Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., McDonald, S. E., Huba, J. D., and Klenzing, J. H.: An update to the Horizontal Wind Model (HWM): The quiet time thermosphere, Earth Space Sci., 2, 301–319, https://doi.org/10.1002/2014EA000089, 2015.
Emmons, D. J., Wu, D. L., Swarnalingam, N., Ali, A. F., Ellis, J. A., Fitch, K. E., and Obenberger, K. S.: Improved models for estimating sporadic-E intensity from GNSS radio occultation measurements, Front. Astron. Sp. Sci., 10, 1327979, https://doi.org/10.3389/fspas.2023.1327979, 2023.
Fontes, P. A., Muella, M. T. A. H., Resende, L. C. A., and Fagundes, P. R.: Evidence of anti-correlation between sporadic (Es) layers occurrence and solar activity observed at low latitudes over the Brazilian sector, Adv. Space Res., 73, 3563–3577, https://doi.org/10.1016/j.asr.2023.09.040, 2024.
Forbes, J. M.: The Equatorial Electrojet, Rev. Geophys., 19, 469–504, https://doi.org/10.1029/RG019i003p00469, 1981.
Haldoupis, C., Pancheva, D., Singer, W., Meek, C., and MacDougall, J.: An explanation for the seasonal dependence of midlatitude sporadic E layers, J. Geophys. Res.-Space, 112, A06315, https://doi.org/10.1029/2007JA012322, 2007.
Han, Y., Wang, L., Fu, W., Zhou, H., Li, T., and Chen, R.: Machine Learning-Based Short-Term GPS TEC Forecasting During High Solar Activity and Magnetic Storm Periods, IEEE J. Sel. Top. Appl. Earth Obs., 15, 115–126, https://doi.org/10.1109/JSTARS.2021.3132049, 2022.
Hastie, T., Friedman, J., and Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer, Berlin, Germany,
https://hastie.su.domains/ElemStatLearn/ (last access: 30 March 2025), 2009.
Heinselman, C. J., Thayer, J. P., and Watkins, B. J.: A high-latitude observation of sporadic sodium and sporadic E-layer formation, Geophys. Res. Lett., 25, 3059–3062, https://doi.org/10.1029/98GL02215, 1998.
Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A. R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., and Kingsbury, B.: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, IEEE Signal Proc. Mag., 29, 82–97, https://doi.org/10.1109/MSP.2012.2205597, 2012.
Hornik, K., Stinchcombe, M., and White, H.: Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359–366, https://doi.org/10.1016/0893-6080(89)90020-8, 1989.
Hu, T. and Xu, X.: Paper submission support: code and data for global ionospheric sporadic E intensity prediction from GNSS RO using a novel stacking machine learning method incorporated with physical observations, Zenodo [code , data set], https://doi.org/10.5281/zenodo.15092794, 2025.
Hu, T., Luo, J., and Xu, X.: Deriving Ionospheric Sporadic E Intensity From FORMOSAT-3/COSMIC and FY-3C Radio Occultation Measurements, Space Weather, 20, e2022SW003214, https://doi.org/10.1029/2022SW003214, 2022.
Kirkwood, S. and Nilsson, H.: High-latitude sporadic-E and other thin layers – The role of magnetospheric electric fields, Space Sci. Rev., 91, 579–613, https://doi.org/10.1023/A:1005241931650, 2000.
Leighton, H. I., Shapley, A. H., and Smith, E. K.: The occurrence of sporadic E during the IGY, in: Ionospheric sporadic, edited by: Smith, E. K. and Matsushita, S., Pergamon, 166–177, https://doi.org/10.1016/B978-0-08-009744-2.50018-7, 1962.
Liu, H., Xu, X., Luo, J., and Hu, T.: Using radio occultation-based electron density profiles for studying sporadic E layer spatial and temporal characteristics, Earth Planet. Space, 76, 93, https://doi.org/10.1186/s40623-024-02038-z, 2024a.
Liu, H., Yang, P., Ren, X., Mei, D., and Le, X.: The Short-Term Prediction of Low-Latitude Ionospheric Irregularities Leveraging a Hybrid Ensemble Model, IEEE T. Geosci. Remote, 62, 4100615, https://doi.org/10.1109/TGRS.2023.3346449, 2024b.
Liu, Y., Zhou, C., Xu, T., Deng, Z., Du, Z., Lan, T., Tang, Q., Zhu, Y., Wang, Z., and Zhao, Z.: Geomagnetic and Solar Dependencies of Midlatitude E-Region Irregularity Occurrence Rate: A Climatology Based on Wuhan VHF Radar Observations, J. Geophys. Res.-Space, 127, e2021JA029597, https://doi.org/10.1029/2021JA029597, 2022.
Liu, Y., Chen, Z., Fan, Z., Zhou, C., Wang, X., Zhang, Y., Zhou, Y., Lan, T., and Qing, H.: Statistical analysis on orographic atmospheric gravity wave and sporadic E layer, J. Atmos. Sol.-Terr. Phy., 259, 106256, https://doi.org/10.1016/j.jastp.2024.106256, 2024c.
Luo, J., Wang, H., Xu, X., and Sun, F.: The influence of the spatial and temporal collocation windows on the comparisons of the ionospheric characteristic parameters derived from COSMIC radio occultation and digisondes, Adv. Space Res., 63, 3088–3101, https://doi.org/10.1016/j.asr.2019.01.024, 2019.
Luo, J., Liu, H., and Xu, X.: Sporadic E morphology based on COSMIC radio occultation data and its relationship with wind shear theory, Earth Planet. Space, 73, 212, https://doi.org/10.1186/s40623-021-01550-w, 2021a.
Luo, J., Hou, J., and Xu, X.: Variations in Stratospheric Gravity Waves Derived from Temperature Observations of Multi-GNSS Radio Occultation Missions, Remote Sens., 13, 4835, https://doi.org/10.3390/rs13234835, 2021b.
MacDougall, J. W., Jayachandran, P. T., and Plane, J. M. C.: Polar cap sporadic-E: Part 1, observations, J. Atmos. Sol.-Terr. Phy., 62, 1155–1167, https://doi.org/10.1016/S1364-6826(00)00093-6, 2000a.
MacDougall, J. W., Plane, J. M. C., and Jayachandran, P. T.: Polar cap Sporadic-E: Part 2, modeling, J. Atmos. Sol.-Terr. Phy., 62, 1169–1176, https://doi.org/10.1016/S1364-6826(00)00092-4, 2000b.
Mathews, J. D.: Sporadic E: Current views and recent progress, J. Atmos. Sol.-Terr. Phy., 60, 413–435, https://doi.org/10.1016/S1364-6826(97)00043-6, 1998.
Moro, J., Xu, J., Denardini, C. M., Resende, L. C. A., Da Silva, L. A., Chen, S. S., Carrasco, A. J., Liu, Z., Wang, C., and Schuch, N. J.: Different Sporadic-E (Es) Layer Types Development During the August 2018 Geomagnetic Storm: Evidence of Auroral Type (Esa) Over the SAMA Region, J. Geophys. Res.-Space, 127, e2021JA029701, https://doi.org/10.1029/2021JA029701, 2022.
Niu, J. and Fang, H.: An Empirical Model of the Sporadic E Layer Intensity Based on COSMIC Radio Occultation Observations, Space Weather, 21, e2022SW003280, https://doi.org/10.1029/2022SW003280, 2023.
Niu, J., Weng, L., and Fang, H.: An attempt to inverse the ionospheric sporadic-E layer critical frequency based on the COSMIC radio occultation data, Adv. Space Res., 63, 1204–1213, https://doi.org/10.1016/j.asr.2018.10.029, 2019.
Nygrén, T., Voiculescu, M., and Aikio, A. T.: The role of electric field and neutral wind in the generation of polar cap sporadic E, Ann. Geophys., 26, 3757–3763, https://doi.org/10.5194/angeo-26-3757-2008, 2008.
Qiu, L. and Liu, H.: Sporadic-E Layer Responses to Super Geomagnetic Storm 10-12 May 2024, Geophys. Res. Lett., 52, e2025GL115154, https://doi.org/10.1029/2025GL115154, 2025.
Qiu, L., Zuo, X., Yu, T., Sun, Y., and Qi, Y.: Comparison of global morphologies of vertical ion convergence and sporadic E occurrence rate, Adv. Space Res., 63, 3606–3611, https://doi.org/10.1016/j.asr.2019.02.024, 2019.
Qiu, L., Yamazaki, Y., Yu, T., Becker, E., Miyoshi, Y., Qi, Y., Siddiqui, T. A., Stolle, C., Feng, W., Plane, J. M. C., Liang, Y., and Liu, H.: Numerical Simulations of Metallic Ion Density Perturbations in Sporadic E Layers Caused by Gravity Waves, Earth Space Sci., 10, e2023EA003030, https://doi.org/10.1029/2023EA003030, 2023.
Raghavarao, R., Patra, A. K., and Sripathi, S.: Equatorial E region irregularities: A review of recent observations, J. Atmos. Sol.-Terr. Phy., 64, 1435–1443, https://doi.org/10.1016/S1364-6826(02)00107-4, 2002.
Resende, L. C. A., Denardini, C. M., and Batista, I. S.: Abnormal fb Es enhancements in equatorial Es layers during magnetic storms of solar cycle 23, J. Atmos. Sol.-Terr. Phy., 102, 228–234, https://doi.org/10.1016/j.jastp.2013.05.020, 2013.
Resende, L. C. A., Batista, I. S., Denardini, C. M., Carrasco, A. J., Andrioli, V. D. F., Moro, J., Batista, P. P., and Chen, S. S.: Competition between winds and electric fields in the formation of blanketing sporadic E layers at equatorial regions, Earth Planet. Space, 68, 201, https://doi.org/10.1186/s40623-016-0577-z, 2016.
Resende, L. C. A., Shi, J., Denardini, C. M., Batista, I. S., Picanço, G. A. S., Moro, J., Chagas, R. A. J., Barros, D., Chen, S. S., Nogueira, P. A. B., Andrioli, V. F., Silva, R. P., Carrasco, A. J., de Araujo, R. C., Wang, C., and Liu, Z.: The Impact of the Disturbed Electric Field in the Sporadic E (Es) Layer Development Over Brazilian Region, J. Geophys. Res.-Space, 126, e2020JA028598, https://doi.org/10.1029/2020JA028598, 2021.
Ruan, H., Qiu, X., Guo, X., and Wang, X.: Climatological Investigation of Ionospheric Es Layer Based on Occultation Data, Remote Sens., 17, 280, https://doi.org/10.3390/rs17020280, 2025.
Seid, C. M., Su, C. L., Wang, C. Y., and Chu, Y. H.: Interferometry Observations of the Gravity Wave Effect on the Sporadic E Layer, Atmosphere, 14, 987, https://doi.org/10.3390/atmos14060987, 2023.
Shinagawa, H., Miyoshi, Y., Jin, H., and Fujiwara, H.: Global distribution of neutral wind shear associated with sporadic E layers derived from GAIA, J. Geophys. Res.-Space, 122, 4450–4465, https://doi.org/10.1002/2016JA023778, 2017.
Syndergaard, S., Schreiner, W. S., Rocken, C., Hunt, D. C., and Dymond, K. F.: Preparing for COSMIC: Inversion and analysis of ionospheric data products, in: Atmosphere and Climate: Studies by Occultation Methods, edited by: Foelsche, U., Kirchengast, G., and Steiner, A, Graz, Australia, 137–146, https://doi.org/10.1007/3-540-34121-8_12, 2006.
Tang, Q., Zhou, C., Liu, H., Du, Z., Liu, Y., and Zhao, J.: Global Structure and Seasonal Variations of the Tidal Amplitude in Sporadic-E Layer, J. Geophys. Res.-Space, 127, e2022JA030711, https://doi.org/10.1029/2022JA030711, 2022a.
Tang, Q., Sun, H., Du, Z., Zhao, J., Liu, Y., Zhao, Z., and Feng, X.: Unusual Enhancement of Midlatitude Sporadic-E Layers in Response to a Minor Geomagnetic Storm, Atmosphere, 13, 816, https://doi.org/10.3390/atmos13050816, 2022b.
Tian, P., Yu, B., Ye, H., Xue, X., Wu, J., and Chen, T.: Ionospheric irregularity reconstruction using multisource data fusion via deep learning, Atmos. Chem. Phys., 23, 13413–13431, https://doi.org/10.5194/acp-23-13413-2023, 2023.
UCAR COSMIC Program: COSMIC-1 Data Products, UCAR/NCAR – COSMIC [data set], https://doi.org/10.5065/ZD80-KD74, 2022.
UK Solar System Data Centre: Ionospheric data, UKSSDC,
https://www.ukssdc.ac.uk/wdcc1/ionosondes/secure/iono_data.shtml, last access: 30 March 2025.
Wolpert, D.: Stacked Generalization, Neural Networks, 5, 241–259, https://doi.org/10.1016/S0893-6080(05)80023-1, 1992.
Xu, X., Luo, J., Wang, H., Liu, H., and Hu, T.: Morphology of sporadic E layers derived from Fengyun-3C GPS radio occultation measurements, Earth Planet. Space, 74, 55, https://doi.org/10.1186/s40623-022-01617-2, 2022.
Yamazaki, Y., Arras, C., Andoh, S., Miyoshi, Y., Shinagawa, H., Harding, B. J., Englert, C. R., Immel, T. J., Sobhkhiz-Miandehi, S., and Stolle, C.: Examining the Wind Shear Theory of Sporadic E With ICON/MIGHTI Winds and COSMIC-2 Radio Occultation Data, Geophys. Res. Lett., 49, e2021GL096202, https://doi.org/10.1029/2021GL096202, 2022.
Yetilmezsoy, K.: Applications of Soft Computing Methods in Environmental Engineering, in: Handbook of Environmental Materials Management, edited by: Hussain, C., Springer, Cham, Germany, 2001–2046, https://doi.org/10.1007/978-3-319-73645-7_149, 2019.
Yu, B., Xue, X., Yue, X., Yang, C., Yu, C., Dou, X., Ning, B., and Hu, L.: The global climatology of the intensity of the ionospheric sporadic E layer, Atmos. Chem. Phys., 19, 4139–4151, https://doi.org/10.5194/acp-19-4139-2019, 2019.
Yu, B., Scott, C. J., Xue, X., Yue, X., Chi, Y., Dou, X., and Lockwood, M.: A Signature of 27 day Solar Rotation in the Concentration of Metallic Ions within the Terrestrial Ionosphere, Astrophys. J., 916, 106, https://doi.org/10.3847/1538-4357/ac0886, 2021.
Yu, B., Xue, X., Scott, C. J., Yue, X., and Dou, X.: An Empirical Model of the Ionospheric Sporadic E Layer Based on GNSS Radio Occultation Data, Space Weather, 20, e2022SW003113, https://doi.org/10.1029/2022sw003113, 2022.
Zhukov, A. V., Yasyukevich, Y. V., and Bykov, A. E.: GIMLi: Global Ionospheric total electron content model based on machine learning, GPS Solut., 25, 19, https://doi.org/10.1007/s10291-020-01055-1, 2021.