Articles | Volume 25, issue 20
https://doi.org/10.5194/acp-25-13475-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-13475-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Potential contribution to secondary aerosols from benzothiazoles in the atmospheric aqueous phase based on oxidation and oligomerization mechanisms
Qun Zhang
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Wei Zhou
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Shanshan Tang
Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
Kai Huang
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Jie Fu
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Zechen Yu
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Yunhe Teng
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Shuyi Shen
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Yang Mei
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Xuezhi Yang
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Jianjie Fu
CORRESPONDING AUTHOR
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Guibin Jiang
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
No articles found.
Xin Zhang, Jiaqi Luo, Wenxiao Pan, Qiao Xue, Xian Liu, Jianjie Fu, Aiqian Zhang, and Guibin Jiang
Atmos. Chem. Phys., 25, 13379–13391, https://doi.org/10.5194/acp-25-13379-2025, https://doi.org/10.5194/acp-25-13379-2025, 2025
Short summary
Short summary
Volatile organic compounds drive atmospheric chemistry via oxidation, forming PM2.5/ozone precursors. This study introduces Vreact, a graph-based deep learning model predicting reaction rate constants (ki) for multiple oxidants simultaneously. It achieves mean squared error = 0.299 and R² = 0.941 for log10ki , overcoming single-oxidant model limits. Vreact advances pollutant formation insights and supports emission control strategies, aiding global air quality and public health efforts.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024, https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Short summary
The CAMx–UNIPAR model simulated the SOA budget formed via multiphase reactions of hydrocarbons and the impact of emissions and climate on SOA characteristics under California’s urban environments during winter 2018. SOA growth was dominated by daytime oxidation of long-chain alkanes and nighttime terpene oxidation with O3 and NO−3 radicals. The spatial distributions of anthropogenic SOA were affected by the northwesterly wind, whereas those of biogenic SOA were insensitive to wind directions.
Zechen Yu, Myoseon Jang, Soontae Kim, Kyuwon Son, Sanghee Han, Azad Madhu, and Jinsoo Park
Atmos. Chem. Phys., 22, 9083–9098, https://doi.org/10.5194/acp-22-9083-2022, https://doi.org/10.5194/acp-22-9083-2022, 2022
Short summary
Short summary
The UNIPAR model was incorporated into CAMx to predict the ambient concentration of organic matter in urban atmospheres during the KORUS-AQ campaign. CAMx–UNIPAR significantly improved the simulation of SOA formation under the wet aerosol condition through the consideration of aqueous reactions of reactive organic species and gas–aqueous partitioning into the wet inorganic aerosol.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Cited articles
Aljawhary, D., Zhao, R., Lee, A. K. Y., Wang, C., and Abbatt, J. P. D.: Kinetics, mechanism, and secondary organic aerosol yield of aqueous phase photo-oxidation of α-pinene oxidation products, J. Phys. Chem. A, 120, 1395–1407, https://doi.org/10.1021/acs.jpca.5b06237, 2016.
Andreozzi, R., Caprio, V., and Marotta, R.: Oxidation of benzothiazole, 2-mercaptobenzothiazole and 2-hydroxybenzothiazole in aqueous solution by means of H2O2/UV or photoassisted Fenton systems, J. Chem. Technol. Biot., 76, 196–202, https://doi.org/10.1002/jctb.360, 2001.
Arakaki, T., Anastasio, C., Kuroki, Y., Nakajima, H., Okada, K., Kotani, Y., Handa, D., Azechi, S., Kimura, T., Tsuhako, A., and Miyagi, Y.: A general scavenging rate constant for reaction of hydroxyl radical with organic carbon in atmospheric waters, Environ. Sci. Technol., 47, 8196–8203, https://doi.org/10.1021/es401927b, 2013.
Armada, D., Llompart, M., Celeiro, M., Garcia-Castro, P., Ratola, N., Dagnac, T., and de Boer, J.: Global evaluation of the chemical hazard of recycled tire crumb rubber employed on worldwide synthetic turf football pitches, Sci. Total Environ., 812, 152542, https://doi.org/10.1016/j.scitotenv.2021.152542, 2022.
Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 86, 69–201, https://doi.org/10.1021/cr00071a004, 1986.
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003.
Avagyan, R., Luongo, G., Thorsén, G., and Östman, C.: Benzothiazole, benzotriazole, and their derivates in clothing textiles-a potential source of environmental pollutants and human exposure, Environ. Sci. Pollut. R., 22, 5842–5849, https://doi.org/10.1007/s11356-014-3691-0, 2015.
Bahnmüller, S., Loi, C. H., Linge, K. L., von Gunten, U., and Canonica, S.: Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H2O2, Water Res., 74, 143–154, https://doi.org/10.1016/j.watres.2014.12.039, 2015.
Bao, M., Zhang, Y.-L., Cao, F., Hong, Y., Lin, Y.-C., Yu, M., Jiang, H., Cheng, Z., Xu, R., and Yang, X.: Impact of fossil and non-fossil fuel sources on the molecular compositions of water-soluble humic-like substances in PM2.5 at a suburban site of Yangtze River Delta, China, Atmos. Chem. Phys., 23, 8305–8324, https://doi.org/10.5194/acp-23-8305-2023, 2023.
Bayati, M., Vu, D. C., Vo, P. H., Rogers, E., Park, J., Ho, T. L., Davis, A. N., Gulseven, Z., Carlo, G., Palermo, F., McElroy, J. A., Nagel, S. C., and Lin, C. H.: Health risk assessment of volatile organic compounds at daycare facilities, Indoor Air, 31, 977–988, https://doi.org/10.1111/ina.12801, 2021.
Bianco, A., Passananti, M., Brigante, M., and Mailhot, G.: Photochemistry of the cloud aqueous phase: A review, Molecules, 25, 423, https://doi.org/10.3390/molecules25020423, 2020.
Blando, J. D. and Turpin, B. J.: Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility, Atmos. Environ., 34, 1623–1632, 2000.
Borowska, E., Felis, E., and Kalka, J.: Oxidation of benzotriazole and benzothiazole in photochemical processes: Kinetics and formation of transformation products, Chem. Eng. J., 304, 852–863, https://doi.org/10.1016/j.cej.2016.06.123, 2016.
Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ( ) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513–886, https://doi.org/10.1063/1.555805, 1988.
Cao, S. T., Liu, J. T., Yu, L., Fang, X. J., Xu, S. Q., Li, Y. Y., and Xia, W.: Prenatal exposure to benzotriazoles and benzothiazoles and child neurodevelopment: A longitudinal study, Sci. Total Environ., 865, 161188, https://doi.org/10.1016/j.scitotenv.2022.161188, 2023.
Chang, J., Men, Z., Sun, L., Wei, N., Jin, J., Wu, L., Wang, T., and Mao, H.: Study on emission characteristic of benzothiazole and its derivatives from vehicles based on the tunnel experiment, Environ. Pollut. Control, 43, 195–205, https://doi.org/10.15985/j.cnki.1001-3865.2021.02.011, 2021 (in Chinese).
Chang, J. L. and Thompson, J. E.: Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds, Atmos. Environ., 44, 541–551, https://doi.org/10.1016/j.atmosenv.2009.10.042, 2010.
Chen, J., Gu, B., LeBoeuf, E. J., Pan, H., and Dai, S.: Spectroscopic characterization of the structural and functional properties of natural organic matter fractions, Chemosphere, 48, 59–68, https://doi.org/10.1016/S0045-6535(02)00041-3, 2002.
Chen, X. M., Zhou, Y. Q., Hu, C., Xia, W., Xu, S. Q., Cai, Z. W., and Li, Y. Y.: Prenatal exposure to benzotriazoles and benzothiazoles and cord blood mitochondrial DNA copy number: A prospective investigation, Environ. Int., 143, 105920, https://doi.org/10.1016/j.envint.2020.105920, 2020.
Chhalodia, A. K., Rinkel, J., Konvalinkova, D., Petersen, J., and Dickschat, J. S.: Identification of volatiles from six marine Celeribacter strains, Beilstein J. Org. Chem., 17, 420–430, https://doi.org/10.3762/bjoc.17.38, 2021.
De Wever, H. and Verachtert, H.: Biodegradation and toxicity of benzothiazoles, Water Res., 31, 2673–2684, https://doi.org/10.1016/s0043-1354(97)00138-3, 1997.
Desyaterik, Y., Sun, Y., Shen, X., Lee, T., Wang, X., Wang, T., and Collett, J. L.: Speciation of “brown” carbon in cloud water impacted by agricultural biomass burning in eastern China, J. Geophys. Res.-Atmos., 118, 7389–7399, https://doi.org/10.1002/jgrd.50561, 2013.
Dörter, M., Odabasi, M., and Yenisoy-Karakaş, S.: Source apportionment of biogenic and anthropogenic VOCs in Bolu plateau, Sci. Total Environ., 731, 139201, https://doi.org/10.1016/j.scitotenv.2020.139201, 2020.
Ervens, B.: Modeling the processing of aerosol and trace gases in clouds and fogs, Chem. Rev., 115, 4157–4198, https://doi.org/10.1021/cr5005887, 2015.
Ferrario, J. B., Deleon, I. R., and Tracy, R. E.: Evidence for toxic anthropogenic chemicals in human thrombogenic coronary plaques, Arch. Environ. Con. Tox., 14, 529–534, https://doi.org/10.1007/bf01055381, 1985.
Ferrey, M. L., Hamilton, M. C., Backe, W. J., and Anderson, K. E.: Pharmaceuticals and other anthropogenic chemicals in atmospheric particulates and precipitation, Sci. Total Environ., 612, 1488–1497, https://doi.org/10.1016/j.scitotenv.2017.06.201, 2018.
Finlayson-Pitts, B. J. and Pitts Jr., J. N.: Chemistry of the upper and lower atmosphere: Theory, experiments, and applications, Academic Press, ISBN 012257060X, 2000.
Franklin, E. B., Alves, M. R., Moore, A. N., Kilgour, D. B., Novak, G. A., Mayer, K., Sauer, J. S., Weber, R. J., Dang, D., Winter, M., Lee, C., Cappa, C. D., Bertram, T. H., Prather, K. A., Grassian, V. H., and Goldstein, A. H.: Atmospheric benzothiazoles in a coastal marine environment, Environ. Sci. Technol., 55, 15705–15714, https://doi.org/10.1021/acs.est.1c04422, 2021.
Garcia-Gomez, D., Bregy, L., Nussbaumer-Ochsner, Y., Gaisl, T., Kohler, M., and Zenobi, R.: Detection and quantification of benzothiazoles in exhaled breath and exhaled breath condensate by real-time secondary electrospray ionization-high-resolution mass spectrometry and ultra-high performance liquid chromatography, Environ. Sci. Technol., 49, 12519–12524, https://doi.org/10.1021/acs.est.5b03809, 2015.
George, K. M., Ruthenburg, T. C., Smith, J., Yu, L., Zhang, Q., Anastasio, C., and Dillner, A. M.: FT-IR Quantification of the carbonyl functional group in aqueous-phase secondary organic Aerosol from phenols, Atmos. Environ., 100, 230–237, https://doi.org/10.1016/j.atmosenv.2014.11.011, 2015.
Goldstein, A. H. and Galbally, I. E.: Known and unexplored organic constituents in the Earth's atmosphere, Environ. Sci. Technol., 41, 1514–1521, https://doi.org/10.1021/es072476p, 2007.
Herrmann, H.: Kinetics of aqueous phase reactions relevant for atmospheric chemistry, Chem. Rev., 103, 4691–4716, https://doi.org/10.1021/cr020658q, 2003.
Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gligorovski, S., Poulain, L., and Monod, A.: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0, Atmos. Environ., 39, 4351–4363, https://doi.org/10.1016/j.atmosenv.2005.02.016, 2005.
Herrmann, H., Hoffmann, D., Schaefer, T., Brauer, P., and Tilgner, A.: Tropospheric aqueous-phase free-radical chemistry: Radical sources, spectra, reaction kinetics and prediction tools, ChemPhysChem, 11, 3796–3822, https://doi.org/10.1002/cphc.201000533, 2010.
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.: Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase, Chem. Rev., 115, 4259–4334, https://doi.org/10.1021/cr500447k, 2015.
Jiang, F., Song, J., Bauer, J., Gao, L., Vallon, M., Gebhardt, R., Leisner, T., Norra, S., and Saathoff, H.: Chromophores and chemical composition of brown carbon characterized at an urban kerbside by excitation–emission spectroscopy and mass spectrometry, Atmos. Chem. Phys., 22, 14971–14986, https://doi.org/10.5194/acp-22-14971-2022, 2022.
Johannessen, C., Saini, A., Zhang, X., and Harner, T.: Air monitoring of tire-derived chemicals in global megacities using passive samplers, Environ. Pollut., 314, 120206, https://doi.org/10.1016/j.envpol.2022.120206, 2022.
Johnston, M. V. and Kerecman, D. E.: Molecular characterization of atmospheric organic aerosol by mass spectrometry, Annu. Rev. Anal. Chem., 12, 247–274, https://doi.org/10.1146/annurev-anchem-061516-045135, 2019.
Karimova, N. V., Wang, W., Gerber, R. B., and Finlayson-Pitts, B. J.: Experimental and theoretical investigation of benzothiazole oxidation by OH in air and the role of O2, Environ. Sci.-Proc. Imp., 26, 2177–2188, https://doi.org/10.1039/D4EM00461B, 2024.
Kramp, F. and Paulson, S. E.: On the uncertainties in the rate coefficients for OH reactions with hydrocarbons, and the rate coefficients of the 1,3,5-trimethylbenzene and m-xylene reactions with OH radicals in the gas phase, J. Phys. Chem. A, 102, 2685-2690, https://doi.org/10.1021/jp973289o, 1998.
Lai, W. W.-P., Lin, J.-C., and Li, M.-H.: Degradation of benzothiazole by the UV/persulfate process: Degradation kinetics, mechanism and toxicity, J. Photoch. Photobio. A, 436, 114355, https://doi.org/10.1016/j.jphotochem.2022.114355, 2023.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric brown carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
Li, F., Tang, S., Tsona, N. T., and Du, L.: Kinetics and mechanism of OH-induced α-terpineol oxidation in the atmospheric aqueous phase, Atmos. Environ., 237, 117650, https://doi.org/10.1016/j.atmosenv.2020.117650, 2020.
Li, F., Tsona, N. T., Li, J., and Du, L.: Aqueous-phase oxidation of syringic acid emitted from biomass burning: Formation of light-absorbing compounds, Sci. Total Environ., 765, 144239, https://doi.org/10.1016/j.scitotenv.2020.144239, 2021.
Li, F., Tang, S., Lv, J., He, A., Wang, Y., Liu, S., Cao, H., Zhao, L., Wang, Y., and Jiang, G.: Molecular-scale investigation on the formation of brown carbon aerosol via iron-phenolic compound reactions in the dark, Environ. Sci. Technol., 57, 11173–11184, https://doi.org/10.1021/acs.est.3c04263, 2023a.
Li, F., Zhou, S., Du, L., Zhao, J., Hang, J., and Wang, X.: Aqueous-phase chemistry of atmospheric phenolic compounds: A critical review of laboratory studies, Sci. Total Environ., 856, 158895, https://doi.org/10.1016/j.scitotenv.2022.158895, 2023b.
Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in China, Atmos. Chem. Phys., 17, 3301–3316, https://doi.org/10.5194/acp-17-3301-2017, 2017.
Li, Y., Zhou, Y., Cai, Z., Li, R., Leng, P., Liu, H., Liu, J., Mahai, G., Li, Y., Xu, S., and Xia, W.: Associations of benzotriazoles and benzothiazoles with estrogens and androgens among pregnant women: A cohort study with repeated measurements, Sci. Total Environ., 838, 155998, https://doi.org/10.1016/j.scitotenv.2022.155998, 2022.
Liao, C., Kim, U.-J., and Kannan, K.: A review of environmental occurrence, fate, exposure, and toxicity of benzothiazoles, Environ. Sci. Technol., 52, 5007–5026, https://doi.org/10.1021/acs.est.7b05493, 2018.
Liao, X., Zou, T., Chen, M., Song, Y., Yang, C., Qiu, B., Chen, Z.-F., Tsang, S. Y., Qi, Z., and Cai, Z.: Contamination profiles and health impact of benzothiazole and its derivatives in PM2.5 in typical Chinese cities, Sci. Total Environ., 755, 142617, https://doi.org/10.1016/j.scitotenv.2020.142617, 2021.
Lin, P., Rincon, A. G., Kalberer, M., and Yu, J. Z.: Elemental composition of HULIS in the Pearl River Delta Region, China: Results inferred from positive and negative electrospray high resolution mass spectrometric data, Environ. Sci. Technol., 46, 7454–7462, https://doi.org/10.1021/es300285d, 2012.
Lv, S., Tian, L., Zhao, S., Jones, K. C., Chen, D., Zhong, G., Li, J., Xu, B., Peng, P. A., and Zhang, G.: Aqueous secondary formation substantially contributes to hydrophilic organophosphate esters in aerosols, Nat. Commun., 16, 4463, https://doi.org/10.1038/s41467-025-59361-6, 2025.
Luongo, G., Avagyan, R., Hongyu, R., and Ostman, C.: The washout effect during laundry on benzothiazole, benzotriazole, quinoline, and their derivatives in clothing textiles, Environ. Sci. Pollut. R., 23, 2537–2548, https://doi.org/10.1007/s11356-015-5405-7, 2016.
McNeill, V. F.: Aqueous organic chemistry in the atmosphere: Sources and chemical processing of organic aerosols, Environ. Sci. Technol., 49, 1237–1244, https://doi.org/10.1021/es5043707, 2015.
Meagher, J. F., Olszyna, K. J., Weatherford, F. P., and Mohnen, V. A.: The availability of H2O2 and O3 for aqueous phase oxidation of SO2. The question of linearity, Atmos. Environ. A-Gen., 24, 1825–1829, https://doi.org/10.1016/0960-1686(90)90514-N, 1990.
Mei, S. S., Xia, K., Liu, C. C., Chen, X., Yuan, R., Liu, H., Zhao, C., and Liu, S.: Aqueous-phase processing affects the formation and size distribution of aerosol organic functional groups during heavy pollution, J. Geophys. Res.-Atmos., 130, e2024JD042029, https://doi.org/10.1029/2024jd042029, 2025.
Messaadia, L., El Dib, G., Lendar, M., Cazaunau, M., Roth, E., Ferhati, A., Mellouki, A., and Chakir, A.: Gas-phase rate coefficients for the reaction of 3-hydroxy-2-butanone and 4-hydroxy-2-butanone with OH and Cl, Atmos. Environ., 77, 951–958, https://doi.org/10.1016/j.atmosenv.2013.06.028, 2013.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence spectroscopy and multi-way techniques. PARAFAC, Anal. Methods-UK, 5, 6557–6566, https://doi.org/10.1039/c3ay41160e, 2013.
Neumann, M. and Schliebner, I.: Protecting the sources of our drinking water: The criteria for identifying persistent, mobile and toxic (PMT) substances and very persistent and very mobile (vPvM) substances under EU regulation REACH (EC) No. 1907/2006, German Environment Agency, ISSN 1862-4804, https://www.umweltbundesamt.de/en/publikationen/protecting-the-sources-of-our-drinking-water-the (last access: 26 August 2025), 2019.
Nuñez, A., Vallecillos, L., Marcé, R. M., and Borrull, F.: Occurrence and risk assessment of benzothiazole, benzotriazole and benzenesulfonamide derivatives in airborne particulate matter from an industrial area in Spain, Sci. Total Environ., 708, 135065, https://doi.org/10.1016/j.scitotenv.2019.135065, 2020.
Parker-Jurd, F. N. F., Napper, I. E., Abbott, G. D., Hann, S., and Thompson, R. C.: Quantifying the release of tyre wear particles to the marine environment via multiple pathways, Mar. Pollut. Bull., 172, 112897, https://doi.org/10.1016/j.marpolbul.2021.112897, 2021.
Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., McCulloch, A., Harth, C., Salameh, P., O'Doherty, S., Wang, R. H. J., Porter, L., and Miller, B. R.: Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, Science, 292, 1882–1888, https://doi.org/10.1126/science.1058673, 2001.
Reddy, C. M. and Quinn, J. G.: Environmental chemistry of benzothiazoles derived from rubber, Environ. Sci. Technol., 31, 2847–2853, https://doi.org/10.1021/es970078o, 1997.
Saini, A., Harner, T., Chinnadhurai, S., Schuster, J. K., Yates, A., Sweetman, A., Aristizabal-Zuluaga, B. H., Jimenez, B., Manzano, C. A., Gaga, E. O., Stevenson, G., Falandysz, J., Ma, J., Miglioranza, K. S. B., Kannan, K., Tominaga, M., Jariyasopit, N., Rojas, N. Y., Amador-Munoz, O., Sinha, R., Alani, R., Suresh, R., Nishino, T., and Shoeib, T.: GAPS-megacities: A new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air, Environ. Pollut., 267, 115416, https://doi.org/10.1016/j.envpol.2020.115416, 2020.
Santos, G. T. A. D., Santos, P. S. M., and Duarte, A. C.: Vanillic and syringic acids from biomass burning: Behaviour during Fenton-like oxidation in atmospheric aqueous phase and in the absence of light, J. Hazard. Mater., 313, 201–208, https://doi.org/10.1016/j.jhazmat.2016.04.006, 2016.
Schneider, K., de Hoogd, M., Madsen, M. P., Haxaire, P., Bierwisch, A., and Kaiser, E.: ERASSTRI – European risk assessment study on synthetic turf rubber infill – Part 1: Analysis of infill samples, Sci. Total Environ., 718, 137174, https://doi.org/10.1016/j.scitotenv.2020.137174, 2020.
Stierle, A. A., Cardellina, J. H., and Singleton, F. L.: Benzothiazoles from a putatitve bacterial symbiont of the marine sponge Tedania ignis, Tetrahedron Lett., 32, 4847–4848, 1991.
Tang, J., Li, J., Su, T., Han, Y., Mo, Y., Jiang, H., Cui, M., Jiang, B., Chen, Y., Tang, J., Song, J., Peng, P., and Zhang, G.: Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation–emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis, Atmos. Chem. Phys., 20, 2513–2532, https://doi.org/10.5194/acp-20-2513-2020, 2020a.
Tang, N., Zhang, Z., Dong, R., Zhu, H., and Huang, W.: Emission behavior of crumb rubber modified asphalt in the production process, J. Clean. Prod., 340, 130850, https://doi.org/10.1016/j.jclepro.2022.130850, 2022a.
Tang, S., Li, F., Tsona, N. T., Lu, C., Wang, X., and Du, L.: Aqueous-phase photooxidation of vanillic acid: A potential source of humic-like substances (HULIS), ACS Earth Space Chem., 4, 862–872, https://doi.org/10.1021/acsearthspacechem.0c00070, 2020b.
Tang, S., Li, F., Lv, J., Liu, L., Wu, G., Wang, Y., Yu, W., Wang, Y., and Jiang, G.: Unexpected molecular diversity of brown carbon formed by Maillard-like reactions in aqueous aerosols, Chem. Sci., 13, 8401–8411, https://doi.org/10.1039/d2sc02857c, 2022b.
Teich, M., van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Müller, T., Močnik, G., and Herrmann, H.: Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China, Atmos. Chem. Phys., 17, 1653–1672, https://doi.org/10.5194/acp-17-1653-2017, 2017.
USEPA: Estimation Programs Interface Suite™ for Microsoft® Windows, v. 4.11, United States Environmental Protection Agency, Washington, DC, USA, https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface (last access: 26 August 2025), 2012.
Wang, J., Zhou, L., Wang, W., and Ge, M.: Gas-phase reaction of two unsaturated ketones with atomic Cl and O3: kinetics and products, Phys. Chem. Chem. Phys., 17, 12000–12012, https://doi.org/10.1039/c4cp05461j, 2015.
Wang, M., Shao, M., Lu, S.-H., Yang, Y.-D., and Chen, W.-T.: Evidence of coal combustion contribution to ambient VOCs during winter in Beijing, Chinese Chem. Lett., 24, 829–832, https://doi.org/10.1016/j.cclet.2013.05.029, 2013.
Wei, W., Wang, T., Chang, J., and Mao, H.: Emission Characteristics of Benzothiazole and Its Derivatives from Motor Vehicles Based on Tunnel Experiments, China Environ. Sci., 45, 2992–3000, https://doi.org/10.19674/j.cnki.issn1000-6923.20250113.005, 2025 (in Chinese).
Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., Brian, Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres-Calzada, C., Hiebert-Giesbrecht, M., Vicki, Varshavi, D., Varshavi, D., Allen, D., Arndt, D., Khetarpal, N., Sivakumaran, A., Harford, K., Sanford, S., Yee, K., Cao, X., Budinski, Z., Liigand, J., Zhang, L., Zheng, J., Mandal, R., Karu, N., Dambrova, M., Helgi, Greiner, R., and Gautam, V.: HMDB 5.0: the Human metabolome database for 2022, Nucleic Acids Res., 50, D622–D631, https://doi.org/10.1093/nar/gkab1062, 2022.
Wolke, R., Sehili, A. M., Simmel, M., Knoth, O., Tilgner, A., and Herrmann, H.: SPACCIM: A parcel model with detailed microphysics and complex multiphase chemistry, Atmos. Environ., 39, 4375–4388, https://doi.org/10.1016/j.atmosenv.2005.02.038, 2005.
Wu, Z., Zhu, C., Li, X., Dong, L., Du, B., Wang, W., and Lv, M.: Non-target screening and semi-quantitative analysis of organic pollutants in the atmosphere based on GC-QTOF/MS, Environ. Chem., 40, 3698–3705, https://doi.org/10.7524/j.issn.0254-6108.2021051304, 2021 (in Chinese).
Yi, Y., Zhou, X., Xue, L., and Wang, W.: Air pollution: formation of brown, lighting-absorbing, secondary organic aerosols by reaction of hydroxyacetone and methylamine, Environ. Chem. Lett., 16, 1083–1088, https://doi.org/10.1007/s10311-018-0727-6, 2018.
You, B., Li, S., Tsona, N. T., Li, J., Xu, L., Yang, Z., Cheng, S., Chen, Q., George, C., Ge, M., and Du, L.: Environmental processing of short-chain fatty alcohols induced by photosensitized chemistry of brown carbon, ACS Earth Space Chem., 4, 631–640, https://doi.org/10.1021/acsearthspacechem.0c00023, 2020.
Zhang, H., Xu, Y., and Jia, L.: A chamber study of catalytic oxidation of SO2 by in aerosol water, Atmos. Environ., 245, 118019, https://doi.org/10.1016/j.atmosenv.2020.118019, 2020a.
Zhang, J., Zhang, X., Wu, L., Wang, T., Zhao, J., Zhang, Y., Men, Z., and Mao, H.: Occurrence of benzothiazole and its derivates in tire wear, road dust, and roadside soil, Chemosphere, 201, 310–317, https://doi.org/10.1016/j.chemosphere.2018.03.007, 2018a.
Zhang, J., Wang, T., Men, Z., Mao, H., and Wu, Y.: Pollution characteristics and exposure assessment of benzothiazole and its derivatives in ambient air particulates, China Environ. Sci., 40, 851–856, https://doi.org/10.19674/j.cnki.issn1000-6923.2020.0146, 2020b (in Chinese).
Zhang, L., Li, J., Li, Y., Liu, X., Luo, Z., Shen, G., and Tao, S.: Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions, Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, 2024.
Zhang, Q., Zhang, H., Yu, Z., Fu, J., and Jiang, G.: Occurrence and environmental behavior of benzothiazoles in the atmosphere, Environ. Chem., 44, 1710–1718, https://doi.org/10.7524/j.issn.0254-6108.2024011504, 2025 (in Chinese).
Zhang, R., Sun, X., Shi, A., Huang, Y., Yan, J., Nie, T., Yan, X., and Li, X.: Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China, Atmos. Environ., 177, 275–282, https://doi.org/10.1016/j.atmosenv.2017.12.031, 2018b.
Zhang, Y., Xu, C., Zhang, W., Qi, Z., Song, Y., Zhu, L., Dong, C., Chen, J., and Cai, Z.: p-Phenylenediamine antioxidants in PM2.5: The underestimated urban air pollutants, Environ. Sci. Technol., 56, 6914–6921, https://doi.org/10.1021/acs.est.1c04500, 2022.
Zhou, L., Xie, Y., Cao, H., Guo, Z., Wen, J., and Shi, Y.: Enhanced removal of benzothiazole in persulfate promoted wet air oxidation via degradation and synchronous polymerization, Chem. Eng. J., 370, 208–217, https://doi.org/10.1016/j.cej.2019.03.201, 2019.
Zhou, Y. Q., Li, Y., Xu, S. Q., Liao, J. Q., Zhang, H. N., Li, J. F., Hong, Y. J., Xia, W., and Cai, Z. W.: Prenatal exposure to benzotraizoles and benzothiazoles in relation to fetal and birth size: A longitudinal study, J. Hazard. Mater., 398, 122828, https://doi.org/10.1016/j.jhazmat.2020.122828, 2020.
Short summary
This article comprehensively investigates the aqueous-phase OH oxidation of benzothiazoles (BTs), common rubber additives widespread in urban air, through laboratory simulation experiments. BTs can rapidly degrade, leading to light absorption, high yields of sulfate, and the formation of oligomerized organic compounds. The results reveal that aqueous-phase BTs can contribute to secondary aerosols, altering the chemical and optical properties of atmospheric particles.
This article comprehensively investigates the aqueous-phase OH oxidation of benzothiazoles...
Altmetrics
Final-revised paper
Preprint