
Atmos. Chem. Phys., 25, 13379–13391, 2025
https://doi.org/10.5194/acp-25-13379-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Implications of VOC oxidation in atmospheric chemistry:
development of a comprehensive AI model for predicting

reaction rate constants

Xin Zhang1,2,�, Jiaqi Luo1,2,�, Wenxiao Pan1,2, Qiao Xue1,2, Xian Liu1,2, Jianjie Fu1,2,3,
Aiqian Zhang1,2,3, and Guibin Jiang1,2,3

1State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China

2College of Resources and Environment, University of Chinese Academy of Sciences,
Beijing 100190, P.R. China

3School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,
Hangzhou 310012, P.R. China

�These authors contributed equally to this work.

Correspondence: Xian Liu (xianliu@rcees.ac.cn) and Jianjie Fu (jjfu@rcees.ac.cn)

Received: 18 March 2025 – Discussion started: 11 April 2025
Revised: 17 July 2025 – Accepted: 17 July 2025 – Published: 22 October 2025

Abstract. Volatile organic compounds (VOCs) significantly influence global atmospheric chemistry through
oxidative reactions with oxidants. These reactions produce key precursors to the formation of atmospheric fine
particulate matter (PM2.5) and ozone (O3), which in turn play a crucial role in regulating O3 pollution and reduc-
ing PM2.5 concentrations. With the increasing diversity of VOCs, the need for advanced modeling techniques
to accurately estimate the atmospheric oxidation reaction rate constants (ki , where i ∈ {OH,Cl,NO3, or O3})
has become more urgent. Here we introduce Vreact, a Siamese message passing neural network (MPNN) ar-
chitecture that jointly models VOC–oxidant reactivity. The model simultaneously predicts log10ki values and
achieves a mean squared error (MSE) of 0.299 and a coefficient of determination (R2) of 0.941 on the in-
ternal test set. This framework overcomes the single-oxidant constraint of traditional models, enabling uni-
fied and scalable prediction of VOC oxidation kinetics across multiple oxidants. An interactive web tool
(http://vreact.envwind.site:8001/, last access: 17 September 2025) is provided to facilitate non-expert access to
reactivity screening. Vreact offers valuable insights into the formation and evolution of atmospheric pollutants
and serves as a critical resource for developing effective control and emission strategies, ultimately supporting
global efforts to mitigate air pollution and improve public health.

1 Introduction

The rapid advancement in data-driven methodologies has
revolutionized various fields, such as protein structure
prediction (Abramson et al., 2024), molecular generation
(Zhang et al., 2023), organic reaction prediction (Burés and
Larrosa, 2023), and bioinformatics (Theodoris et al., 2023).
Environmental challenges, particularly those associated with
atmospheric chemistry and climate change (Chen et al.,
2024; Kubečka et al., 2023; Qiu et al., 2023; Zhao et al.,

2025), have also benefited from these innovations. As pol-
lutants evolve under both anthropogenic and natural influ-
ences, the understanding of their chemical and physical prop-
erties has become increasingly vital for addressing global
air quality and climate issues. Volatile organic compounds
(VOCs) are organic chemicals that readily vaporize at ambi-
ent temperature, contributing significantly to the complexity
of atmospheric processes. Sources of VOCs are both nat-
ural and anthropogenic, with human activities such as in-
dustrial production, petrochemical processing, and vehicle
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exhaust contributing to the emission of a variety of VOCs.
Additionally, biosphere sources, such as plants and forests,
release compounds like isoprene and monoterpenes, which
further complicate atmospheric VOC dynamics (Qin et al.,
2021; Sindelarova et al., 2014). These highly reactive VOCs
drive critical atmospheric reactions, such as the formation of
ozone and secondary organic aerosols (SOAs), and signif-
icantly contribute to environmental pollution. For instance,
VOCs interact with nitrogen oxides (NOx) and radicals to
form tropospheric O3 and SOA (Finlayson-Pitts and Pitts,
1997; Hallquist et al., 2009; Han et al., 2018; Zhang et al.,
2020; Ziemann and Atkinson, 2012). The role of VOCs in
the formation of secondary pollutants such as PM2.5 (Huang
et al., 2014; Zhao et al., 2015) and O3 is a growing con-
cern due to the adverse impacts on human health (Kamar-
rudin et al., 2013), including respiratory diseases, cardiovas-
cular conditions, and overall mortality. The dynamic interac-
tions between VOCs and atmospheric oxidants determine the
persistence and transformation of these pollutants, which in
turn influence their contribution to global haze, photochemi-
cal smog, and acid deposition.

VOCs undergo degradation and removal from the tropo-
sphere through diverse mechanisms driven by atmospheric
oxidants. During the daytime, OH radicals serve as the pri-
mary oxidants, facilitating rapid VOC oxidation. At night,
however, the concentration of OH decreases sharply due
to the lack of photochemical reactions, shifting the domi-
nant oxidation pathways to NO3 radicals and O3. The re-
action rates of VOCs with OH are approximately 30 times
faster than those with NO3 radicals, significantly influenc-
ing the spatial and temporal variation of the atmosphere’s
self-cleaning capacity and the formation of organic aerosols
(Palmer et al., 2022; Zha et al., 2023). For example, regions
with high isoprene concentrations often reflect differences
in its reaction products and rates with OH and NOx rather
than solely high emissions (Wells et al., 2020). Addition-
ally, the structural diversity of VOCs determines their reac-
tion mechanisms, influencing reaction rates. Highly reactive
compounds such as alkenes, multi-substituted aromatics, and
phenols exhibit higher reaction rates, whereas alkanes, alkyl
nitrates, and ketones demonstrate relatively low reactivity
(Ziemann and Atkinson, 2012). These variations underscore
the significance of atmospheric oxidation reaction rates as
key indicators of the persistence of organic pollutants in the
atmosphere. Accurate assessment of these rates is essential
for understanding the fate of VOCs, elucidating SOA forma-
tion processes, and addressing global challenges related to
PM2.5 and ozone development.

Given their importance, accurately predicting the atmo-
spheric oxidation rates of VOCs is critical for understand-
ing their persistence, transformation, and contribution to
secondary pollutant formation. Traditionally, such predic-
tions have relied on experimental kinetic modeling methods
and computational methods (e.g., quantum-chemistry (QC)
and quantitative structure–activity relationship (QSAR) ap-

proaches) (Basant and Gupta, 2018; Liu et al., 2021). Exper-
imental methods involve tracking reactant and product con-
centrations using techniques like chemical ionization mass
spectrometry (CIMS), followed by kinetic fitting to deter-
mine Arrhenius parameters (Logan, 1982; Wells et al., 1996).
However, these methods are time-consuming and cover only
a narrow subset of atmospheric VOCs. QC approaches use
density functional theory calculations such as transition-
state theory (TST) or variational TST to obtain temperature-
dependent rate constants (Canneaux et al., 2014; Liu et al.,
2021; Meana-Pañeda et al., 2024). While QC methods offer
detailed mechanistic insight, their computational cost scales
steeply with molecular size and conformational complex-
ity, limiting routine application to large numbers of VOCs.
However, traditional computational methods have shortcom-
ings such as high computational complexity and low effi-
ciency. As a more scalable alternative, QSAR models lever-
age molecular descriptors and statistical learning, and it has
become one of the important methods for evaluating reaction
rate constants. Previous examples include the AOPWIN™
module integrated in US EPI Suite™ software, which applies
partial least squares (PLS) regression to 109 gas-phase reac-
tions with hydroxyl radicals (Atkinson, 1986, 1987; Kwok
and Atkinson, 1995) and later expansions using a broader
dataset (Öberg, 2005). Some models have also incorporated
machine learning algorithms such as multiple linear regres-
sion (MLR) (Liu et al., 2020, 2022) for predicting reactions
with NO3 and OH and artificial neural networks for predict-
ing reactions with O3 (Fatemi, 2006). Despite their utility,
these models generally rely on predefined descriptors and
are typically limited to reactions with a single type of oxi-
dant, which constrains the scalability of the model. Recent
advances in deep learning (DL), particularly graph neural
networks (GNNs), have improved molecular representation
by learning features directly from molecular graphs. This
enables more flexible and accurate prediction of chemical
properties without requiring predefined descriptors. GNNs
have been successfully applied in atmospheric chemistry and
other fields tasks, such as in predicting vapor pressures with
GC2NN (Krüger et al., 2025) and modeling reaction rate
constants involving OH using GAT–GIN hybrid architec-
tures (Huang et al., 2024). However, like traditional mod-
els, these GNN-based frameworks have been developed for
single-molecule systems and thus fall short of capturing the
complexity of multi-molecule reactions in real environments.
In contrast, the atmosphere involves competing and sequen-
tial reactions between VOCs and multiple oxidants – OH,
NOx, Cl, and O3 – depending on the time of day, region,
and chemical conditions. This multiplicity underscores the
urgent need for models that can simultaneously learn and
predict VOC reactivity across multiple oxidants. To meet
this need, message passing neural networks (MPNN) offer
a powerful framework (Gilmer et al., 2017). MPNNs prop-
agate information across molecular graphs, capturing both
atomic-level features and topological context. Extensions of
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MPNN, such as the communicative GraphRXN (Li et al.,
2023) and directed MPNN Chemprop (Heid et al., 2024),
have shown promise in learning reactivity across multiple
reactants. Compared with the simple concatenation using
molecular fingerprints/descriptors, they all use MPNN to
deeply extract task-relevant representations of chemical reac-
tions, provide abundant chemical information for subsequent
reaction modeling, and achieve good prediction results. Yet,
their application has largely focused on synthesis or materi-
als chemistry, not atmospheric oxidation reaction.

This study addresses this gap by proposing Vreact, a novel
Siamese MPNN architecture capable of jointly modeling
reactions between VOCs and four major atmospheric oxi-
dants. Unlike previous models that treat each oxidant in-
dependently, Vreact processes VOC–oxidant pairs in a uni-
fied framework; it learns representations from the molecular
graphs of VOCs and oxidants through the MPNN and en-
codes their interactions via feature aggregation. This design
enables the model to accept arbitrary VOC–oxidant combi-
nations and simultaneously predict reaction rate constants ki
(where i ∈ {OH,Cl,NO3, or O3}). The dual-input design of
Vreact enhances scalability and generalization across multi-
ple oxidants. Ablation experiments show that Vreact signifi-
cantly outperforms a structurally simpler single-input MPNN
trained under identical conditions. The interaction module
within Vreact provides atomic-level attention maps that of-
fer mechanistic insights into VOC–oxidant reactivity pat-
terns, improving interpretability. Applying Vreact to 447 at-
mospheric VOCs not included in the training data revealed a
wide distribution of oxidation reactivities and confirmed that
alkenes and aromatics exhibit higher reactivity, acting as key
precursors for ozone and SOA formation.

2 Methods and data

2.1 Collection and preprocessing of reaction rate
constant dataset

The VOC reaction rate constant dataset compiled by
McGillen et al. (2020) is utilized in the study, which in-
cludes gas-phase reaction rate constants of natural atmo-
spheric VOCs, halocarbons, and their degradation products
with OH, Cl, NO3 radicals, and O3, within a temperature
range of 250–370 K. Under thermodynamic standard condi-
tions at 298 K, a total of 2802 gas-phase reaction rate con-
stant data points were obtained, encompassing 1586 VOCs
and 4 oxidants. This dataset includes ki values for 1363
VOCs with OH, 735 VOCs with Cl, 393 VOCs with NO3
radicals, and 311 VOCs with O3. Due to the wide range
of reaction rate constants ki in the dataset (1.460× 10−21

∼

7.550×10−10 cm3 molecule−1 s−1, S.D.=±1.040×10−10),
the data were log-transformed to log10ki to reduce skewness
and mitigate the influence of outliers on the model. To ensure
a balanced distribution of each type of oxidant in the training,
validation, and internal test sets, the dataset was divided us-

ing stratified random sampling into training, validation, and
internal test sets in an 8 : 1 : 1 ratio (Table S1 in the Supple-
ment). Combinations of the same VOC with different oxi-
dants may appear across the training, validation, and internal
test sets.

2.2 Construction and training of the Vreact model

All VOCs and oxidant molecules were converted into graphs
G(V,E) (Sect. S1 in the Supplement). The generated molec-
ular graph G includes 10 types of atomic information for
each non-hydrogen atom, such as element type, chirality, and
atomic hybridization type, as well as four types of bond in-
formation, including bond type and conjugation (Table S2).
A Siamese MPNN architecture, Vreact, was designed to si-
multaneously accept input features of VOCs and oxidant
molecules (Fig. 1). The model takes the SMILES of VOCs
and oxidants as input and primarily includes a VOC molecu-
lar graph representation layer and a MPNN layer, an oxidant
molecular graph representation layer and MPNN layer, an in-
teraction layer, and a prediction layer. The molecular graph
G(V,E) encodes layers of VOCs and oxidants containing
node feature matrix X and edge feature matrix Y, which learn
molecular properties through the MPNN layer (Gilmer et al.,
2017). The MPNN forward propagation process consists of
two phases, Message Passing Phase and Readout Phase, and
generates molecular feature tensors A for VOCs and B for
oxidants. Subsequently, the interaction layer transforms the
molecular features A of VOCs and B of oxidants into tensors
A1 and B1 of the same shape and concatenates them into ten-
sor Z. Reaction rate constants are determined not only by the
molecular structure of the reactants but also by the interac-
tions between the reactants. The interaction feature tensor I
is dot-multiplied with B to obtain the oxidant-affected VOC
feature tensor A′; similarly, it is dot-multiplied with A to ob-
tain the VOC-affected oxidant feature tensor B′. These oper-
ations embed the learned interaction features into the molec-
ular structure features, providing a more comprehensive rep-
resentation of the chemical reaction mechanisms between the
two reactants. The prediction phase is composed of a pool-
ing layer and three fully connected layers. The pooling layer
uses the Set2Set method to achieve global average pooling,
and the fully connected layers map the input features to the
final predicted values (log10ki). More details can be found in
Sect. S2.

During model training, Adaptive Moment Estimation
(Adam) (Kingma and Ba, 2017) was employed to address the
fixed learning rate issue in traditional gradient descent meth-
ods. Adam adaptively adjusts the learning rate of each pa-
rameter using first-order moment estimates (mean of the gra-
dients) and second-order moment estimates (exponentially
moving average of the uncentered variance of the gradients),
aiding in rapid model convergence. Bayesian optimization
was utilized for hyperparameter tuning, which included the
initial learning rate of the optimizer (lr), batch size, L2 reg-
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ularization parameter (weight decay), dropout rate (p), and
MPNN time steps (T ) (Sect. S3). During hyperparameter op-
timization, the hyperparameter combination that minimizes
the mean squared error (MSE) of the validation set was se-
lected as the optimal hyperparameter combination, and the
best model was saved (Table S3). The predictive performance
of the model was assessed using MSE, root mean square er-
ror (RMSE), mean absolute error (MAE), and coefficient of
determination (R2) (Sect. S4). For more information on the
model implementation, please refer to Sect. S5.

2.3 Clustering analysis

Morgan fingerprints (radius 2, 1024 bits, generated using
RDKit) were used as the molecular embedding before clus-
tering and visualization. To investigate VOC structural di-
versity and reactivity trends, two methods were applied: the
Self-Organizing Map (SOM) (Kohonen, 2006) and the Uni-
form Manifold Approximation and Projection (UMAP). The
SOM algorithm clustered VOCs into 100 structural groups
(10× 10 grid), using a sigma of 0.3 and learning rate of 0.5.
The UMAP algorithm projected the high-dimensional fin-
gerprint space into 2D for visualization, with the number of
neighbors set to 50, minimum distance set to 0.6, and metric
set as correlation.

3 Results and discussion

3.1 Analysis of VOC and oxidant reaction data
distribution and characteristics

The categories and distribution characteristics of VOC and
oxidant reaction data are first explored in the study, which
includes log10ki data for 1586 VOCs with OH, Cl, NO3, and
O3 (Fig. 2a). The dataset contains the most data for OH, ac-
counting for 48.64 % of the total, as OH plays a crucial role in
the atmosphere, rapidly reacting with organic pollutants and
dominating their removal process. The remaining data points
are for Cl (26.23 %), NO3 (14.03 %), and O3 (11.1 %) in de-
scending order of data quantity. O3 is primarily produced
through photochemical reactions involving NOx and VOCs,
while NO3, as the principal nighttime atmospheric oxidant,
significantly contributes to the oxidation and removal of trace
gases. The dataset encompasses VOCs with diverse chemi-
cal structures, including 22 molecular motifs such as double
bonds, esters, benzene rings, and halogen atoms (F, S, Cl, Br,
and I) (Fig. 2b). This extensive chemical structure space fa-
cilitates the model’s ability to learn more structural features
and enhances its generalization capability.

Moreover, although there is some overlap in the reactions
of the four oxidants with VOCs, each oxidant also has spe-
cific VOC reactions (Fig. 2c). There are 747 VOCs with ki
data for only one oxidant and 839 VOCs with ki data for
multiple oxidants, of which 81 VOCs have data for all four
oxidants. For example, isoprene can react with OH, NO3,

and Cl through hydrogen abstraction reactions and undergo
addition reactions with O3 via its unsaturated double bonds.
Furthermore, the four oxidants exhibit different log10ki value
distribution with VOCs due to differences in chemical struc-
tures and reactivity (Fig. 2d). OH, due to its high oxidation
potential, usually reacts quickly with VOCs via hydrogen ab-
straction, with log10ki concentrated in the range of −14.000
to −10.000. In contrast, O3 typically undergoes slower addi-
tion reactions with unsaturated bonds in reactants (Ziemann
and Atkinson, 2012), with log10ki ranging from −20.836
to −13.721. NO3 can participate in both hydrogen abstrac-
tion and addition reactions, resulting in a wider range of
log10ki values. The diverse reaction rates of these oxidants
maintain the composition and oxidative state of aerosols in
the atmosphere, but the uneven distribution of their values
makes predicting ki more challenging. Even for the same
oxidant, VOCs with different structures exhibit varied re-
action rates in gas-phase oxidation reactions. For example,
NO3 reacts very slowly with aromatic rings, with a ki value
of 3.900× 10−16 cm3 (molecule s)−1 for xylene. In contrast,
NO3 can rapidly abstract hydrogen from hydroxyl groups,
with a ki value of up to 1.72×10−10 cm3 molecule−1 s−1 for
3-methylcatechol.

Furthermore, the same VOCs show different reaction rates
with different oxidants. The SOM algorithm was used to ex-
plore the relationship between VOC structural variation and
log10ki . Each grid in Fig. 2e represents a VOC cluster, and
the color gradient indicates reactivity (average log10ki val-
ues) for the corresponding oxidants. By comparing log10ki
values across clusters, oxidant-specific reactivity patterns can
be assessed. For example, butyl acrylate (CAS RN: 141-32-
2) reacts slowly with NO3 radicals and O3, mainly due to
the unsaturated addition reactions through the carbon–carbon
double bond, where the ester group in the molecular structure
produces an electron-withdrawing effect, reducing the elec-
tron density in the π bond and thus lowering the reaction
rate (Gai et al., 2009; Wang et al., 2010). In contrast, it reacts
faster with OH and Cl through hydrogen abstraction rather
than addition (Le Calvé et al., 1997; Ohta, 1984; Wang et al.,
2018). This demonstrates that the dataset, which includes
various oxidants and VOCs, exhibits diverse log10ki values.
The overall log10ki values differ significantly between differ-
ent oxidants. This diverse dataset enables the model to learn
the reaction information between VOCs and different oxi-
dants, thereby improving model performance and prediction
accuracy.

3.2 Performance evaluation of Vreact model

The Siamese MPNN architecture of the Vreact captures both
molecular features of VOCs and oxidants as well as their
interaction dynamics simultaneously. During hyperparame-
ter optimization, the set of hyperparameters that minimized
MSE on the validation set was selected. After training for
46 epochs (Fig. S1 in the Supplement), Vreact achieved ro-
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Figure 1. Schematic of the Vreact architecture. SMILES of VOCs and oxidants are converted into molecular graphs, where nodes represent
atoms and edges represent bonds. Atomic and bond features form matrices X and Y. Using a Siamese MPNN architecture, the Vreact model
processes these features through separate MPNN layers for VOCs and oxidants. The final prediction layer outputs log10ki , incorporating
both molecular and interaction features.

Figure 2. Visualization of VOC dataset. (a) Proportion of the four types of oxidants. (b) Number of VOCs containing each molecular motif.
MultFct: multifunctional; AroRings: aromatic rings; NaRings: non-aromatic rings; Tbonds: triple bonds; CumDBs: cumulated double bonds;
ConjDBs: conjugated double bonds; SepDBs: separated double bonds. (c) Number of VOCs that can undergo oxidation reactions with the
four oxidants. (d) Distribution of log10ki values for the four oxidants. (e) Heatmap of reaction rate constants based on VOC clustering, where
each grid represents a cluster of structurally similar VOCs. The color gradient indicates the log10ki values, with red indicating higher log10ki
values (faster reaction rates), blue indicating lower log10ki values (slower reaction rates), and white indicating the absence of log10ki data
for that cluster. The clusters containing butyl acrylate are enclosed within the black box.
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bust predictive performance on the validation set, with R2

of 0.961, MSE of 0.194, and MAE of 0.314 for log10ki
(Fig. 3a). On the internal test set, the model achieved R2

of 0.941, MSE of 0.299, and MAE of 0.322 for log10ki
(Fig. 3a), indicating robust predictive capability and excel-
lent generalization ability for unseen VOC–oxidant combi-
nations. The small MAE difference between the validation
set and internal test sets, despite a larger difference in MSE,
indicates that MSE is more sensitive to outliers or large er-
rors, while MAE directly reflects the average absolute predic-
tion error. Although the R2 on the internal test set is slightly
lower than on the validation set, this minor discrepancy does
not affect the model’s robust predictive ability. The result on
the internal test set is available in Table S4.

To explore the predictive performance of the Vreact model
for different types of oxidants, we evaluated the prediction
performance for OH, Cl, O3, and NO3 separately. The re-
gression fit of predicted log10ki values versus experimental
values for the four oxidants (Fig. 3b) shows that O3 and NO3
have higher dispersion compared to OH and Cl. The R2 val-
ues for the reactions of the four oxidants, in descending or-
der, are OH>Cl>NO3>O3, with OH and Cl having R2

values of 0.929 and 0.913, respectively. The prediction per-
formance for NO3 radicals and O3 is comparatively lower,
with R2 values below 0.800.

The OH dataset is the most abundant and balanced, while
the number of data for O3 and NO3 was relatively small, and
the model cannot fully capture the reaction features, leading
to prediction bias. In addition, the log10ki values for NO3 are
highly dispersed, also reducing the prediction performance.
Additionally, the order of the size of R2 is consistent with the
order of the data volume of the four oxidant datasets. This in-
dicates that the number of data is also an important factor af-
fecting the prediction performance of reaction rate constants
and that more available data help the model to fully capture
reaction features.

The absolute error (AE) between the predicted and exper-
imental log10ki values for the four types of oxidants is pre-
sented in Fig. 3c. The median AE for OH is 0.149, while
O3 and NO3 exhibit median AEs of 0.301 and 0.287, respec-
tively, which are slightly higher than the median AE of OH.
Overall, 84 % of the AE values for O3 and NO3 are within
1. As depicted in the Fig. 3c, individual outliers in AE con-
tribute to the increased RMSE and MAE for O3 and NO3,
and the consequent decrease in R2. For example, the AE for
the reaction of NO3 with azulene (C10H8) is 4.653. Azulene,
an aromatic hydrocarbon composed of a seven-membered
ring fused to a five-membered ring, is an isomer of naph-
thalene (C10H8). NO3, as an electrophilic reagent, tends to
attack regions with higher electron density. Compared to
naphthalene, the electron density distribution of azulene is
uneven, with certain regions having high electron density
that may facilitate effective interactions with NO3. Addition-
ally, the structure of azulene may reduce steric hindrance,
allowing NO3 radicals easier access to reaction sites (Atkin-

son et al., 1992), resulting in a higher reaction rate con-
stant and increasing the model’s prediction difficulty. Sim-
ilarly, the predicted log10ki value for the reaction of NO3
with diiodomethane (CH2I2) is significantly lower than the
true value (AE= 2.763). This discrepancy may be attributed
to the limited representation of iodine-containing VOCs in
the dataset, with only iodomethane (CH3I) and iodoethane
(C2H5I) having ki values in the training and validation sets.
These limited data prevent the model from fully learning the
reaction characteristics of iodine-containing compounds, re-
sulting in a larger prediction error for diiodomethane with
NO3 radicals.

3.3 Model ablation study

To evaluate the contribution of the Siamese neural network
architecture in Vreact, we performed an ablation study. In
the ablation model (Vreact-Ablation), the oxidant input and
interaction module were removed, leaving only the VOC
input. Both Vreact and Vreact-Ablation were trained, vali-
dated, and tested on the OH, Cl, NO3, O3, and combined
datasets. All experimental settings were kept consistent, in-
cluding data sources (McGillen et al., 2020), hyperparame-
ters, and evaluation metrics. As shown in Fig. 3d, Vreact con-
sistently outperformed Vreact-Ablation across all four ox-
idants, with R2 improvements of 0.049 (OH), 0.113 (Cl),
0.184 (NO3), and 0.021 (O3). When evaluated on the com-
bined dataset, Vreact-Ablation achieved an R2 of only 0.035,
indicating that it fails to generalize across multiple oxidants.
Additionally, both models showed comparable runtime per
iteration. These results demonstrate that, under the same
training conditions, the Siamese MPNN architecture signif-
icantly enhances predictive performance and generalization.
By explicitly modeling VOC–oxidant interactions, the archi-
tecture enables the network to capture shared patterns across
reaction types, thereby improving its practical applicability
in multi-reactivity prediction.

3.4 Comparison with single-oxidant prediction models

Most existing machine learning models for predicting VOC
reaction rate constants are tailored for individual oxidants,
limiting their applicability to complex atmospheric systems
involving multiple oxidants. In contrast, the Siamese MPNN
architecture of the Vreact enables simultaneous learning of
molecular features and interaction patterns across different
VOC–oxidant pairs within a unified framework. To bench-
mark Vreact against previously published single-oxidant
QSAR/ML models, we selected three top-performing models
developed under 298 K conditions: Liu et al. (2020) for OH
(training/test= 144/36), Xu et al. (2013) for O3 (60/35),
and Liu et al. (2022) for NO3 radicals (151/38). Prior to
evaluation, UMAP was applied to reduce the dimensionality
of the Morgan molecular fingerprints to visualize the chem-
ical space of both the comparison literature datasets and the
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Figure 3. Evaluation and comparison of the predictive performance of the Vreact model. (a) MSE, MAE, R2 of Vreact (trained on the
McGillen et al. dataset) on the validation set, internal test set, and external post-2020 test set. (b) R2 values for log10ki predictions of four
oxidants’ reactions in the internal test set. (c) Distribution of AE between predicted and experimental log10ki values for the four oxidants in
the internal test set. (d) R2 of the Vreact and Vreact-Ablation on the OH, Cl, NO3, O3, and combined test sets. (e) R2 comparison among
previously published single-oxidant models, the original Vreact (evaluated on cleaned literature test sets), and Retrained Vreact (trained and
tested using the same original splits as the literature), highlighting adaptability. (f–h) The chemical spatial distribution of VOCs in the OH,
O3, and NO3 datasets used in this study and prior literature.

Vreact training set (Fig. S2). The observed structural over-
lap confirms that Vreact’s dataset spans a broad and diverse
chemical space. Given that our study used different data than
those reported in the literature, we employed two strategies
for comparison. First, the pre-trained Vreact model (trained
on the McGillen dataset) was directly applied to the literature
test sets to evaluate extrapolation performance. To ensure a
fair comparison, overlapping data points between the liter-
ature test sets and the McGillen training set were removed
(2 of 38 for NO3, 13 of 35 for O3, and 6 of 36 for OH).
Second, Vreact was retrained on each literature dataset using
their original train/test splits (Retrained Vreact), allowing a
direct comparison with published models on original litera-
ture test sets.

As shown in Fig. 3e, both the original Vreact model and
its retrained version consistently outperformed the single-
oxidant models from Liu et al. (2022) and Xu et al. (2013) on
the OH and O3 literature test sets, achieving higher R2 val-
ues and demonstrating superior regression fits between pre-
dicted and experimental values. These results highlight the
capability of the Vreact architecture – whether trained on a
broad multi-oxidant dataset or fine-tuned on smaller single-
oxidant datasets – to effectively learn structural features of
VOCs and oxidants and capture complex molecular interac-
tions through its Siamese MPNN framework. Notably, Vre-
act shows opposite performance trends for OH and O3 be-
tween the internal and literature test set. To understand this,
UMAP was applied to project compounds from the training,
internal, and literature test sets into a shared chemical space.
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As shown in Fig. 3f, the internal OH test set overlaps well
with the training data, leading to consistently strong perfor-
mance. In contrast, the literature OH set is sparse and scat-
tered near the dataset boundaries. Despite this, Vreact still
achieves a high R2, demonstrating good generalization. For
O3 (Fig. 3g), the internal test set lies farther from the dense
training distribution, contributing to lower R2. Meanwhile,
the literature O3 set is better aligned with the training data,
resulting in higher prediction accuracy. For NO3 (Fig. 3h),
both internal and literature sets show similar distributions,
and the model achieves comparable R2 values (∼ 0.815). Al-
though Vreact underperforms slightly compared to the origi-
nal single-oxidant model, retraining on the literature data im-
proves performance. This suggests that multi-oxidant train-
ing may introduce some noise but does not significantly com-
promise prediction accuracy.

3.5 Mechanism insights through interaction analysis

The interaction layer of the Vreact model can elucidate the
atomic interaction mechanisms between VOCs and oxidants.
The interaction matrix is sized n1× n2, where n1 represents
the number of non-hydrogen atoms in the VOC molecule,
and n2 represents the number of non-hydrogen atoms in
the oxidant molecule. Mapping these interaction coefficients
onto the molecular structure highlights key atoms that deter-
mine the reaction rate.

To exemplify this mechanism, we analyzed specific cases.
2-methyl-4-penten-2-ol is an unsaturated oxygenated volatile
organic compound (OVOC) that constitutes a significant pro-
portion of the atmospheric VOCs, primarily sourced from in-
dustrial solvents used in ink and jet ink manufacturing (Li
et al., 2021). As shown in Fig. 4a, the interaction coeffi-
cient for the distal unsaturated carbon atoms is the high-
est during the reaction with O3, indicating these are likely
the reaction sites for O3 attack. It is inferred that O3 adds
to the unsaturated carbon–carbon double bond through an
addition reaction, forming primary ozonides (POZs). These
POZs are unstable intermediates that rapidly cleave to pro-
duce carbonyl compounds and carbon-based radicals, which
further rearrange to form secondary ozonides (SOZs). The
SOZs and their reaction products are precursors of SOA. An-
other example is γ -caprolactone (GCL), a five-membered
ring ester used in perfumes, which rapidly reacts and de-
grades with OH upon entering the atmosphere. Interaction
weight analysis shows that the carbon atom linked to the
ethyl group contributes most to GCL’s oxidative degradation
by OH (Fig. 4b), suggesting that OH initially attacks this car-
bon atom, abstracting a H atom to form a carbon radical. Pre-
vious studies indicate that the reactivity of carbons adjacent
to the oxygen atom in lactones is particularly significant in
reactions with OH, especially when alkyl substituents are at-
tached to this carbon, which enhances its reactivity (Barnes
et al., 2014).

3.6 Evaluating extrapolation ability and prioritizing
VOCs for environmental impact

To further validate the extrapolation capability and general-
ization performance of the Vreact model, developed using a
dataset compiled up to the year 2020 (Baptista et al., 2021;
Joudan et al., 2022; Li et al., 2021), additional ki data from
experimentally measured VOCs and oxidants published af-
ter 2020 were collected as an external test set (post-2020 test
set) (Table 1). The prediction results showed that the AE be-
tween the experimental log10ki and the predicted values was
within 1, with the reaction rate constant prediction for γ -
heptalactone and OH exhibiting the smallest prediction error.
The AE for γ -heptalactone with OH was only 0.005, and the
overall MAE was 0.240, with an MSE of 0.112 and an R2 of
0.98 (Fig. 3a shown in red). The results indicate that the Vre-
act can accurately predict the atmospheric oxidation reaction
rate constants of unknown VOCs, demonstrating its potential
application in addressing complex atmospheric chemistry is-
sues involving the interactions between VOCs and oxidants.

Despite the identification of hundreds of VOC species, the
environmental behavior of most VOCs in the atmosphere and
their potential contributions to particulate matter formation
and ozone increase remain largely unclear. To address this
gap, we employed the Vreact model to evaluate the atmo-
spheric oxidation reaction rate constants of a broad spectrum
of VOCs. Molecular structures for 447 VOCs with unknown
atmospheric oxidation ki values were collected from previ-
ous research, which evaluated more than 500 Chinese do-
mestic source profiles, including literature and field measure-
ments (Sha et al., 2021) (Table S5). After excluding VOCs
already included in the Vreact dataset, 296, 339, 416, and
369 data points for OH, Cl, O3, and NO3 were retained,
respectively. The prediction results indicated that, although
the oxidation reaction rates of VOCs in the atmosphere vary
(Fig. 5a), the differences in log10ki values are primarily in-
fluenced by the type of oxidant, with smaller variations in
log10ki values observed for different VOCs reacting with the
same oxidant. Among these, reactions with OH and Cl were
the fastest, consistent with the results from the McGillen
dataset analysis used in the modeling (Fig. 2d). Additionally,
the changes in the proportion of VOC types within different
reaction rate intervals (Fig. 5b) demonstrated that the compo-
sition of VOC types varied with reaction rates. Halocarbons
exhibited relatively slower reaction rates, while alkenes and
aromatics reacted relatively quickly, and oxygenated com-
pounds showed a more uniform rate distribution. Conse-
quently, areas with high emissions of alkenes and aromatics
will produce more reaction products per unit time, providing
precursors for O3 and SOA formation (Gao et al., 2021).

The top five VOCs with the fastest reaction rates with OH,
Cl, O3, and NO3 were further examined in the study (Fig. 5c).
Among these, 2,6-dimethyl-2,6-cyclooctadiene (CAS RN:
3760-14-3) is a volatile compound with an irritating odor, ex-
hibiting the fastest reaction rates with OH, Cl, and O3. Addi-
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Figure 4. Visualization of atomic weights in VOC molecules. (a) Reaction process of 2-methyl-4-penten-2-ol with O3. (b) Reaction process
of γ -caprolactone with OH. The darker the highlighted color of the atom, the stronger its interaction in the gas-phase oxidation reaction.

Table 1. The prediction results on the post-2020 test set.
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Figure 5. Predicted reaction rate constants for VOC atmospheric oxidation reactions. (a) Predicted mean log10ki values for different types
of VOCs. (b) Distribution of VOC types ranked by predicted reaction rates, divided into quartiles: the fastest 25 % (Q1), 25 %–50 % (Q2),
50 %–75 % (Q3), and the slowest 25 % (Q4). (c) Molecular structures of VOCs with the fastest reaction rates with the four oxidants.

tionally, 1,3-cyclopentadiene (CAS RN: 542-92-7) and 1,4-
dimethylcyclohexene (CAS RN: 70688-47-0) also showed
high reaction rates with O3, Cl, and OH, likely due to the
presence of double bonds and cyclic structures in these
molecules. The carbon atoms in the double bonds and those
connected to methyl groups generally have high reactivity.
Therefore, it could be inferred that these VOCs, or VOCs
with similar structures, may significantly contribute to the
formation of fine particulate matter and the increase in ozone
in the atmosphere.

4 Conclusions

In response to growing concerns about atmospheric pollution
and its impact on human health and climate, this study intro-
duces Vreact, a deep learning model designed to predict ox-
idation rate constants for VOCs with multiple oxidants (OH,
Cl, O3, and NO3). Vreact demonstrates strong overall perfor-
mance (MSE= 0.299, R2

= 0.941 on internal test data) and
provides mechanistic insights by capturing atomic-level in-
teraction patterns through a Siamese MPNN framework. Its
predictive accuracy varies by oxidant, reflecting the availabil-

ity and diversity of training data. The model achieves high ac-
curacy for OH (R2

= 0.929, n= 1363) and Cl (R2
= 0.913,

n= 735), supporting robust application in daytime oxida-
tion modeling. In contrast, lower performance is observed for
NO3 (R2

= 0.721, n= 393) and O3 (R2
= 0.584, n= 311),

pointing to challenges in modeling oxidants with fewer data
and more complex mechanisms. This underscores the impor-
tance of expanding high-quality experimental datasets to im-
prove generalization, particularly for underrepresented oxi-
dants and VOC classes.

Vreact supports high-throughput screening for emission
inventories and atmospheric reactivity assessments. Its appli-
cations span VOC prioritization, emission control planning,
and kinetic mechanism development, offering actionable in-
sights for environmental policy and modeling. An interactive
web interface (http://vreact.envwind.site:8001/, last access:
17 September 2025) (Fig. S3) enhances accessibility for re-
searchers and policymakers. Further improvements in NO3
and O3 predictions will expand its utility in nighttime chem-
istry and secondary aerosol formation scenarios.
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Code and data availability. The code and data set used and/or
analyzed are available at https://doi.org/10.5281/zenodo.17141364
(Zhang and Luo, 2025) and in the Supplement.

Supplement. The Supplement provides detailed information
about the learning curve of the Vreact training process (Fig. S1);
the chemical spatial distribution of VOCs in the OH, O3, and NO3
datasets used in this study and the prior literature (Fig. S2); the
user interface of the web platform for predicting VOC reaction
rate constants using the Vreact model (Fig. S3); a graph represen-
tation of molecular structures (S1); MPNN message passing and
readout phases for molecular graphs (S2); regularization and early
stopping techniques in the Vreact model training (S3); model per-
formance evaluation metrics (S4); implementation of the Vreact
model (S5); distribution of VOC reactions with atmospheric oxi-
dants across datasets (Table S1); atomic features and bond features
used in molecular graph representation (Table S2); hyperparameter
search space and optimal settings for the Vreact model (Table S3);
experimental and predicted log10ki values for VOCs on the inter-
nal test dataset (Table S4); and 447 real-world atmospheric VOCs
(Table S5). The supplement related to this article is available online
at https://doi.org/10.5194/acp-25-13379-2025-supplement.
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