Articles | Volume 25, issue 20
https://doi.org/10.5194/acp-25-13379-2025
https://doi.org/10.5194/acp-25-13379-2025
Research article
 | 
22 Oct 2025
Research article |  | 22 Oct 2025

Implications of VOC oxidation in atmospheric chemistry: development of a comprehensive AI model for predicting reaction rate constants

Xin Zhang, Jiaqi Luo, Wenxiao Pan, Qiao Xue, Xian Liu, Jianjie Fu, Aiqian Zhang, and Guibin Jiang

Related authors

Potential contribution to secondary aerosols from benzothiazoles in the atmospheric aqueous phase based on oxidation and oligomerization mechanisms
Qun Zhang, Wei Zhou, Shanshan Tang, Kai Huang, Jie Fu, Zechen Yu, Yunhe Teng, Shuyi Shen, Yang Mei, Xuezhi Yang, Jianjie Fu, and Guibin Jiang
Atmos. Chem. Phys., 25, 13475–13491, https://doi.org/10.5194/acp-25-13475-2025,https://doi.org/10.5194/acp-25-13475-2025, 2025
Short summary
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024,https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Increase of nitrooxy organosulfates in firework-related urban aerosols during Chinese New Year's Eve
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021,https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary

Cited articles

Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 86, 69–201, https://doi.org/10.1021/cr00071a004, 1986. 
Atkinson, R.: A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds, Int. J. Chem. Kinet., 19, 799–828, https://doi.org/10.1002/kin.550190903, 1987. 
Atkinson, R., Arey, J., and Aschmann, S. M.: Gas-phase reactions of azulene with OH and NO3 radicals and O3 at 298±2 K, Int. J. Chem. Kinet., 24, 467–480, https://doi.org/10.1002/kin.550240507, 1992. 
Baptista, A., Gibilisco, R. G., Wiesen, P., and Teruel, M. A.: FTIR kinetic study of the reactions of γ-caprolactone and γ-heptalactone initiated by Cl and OH radicals at 298 K and atmospheric pressure, Chem. Phys. Lett., 765, 138313, https://doi.org/10.1016/j.cplett.2020.138313, 2021. 
Download
Short summary
Volatile organic compounds drive atmospheric chemistry via oxidation, forming PM2.5/ozone precursors. This study introduces Vreact, a graph-based deep learning model predicting reaction rate constants (ki) for multiple oxidants simultaneously. It achieves mean squared error = 0.299 and R² = 0.941 for log10ki , overcoming single-oxidant model limits. Vreact advances pollutant formation insights and supports emission control strategies, aiding global air quality and public health efforts.
Share
Altmetrics
Final-revised paper
Preprint