Organization-Global Atmosphere Watch Program (WMO-GAW)/World Ozone and Ultraviolet Radiation Data Centre, WOUDC [data set], https://doi.org/10.14287/10000001, 2025a.
Slovak Hydrometeorological Institute (SHMI): European Brewer Network, EuBrewNet [data set], https://eubrewnet.aemet.es/eubrewnet/station/view/33 (last access: September 2025), 2025b.
Steinbrecht, W., Claude, H., Köhler, U., and Hoinka, K. P.: Correlations between tropopause height and total ozone: Implications for long-term changes, J. Geophys. Res.-Atmos., 103, 19183–19192, https://doi.org/10.1029/98JD01929, 1998.
Theil, H.: A rank-invariant method of linear and polynomial regression analysis, I, II, III, Proc. K. Ned. Akad. Wet., Ser. A, 53, 386–392, 521–525, 1397–1412, 1950.
United Nations Environment Programme (UNEP): Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer, Ozone Secretariat – UNEP, Nairobi, Kenya, https://ozone.unep.org/sites/default/files/Handbooks (last access: 30 September 2025), 2020.
USask ARG and LOTUS Group: LOTUS_Regression software package, version 0.8.3, University of Saskatchewan Atmospheric Research Group, GitHub [code], https://usask-arg.github.io/lotus-regression/index.html (last access: September 2025), 2024.
Varotsos, C., Cartalis, C., Vlamakis, A., Tzanis, C., and Keramitsoglou, I.: The long-term coupling between column ozone and tropopause properties, J. Climate, 17, 3843–3854, https://doi.org/10.1175/1520-0442(2004)017<3843:TLCBCO>2.0.CO;2, 2004.
Wang, W., Hong, J., Shangguan, M., Wang, H., Jiang, W., and Zhao, S.: Zonally asymmetric influences of the quasi-biennial oscillation on stratospheric ozone, Atmos. Chem. Phys., 22, 13695–13711, https://doi.org/10.5194/acp-22-13695-2022, 2022.
WMO: Guide to meteorological instruments and methods of observation, World Meteorological Organization, No 8, 7th Edn., WMO, Geneva, Switzerland, 2008.
World Meteorological Organization (WMO): Executive Summary. Scientific Assessment of Ozone Depletion: 2022, GAW Report No. 278, 56 pp., WMO, Geneva, Switzerland, https://ozone.unep.org/system/files/documents/Scientific-Assessment-of-Ozone-Depletion-2022-Executive-Summary.pdf (last access: 30 September 2025), 2022.
Zhang, J., Tian, W., Xie, F., Li, Y., Wang, F., Huang, J., and Tian., H.: Influence of the El Niño southern oscillation on the total ozone column and clear-sky ultraviolet radiation over China, Atmos. Environment, 120, 206–216, https://doi.org/10.1016/j.atmosenv.2015.08.080, 2015.
Short summary
We analysed 30 years of measurements of total ozone and atmospheric particles above Slovakia to understand how human activities and climate change affect the air and the upper atmosphere. Our results show that air pollution by particles has clearly decreased, mainly due to lower emissions, while total ozone levels show signs of slow recovery. The rising height of the tropopause, linked to climate change, was found to influence ozone amounts in opposite ways.
We analysed 30 years of measurements of total ozone and atmospheric particles above Slovakia to...
Altmetrics
Final-revised paper
Preprint