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Abstract. Sporadic E (Es) layers, the irregularities of enhanced electron density commonly occurring in the
ionospheric E region, are affected by the interactions between distinct atmospheric layers. Es intensity (EsI)
is a crucial parameter to describe Es layer characteristics, while there still lacks the method for high-precision
EsI prediction due to its complex spatiotemporal variation and physical driving mechanisms. We propose a
novel stacking machine learning (SML) method for global EsI prediction, which combines the advantages from
different ML models to obtain better performance than using a single ML model. Various Es-related physical
observations, including vertical ion convergence, gravity wave potential energy, and solar and geomagnetic in-
dices, are incorporated as the inputs of SML together with the EsI derived from global navigation satellite system
(GNSS) radio occultation (RO) measurements. SML performs well in both long-term and short-term EsI pre-
diction and characteristics reconstruction. SML-predicted EsI is in good agreement with GNSS RO-derived EsI,
with the mean error (ME) of 0.032 TECU km−1 and root mean square error (RMSE) of 0.158 TECU km−1. Tak-
ing ionosonde observations as reference, SML has the RMSE of 1.064 MHz, which is reduced by 20.1 %–40.5 %
compared to existing prediction methods. The higher accuracy of our method than methods not incorporating
physical observations illustrates the significance of considering multiple related physical factors when construct-
ing the Es prediction model. The proposed method can be expected to provide valuable information for not
only ionospheric irregularities monitoring and space weather forecasting but also the mechanisms of Es layer
formation and atmospheric coupling.

1 Introduction

Ionospheric sporadic E (Es) layers are thin-layer structures
with abnormally sharp enhanced densities of electrons and
metal ions, occurring frequently in the ionospheric E region
with a major altitude range of 90–130 km. Existing studies
show that the occurrence of Es layers is driven by various
physical mechanisms in the lower atmosphere, mesosphere–
lower thermosphere (MLT), ionosphere, and space environ-
ment, such as the neutral wind shear (Chu et al., 2014), up-

ward propagating gravity waves (GWs) (Qiu et al., 2023), at-
mospheric tides (Tang et al., 2022a), electric fields (Resende
et al., 2016, 2021), solar activity (Yu et al., 2021), and geo-
magnetic field (Luo et al., 2021a; Moro et al., 2022), result-
ing in its highly uncertain and irregular spatial and temporal
characteristics. Specifically, the neutral wind shear theory is
widely accepted for the Es layer formation in mid-latitudes,
and the low-latitude Es layers are well related to wind shear
and equatorial electrojet plasma irregularities (Forbes, 1981;
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Raghavarao et al., 2002; Resende et al., 2013). In compar-
ison, the particle precipitation during geomagnetic activity
and the upward propagation of gravity waves are more ef-
ficient in concentrating the ions of Es layers in high lati-
tudes (Batista and Abdu, 1977; Kirkwood and Nilsson, 2000;
MacDougall et al., 2000a, b). Es layers may cause scintilla-
tions on the propagations of radio signals and severely affect
the radio communication and satellite navigation. Therefore,
the high-precision modeling and prediction of Es layers not
only is crucial for ionospheric irregularities monitoring and
space weather forecasting but also provides solutions for un-
derstanding the mechanisms of Es layer formation and cou-
pling of distinct atmospheric layers, while it still remains a
challenging task due to its complex patterns and influencing
factors.

Traditionally, Es layers are detected by ground-based
devices such as ionosonde and incoherent scatter radar
(Leighton et al., 1962; Mathews, 1998; Heinselman et al.,
1998). With the development of the global navigation satel-
lite system (GNSS) over the past 2 decades, the space-borne
GNSS radio occultation (RO) missions have been widely ap-
plied to investigate the climatology of Es occurrence rates
and Es intensity (EsI) in recent years (Arras et al., 2008; Chu
et al., 2014; Yu et al., 2019; Xu et al., 2022; Liu et al., 2024a).
Most RO missions consist of one or several low-earth-orbit
(LEO) satellites, which can acquire all-weather and wide-
area ionospheric observations with high vertical resolution.
Based on the large number of accumulated RO data, some
empirical models were established using statistical methods
to describe the global EsI distribution (Hu et al., 2022; Yu et
al., 2022; Niu and Fang, 2023). However, because of the high
uncertainty and irregularity of EsI, these empirical models
are difficult to predict the localized and short-term Es varia-
tions. Besides, these numerically established models are not
incorporated with physical observations such as wind shears,
GWs, and solar flux and geomagnetic indices and thus can-
not estimate EsI based on the Es-related physical mecha-
nisms. To overcome this limitation, some scholars compared
the morphologies of RO-derived EsI and physical data to an-
alyze their relationships (Qiu et al., 2019; Yu et al., 2019;
Yamazaki et al., 2022), but these analyses were only qualita-
tive and did not quantitatively reveal their correlations.

Recently, advances in artificial intelligence algorithms
have provided new perspectives for data analysis in geo-
sciences and many other fields. Machine learning (ML) is
a powerful tool fitting complex nonlinear relationships be-
tween multiple variables, which has been employed to re-
solve the regression and classification problems in geo-
science and is proven to have better performance compared
with traditional methods. Currently, there are few studies on
EsI prediction based on ML methods. Although Emmons et
al. (2023) and Tian et al. (2023) used ML models for the de-
tection and reconstruction of Es layers, there were few data
on Es-related physical mechanisms used for model training
in their studies. The incorporation of data about the back-

ground neutral wind, GWs, and solar and geomagnetic activ-
ity should contribute to better performance ofEs layer recon-
struction and prediction. In addition, although a large number
of ML models have been utilized in ionospheric predictions,
the performance of single models is limited by their respec-
tive shortcomings. For example, a neural network (NN) per-
forms well in learning complex patterns from large quantities
of available data but often tends to easily overfit in the anal-
ysis of limited datasets (Hinton et al., 2012). Besides, due to
the “black box” nature of a NN, it is difficult to investigate
potential relationships between inputs and inner structure
of NNs, so NN outputs are often lacking of interpretability
(Hastie et al., 2009). Comparatively, the bagging and boost-
ing ML models like random forest (RF) and gradient boost-
ing decision tree (GBDT) tend to show better performance
and interpretability than NN on some small datasets (Zhukov
et al., 2021; Han et al., 2022). To bridge this gap, the stack-
ing machine learning (SML) method is implemented to ob-
tain better accuracy and generalization than a single model.
SML uses the stacking strategy (Wolpert, 1992), which com-
bines several base models and incorporates their outputs into
a meta model, to leverage the efficiency of different mod-
els together; thus the possible errors of a single model can
be complemented by other models. Compared with other en-
semble methods like bagging and boosting, it has a better
ability to reduce both variance and bias. SML has been suc-
cessfully applied to solve some ionospheric predictive prob-
lems. For example, Asamoah et al. (2024) proposed a stacked
model combining three ML models to predict total electron
content (TEC) over a single station and demonstrated its bet-
ter performance than the single models. Liu et al. (2024b) uti-
lized a hybrid ensemble model to forecast ionospheric irregu-
larities over the Brazilian sector. However, to our knowledge,
the SML method has not been applied for EsI prediction till
now.

Hence, in this article, we present an SML model for global
ionospheric EsI prediction, where a variety of observations
representing Es-related physical mechanisms are used as in-
puts of our model, including the vertical ion convergence
(VIC) driven by neutral wind shear, the GW activity, and
the solar and geomagnetic indices. They are incorporated
together with EsI derived from GNSS RO measurements
into the proposed SML model. The SML method selects
five widely adopted ML models, RF, light gradient boost-
ing machine (LightGBM), eXtreme Gradient Boosting (XG-
Boost), support vector machine (SVM), and back propaga-
tion neural network (BPNN) as the base models, and a multi-
layer perceptron neural network (MLPNN) is utilized as the
meta model, i.e., the second part of the SML model to opti-
mally integrate the predictions generated by base models and
generate the final prediction. The prediction performance of
SML is validated using RO-derived EsI and ionosonde data
under different space weather conditions and is also com-
pared with other prediction methods.
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Figure 1. The traces of qualified COSMIC TEC profiles on 1 Au-
gust 2007 (blue lines). The red points represent the locations corre-
sponding to Smax.

2 Data and materials

2.1 GNSS RO-derived EsI

Constellation Observing System for the Meteorology, Iono-
sphere, and Climate (COSMIC) is a global RO mission
launched in April 2006, with the goal of providing GNSS RO
data for operational weather prediction, climate analysis, and
space weather forecasting (Syndergaard et al., 2006). COS-
MIC consists of six LEO satellites with an orbital altitude of
800 km and inclination of 72° and provides more than 2000
globally distributed TEC profiles per day during its full op-
eration stage. COSMIC TEC profiles are the profiles of the
calibrated TEC below COSMIC LEO satellite altitude, and
they have a high vertical resolution of better than 2 km and
thus are suitable for the detection of Es layers, which are
with small vertical scales. In this study, COSMIC TEC pro-
files during 2006–2019 are collected as the data source for
deriving EsI. Since the altitude range of Es layers consid-
ered in this paper is 90–130 km, a quality control process is
taken at first to remove the profiles with negative TEC val-
ues and the bottom heights higher than 90 km, and 93.45 %
of raw TEC profiles passed quality control and are retained
for further analysis. Figure 1 shows the traces of qualified
COSMIC TEC profiles on 1 August 2007. It indicates that
COSMIC TEC data have a dense global coverage that is a
great data source for global ionospheric investigations.

We use a single spectrum analysis (SSA) method as
described in Hu et al. (2022) to obtain the Smax index
(unit: TECU km−1), a proxy for EsI, from qualified TEC pro-
files. The TEC disturbances caused byEs layers are extracted
from original TEC profiles using SSA. Smax is defined as the
maximum vertical gradient of TEC disturbances in the alti-
tude range of 90–130 km, and the corresponding altitude is
designated as the altitude ofEs layer. The reasonableness and

Figure 2. Spatial distribution of 15 ionosonde stations. The red and
pink stations represent those from NESSDC and UKSSDC, respec-
tively. In the brackets behind each station name, the corresponding
time period of data is presented in the format of yy-yy.

effectiveness of Smax as the proxy of EsI have been verified
by Niu et al. (2019) and Hu et al. (2022).

2.2 Ionosonde EsI

Es critical frequency (foEs) is a conventional parameter char-
acterizing EsI. Ionosondes provide reliable ground-based lo-
cal foEs observations. In this study, foEs data downloaded
from National Earth System Science Data Center of China
(NESSDC) and UK Solar System Data Center (UKSSDC)
are used to validate the prediction results of SML. The foEs
observations at 1 h intervals, all manually scaled, are ob-
tained from 15 ionosondes. Figure 2 shows the spatial dis-
tribution of ionosonde stations.

2.3 VIC simulated by HWM14

The wind shear theory has been proven to be the most sig-
nificant factor influencing the formation of mid-latitude Es
layers (Chu et al., 2014; Luo et al., 2021a). In the procedure
of VIC driven by vertical wind shears in horizontal neutral
winds, the metal ions are compressed into a thin layer by
Lorentz force, and then the electrons drift along the magnetic
field lines and converge to form anEs layer (Mathews, 1998).
We employ Horizontal Wind Model 2014 (HWM14) (Drob
et al., 2015) to simulate VIC at the location of Es layer. The
vertical ion drift velocity w caused by the horizontal neutral
wind shear can be written as follows:

w =
r cosI
1+ r2U +

cosI sinI
1+ r2 V, (1)

where U and V are the zonal and meridional velocities of
horizontal neutral wind, respectively, which are calculated by
HWM14; I is the geomagnetic inclination angle; r = vi/wi ,
which is the ratio of the ion-neutral collision frequency to
ion gyrofrequency (Nygrén et al., 2008); and wi = eB/M ,
where e and M are the mass and charge of ion, respectively,
and B is the magnetic field strength. Qiu et al. (2019) and Yu
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et al. (2019) indicated thatEs layers tend to appear in regions
with negative vertical zonal wind shears (∂w/∂z < 0, where
z is the altitude). Therefore, it is assumed that only positive
values of VIC contribute to Es layer formation:

VIC=
{
−
∂w
∂z
, − ∂w

∂z
> 0

0 , − ∂w
∂z
≤ 0.

(2)

2.4 GW activity extracted from GNSS RO data

Recent studies have shown that the upward propagating GWs
can transport energy and momentum from the lower atmo-
sphere to the mesosphere and lower thermosphere, causing
ionospheric disturbances and contributing to the formation
of Es layers (Qiu et al., 2023; Seid et al., 2023). COSMIC
temperature profiles are able to cover a wide altitude range
of 0–60 km with the vertical resolution better than 0.1 km,
which are ideal data sources for studying GW activity. The
proxy for GW activities, GW potential energy (Ep), can be
calculated by the following equations:

Ep =
1
2
g2

N2

(
T ′

T

)2

(3)

N2
=
g

T

(
∂T

∂z
+
g

cp

)
, (4)

where g is the gravitational acceleration, N is the buoyancy
frequency, T is the background temperature, T ′ = T − T
is the temperature perturbation caused by GWs, and cp =
1004.5 J (kg K)−1 is the isobaric heating capacity. To derive
background temperature T that represents longer waves like
tides and planetary waves, global daily temperature profiles
are binned into 10°× 15° latitude–longitude grids with an
altitude interval of 0.1 km to obtain daily mean temperature
maps at each altitude level, and an S transform is applied on
each zonal component of mean temperature maps to derive
gridded data of T . The temperature perturbation T ′ is ob-
tained by subtracting T from original temperature profiles,
and then GW Ep is calculated using Eqs. (3) and (4). The
detailed procedure for extracting GW Ep is described in Luo
et al. (2021b).

2.5 Solar and geomagnetic indices

EsI is also affected by solar and geomagnetic conditions (Yu
et al., 2021; Tang et al., 2022b). The solar radiation flux
F10.7 and Dst indices are used to represent the solar and ge-
omagnetic activity. We choose Dst index rather than 3 h Kp
or Ap indices because Dst has a higher time resolution of 1 h.
Figure 3 shows the variations of F10.7 and Dst indices during
2006–2019.

3 Methodology

3.1 Accuracy evaluation metrics

The mean error (ME), root mean square error (RMSE), and
correlation coefficient (CC) are used as metrics to evaluate
the accuracy of prediction results, which are calculated as

ME= 1
n

n∑
i=1

(
yi − ŷi

)
RMSE=

√
1
n

n∑
i=1

(
yi − ŷi

)2
CC= cov(yi , ŷi)

σyi ·σŷi
,

(5)

where n is the total number of prediction results; yi and ŷi
are the predicted and observed EsI, respectively; cov

(
yi, ŷi

)
is the covariance between yi and ŷi ; and σyi and σŷi are the
standard deviations of yi and ŷi , respectively. The units of
both ME and RMSE are TECU km−1. CC has no unit.

3.2 Dataset configuration and segmentation

The proposed EsI prediction method aims to build a non-
linear functional model between the target (EsI) and in-
puts (spatiotemporal information and physical observations).
Therefore, the time, latitude, longitude, and altitude corre-
sponding to each RO-derived EsI (Smax), as well as the VIC,
GWEp, F10.7, and Dst, are formed into samples and fed into
SML. To reduce the input feature complexity and modeling
costs, the time of each sample is expressed as follows:

time= year+ (DOY+UT/24)/365.25, (6)

where DOY and UT are day of year and universal time, re-
spectively.

In SML method, the training and validation set is used
for the training of the base models, and their prediction
values become the training and validation set of the meta
model. Since the cross-validation (CV) strategy is utilized
for optimization of the SML model (see Sect. 3.3.2), sam-
ples of the entire dataset collected during 2006–2019 are di-
vided into two groups: training and validation set (80 %, from
22 April 2006 to 31 December 2013) and testing set (20 %,
from 1 January 2014 to 31 December 2019). Note that there
are fewer samples after 2014 due to the decline in the number
of measurements caused by the aging and loss of COSMIC
satellites. Nevertheless, it in turn allows for a longer time pe-
riod of the testing set and a more comprehensive evaluation
of SML performance.

3.3 SML model development

3.3.1 ML models

SML combines the advantages from different ML models
to obtain better performance than a single ML model. Di-
verse types of ML models should be selected to make SML
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Figure 3. Variations of F10.7 and Dst indices during 2006–2019.

fully incorporate their strengths, which require the selec-
tion of appropriate base models to simultaneously reduce the
bias and variance. In this study, five ML models are utilized
as base models, including RF, LightGBM, XGBoost, SVM,
and BPNN. RF is a tree-based parallel ensemble ML algo-
rithm using the bagging technique that is widely applied for
classification and regression problems in GNSS and remote
sensing tasks. RF is effective in reducing the variance of the
model and has an improved robustness to outliers. Compara-
tively, LightGBM and XGBoost are sequential ensemble ML
models based on the boosting technique. They use the gradi-
ent boosting technique with outstanding performance in re-
ducing bias of numerous datasets. SVM is an ML method
based on the principle of structural risk minimization. It uti-
lizes the structural risk minimization theory to suppress the
overfitting problem and minimize empirical risk and confi-
dence interval. BPNN is a widely used NN model with high
adaptability and learning ability for regression problems. It
comprises three types of fully connected layers, i.e., the in-
put layer, hidden layer(s), and output layer, which help to
better capture complex nonlinear relationships.

Furthermore, MLPNN is also a common NN model to
solve regression problems. It has a similar structure with
BPNN, while the main difference between MLPNN and
BPNN lies in their activation functions. Here we use MLPNN
as the meta model to find the optimal combination of base
models, and the structures of the base models and meta
model are shown in Fig. 4.

The mathematical expressions for all the ML models used
are presented in Eqs. (7)–(12):

RF(x)=
1
M

M∑
m=1

Tm (x) , (7)

where x is the inputs,M is the number of trees, and Tm (x) is
the mth tree output.

LightGBM(x)=
1
M

M∑
m=1

Tm (x)Wm, (8)

where Wm is the weight of the mth tree. LightGBM is simi-
lar to GBDT, but compared with the depth-wise tree growth
approach, it grows trees using the leaf-wise approach that fo-
cuses on nodes with the highest loss change, which is better
at handling large datasets and improving prediction accuracy.

XGBoost (x)=
1
M

M∑
m=1

Tm (x)Wm (9)

XGBoost is also similar to GBDT, while it offers a parallel
tree boosting algorithm to improve computation efficiency.
Actually, LightGBM and XGBoost are new optimized im-
plementations for GBDT using different techniques.

SVM(x)= wϕ (x)+ b

s.t.min

[
1
2
‖w‖2+C

L∑
i,j=1

(
ξi,ξj

)]
, (10)

where w is the weight vector, ϕ is the nonlinear mapping
function, b is the bias, L is the number of input samples,
C is the penalty factor specifying the degree of penalty
for outliers, and ξi and ξj are relaxation factors. Equa-
tion (9) can be solved by introducing Lagrange multipli-
ers to obtain the regression function of SVM, in which
ϕ is usually replaced by the radial basis function kernel
K(xi,xj )= exp(−γ

∥∥xi − xj∥∥2), where γ is the kernel pa-
rameter. The details of SVM algorithm can be found in
Yetilmezsoy (2019).

BPNNk (x)= f

(
L∑
j=1

wkjxj + bk

)

MLPNNk (x)= g

(
L∑
j=1

wkjxj + bk

)
, (11)

where BPNNk and MLPNNk are the outputs of the kth neu-
ron, and f (·) and g (·) are the activation functions of BPNN
and MLPNN, respectively. We select the sigmoid and hyper-
bolic tangent functions as the activation functions of BPNN
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Figure 4. The structures of RF, LightGBM, XGBoost, SVM, BPNN, and MLPNN.

and MLPNN, respectively, which can be written as

f (x)=
1

1+ e−x

g (x)=
2

1+ e−2x − 1. (12)

3.3.2 Model optimization

Hyperparameters are the internal configuration parameters
for ML models. The optimization of hyperparameters is im-
portant for improving the accuracy and generalizability of
ML models. To determine the optimal hyperparameters while
maintaining a relatively low computational cost, the grid
search method is adopted to optimize the two hyperparam-
eters with the greatest impact on the model. Specifically, for
each model, a set of candidate values of the two hyperparam-
eters to be optimized is defined in the parameter space, the
model performance for each hyperparameter combination is
evaluated, and the best-performing hyperparameter combi-
nation is defined as the optimal hyperparameter. During the
grid search process, a 5-fold CV is utilized. The training and

validation set is randomly divided into five non-overlapping
folds. For each iteration of training and evaluation, the ith
fold (i = 1,2, . . .,5) is used as the validation set, and the re-
maining folds are used as the training set. The average results
of these iterations are denoted as the final performance eval-
uation.

Figure 5 shows the optimized hyperparameters, the can-
didate values, and the optimal values (denoted by red aster-
isks) of hyperparameters for each ML model. For RF (bag-
ging model), the number of leaf nodes and the number of
trees are selected as the hyperparameters to be optimized,
and they are optimally determined as 200 and 200, respec-
tively, while for LightGBM and XGBoost (boosting model),
the number of leaves and the maximum depth play the more
important roles in improving model performance, and they
are optimally computed to 63 and 9, respectively. As shown
in Eq. (9), the penalty factor C and the kernel parameter γ
have significant impacts on the performance of SVM regres-
sor. In this sense, they are selected for optimization with opti-
mal values of 10 and 1, respectively. For BPNN and MLPNN,
the number of hidden layer(s) and the neuron number in each

Atmos. Chem. Phys., 25, 11517–11534, 2025 https://doi.org/10.5194/acp-25-11517-2025



T. Hu et al.: Global ionospheric sporadic E intensity prediction 11523

Figure 5. Grid search results (RMSE) for the optimization of RF, LightGBM, XGBoost, SVM, BPNN, and MLPNN. The red asterisks
denote the optimal hyperparameter combination of each ML model.

hidden layer are key hyperparameters in determining the ac-
curacy of the network. Since one hidden-layer-based NN can
approximate the arbitrarily small error among most bounded
continuous functions (Hornik et al., 1989), we only use one
hidden layer in BPNN, while two hidden layers are adopted
in MLPNN to better combine the predictions from base mod-
els. The optimal neuron number in the hidden layer(s) can be
determined empirically based on the range from 2

√
n+µ to

2n+ 1, where n and µ are the neuron numbers in input and
output layers, respectively. Therefore, the neuron numbers
of BPNN and MLPNN are validated from 6 to 17 and from
4 to 11, respectively, and the optimal neuron numbers corre-
sponding to the minimum RMSE are 16 for BPNN, and 6 and
7 for MLPNN, respectively. By optimizing these ML mod-
els, their performance, generalizability, and interpretability
are improved so that they are more suitable for the specific
task of EsI prediction in this study.

3.3.3 SML model architecture

In the training stage of the SML model, the outputs of RF,
LightGBM, XGBoost, SVM, and BPNN on the training and
validation set are fed into MLPNN as its input data, and its
outputs are the final predicted EsI. This process is also sim-
ilar in the test stage. The framework of SML is shown in
Fig. 6.

4 Results

4.1 Comparison of the SML model and base models

Both the SML model and the base models with the opti-
mal hyperparameters are fitted on the training set. Then they
are employed to make predictions on the testing set, and the
prediction results are compared with the ground truth. Fig-
ure 7 illustrates the histograms and the density scatter plots
of the comparisons of EsI predicted by SML and base mod-
els with ground truth. SML shows the much more aggre-
gated histogram than the histograms of base models, which
means that SML has the best agreement with ground truth
among all ML models, with the minimum ME/RMSE of
0.032/0.158 TECU km−1. Compared to the maximum ME
and RMSE of 0.053 and 0.170 TECU km−1 for the base mod-
els, SML has the improvement of 39.6 % and 7.1 %, respec-
tively. The density scatter plots show that SML also has the
highest CC of 0.891. As mentioned above, RF is more robust
for outliers and more effective in reducing variances and thus
has a lower RMSE than other base models. Comparatively,
the other base models, especially BPNN, play an important
role in reducing bias, and they outperform RF in terms of the
overall prediction accuracy of EsI, as demonstrated by their
MEs. By combining the strengths of different types of ML
models, SML is able to achieve predictions with both lower
biases and lower variances compared with all base models.

https://doi.org/10.5194/acp-25-11517-2025 Atmos. Chem. Phys., 25, 11517–11534, 2025
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Figure 6. Framework of the SML model.

In addition to the overall performance, the global distribu-
tions of EsI predicted by the models are also compared. Fig-
ure 8 presents the latitude–longitude maps of the differences
between ground truth and the EsI predicted by SML and by
base models on the testing set. Here the EsI maps represent
the average EsI in the latitude–longitude bin of 2.5°× 5°
over the period of testing set. Specifically, RF has larger
deviations than other models in North America (30–50° N
and 80–120° W), in the South American Magnetic Anomaly
(SAMA) zone (30–60° S and 20° W–40° E), and near the ge-
omagnetic equator (denoted by the red line in Fig. 8a), which
are the regions with smaller EsI due to the near horizontal ge-
omagnetic field lines (Yu et al., 2019; Luo et al., 2021a). RF
also has a considerable underestimation of EsI in the Arc-
tic region. The other base models, especially BPNN, have
overall smaller biases than RF, while they have more outliers
exhibited as localized small patches with larger prediction
errors at mid-latitudes and low latitudes. On the other hand,
SML has the best prediction accuracies and the least number
of outliers in the regions mentioned above, which is due to
the SML avoiding the shortcomings of different base models
by selectively integrating their outputs.

Based on the above comparisons, SML has the highest CC
and the smallest ME and RMSE, i.e., the best prediction per-
formance. In the following sections, only the SML model is
selected to assess the ability in reconstructing the complex
long-term and short-term characteristics of EsI morphology,
and we also compare the SML predictions with ionosonde
observations for external validation of the prediction perfor-
mance.

4.2 Long-term evaluation of SML performance

The long-term evaluation of SML prediction performance is
conducted on the whole testing set, i.e., 2014–2019. Figure 9
presents the latitude–longitude and latitudinal distributions
of ground truth, SML-predicted EsI, and the corresponding
error maps in four seasons, which are categorized as MAM
(March, April, and May), JJA (June, July, and August), SON
(September, October, and November), and DJF (December,
January, and February). Visual inspection shows that SML
accurately simulates the seasonal variation of EsI. SML suc-
cessfully shows the larger EsI that peaks in the banded area
at mid-latitudes of the summer hemisphere and reaches the
valley values in winter hemisphere, which is primarily domi-
nated by the seasonal variation of meteor flux and the result-
ing metallic ion content, coupled with the neutral wind shear
(Haldoupis et al., 2007). The weaker EsI in North America,
in the SAMA zone, and along the geomagnetic equator due to
the lower geomagnetic inclination angle is well reconstructed
by SML predictions. Furthermore, the SML-predicted latitu-
dinal distribution of EsI also agrees well with ground truth
in all the four seasons. The larger EsI moves northward or
southward with seasonal variations, which is under the con-
trol of wind shear at mid-latitudes. While at latitudes higher
than 70°, there is also strong EsI which is larger than that at
60°, and this is no longer due to the wind shear but the verti-
cal transport of ions and electrons caused by GWs propagat-
ing upward along near vertical geomagnetic field lines (Kirk-
wood and Nilsson, 2000). It indicates that the SML model
can clearly reconstruct and predict the larger EsI in mid-
latitudes and high latitudes dominated by different physical
mechanisms and can comprehensively consider the impact
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Figure 7. (a) Histograms and (b) density scatter plots of the comparisons of EsI predicted by SML and by base models with ground truth.

of multiple influencing factors. The SML prediction errors
are between ±0.1 TECU km−1 in most areas, demonstrat-
ing the excellent prediction performance in long-term EsI
prediction. The MEs of SML predictions for the four sea-
sons are 0.004/−0.005/0.001/0.012 TECU km−1, and RM-
SEs are 0.146/0.166/0.143/0.176 TECU km−1, respectively.
Nevertheless, we can see from the error maps that the ar-
eas of underestimation beyond ±0.1 TECU km−1 are mainly
concentrated at the peak of EsI in the summer hemisphere.
The possible explanation for this phenomenon is that larger
EsI is the minority of the training set (predominantly occurs
in the summer hemisphere only), and the trained model fits
this part of data slightly worse than smaller EsI. Improve-
ment in the prediction performance for larger EsI should be
required for future study.

Figure 10 shows the local time day of year (LT-DOY) dis-
tributions of ground truth and SML-predicted EsI at differ-
ent latitude ranges in 2014–2019. Larger EsI mainly exists
in daytime, increasing after sunrise and decreasing after sun-
set. The EsI tidal signatures reconstructed by SML, mainly

dominated by the wind shear and atmospheric tides (Yu et
al., 2019), are consistent with ground truth, which can be
identified on summer days with diurnal tides (starting around
10:00 LT) occurring at low latitudes (30° N–30° S) and semi-
diurnal tides (starting around 08:00 and 16:00 LT) occurring
at mid-latitudes (30–60° N and 30–60° S). Although the EsI
seasonal variation in the Southern Hemisphere (SH) is oppo-
site to that in the Northern Hemisphere (NH), the diurnal and
semi-diurnal tides can still be discerned, only with a slightly
lower peak intensity. Figure 10 indicates the effectiveness of
SML in reconstructing tidal signatures of EsI.

Figure 11 plots the latitudinal distribution of daily SML-
predicted EsI and the daily RMSE on the whole testing set,
with blank areas indicating the days without EsI data. The re-
sults show that the morphology characteristics of SML pre-
dictions are close to those of ground truth. SML succeeds
in capturing the hemispheric asymmetry of EsI; i.e., EsI is
generally slightly higher in the NH summer than in the SH
summer of the same year, which is also found by Luo et
al. (2021a) and Xu et al. (2022). This is mainly due to the
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Figure 8. Latitude–longitude distribution of (a) ground truth and the difference between ground truth and the EsI predicted by (b) SML,
(c) RF, (d) LightGBM, (e) XGBoost, (f) SVM, and (g) BPNN on the testing set. The red line denotes the geomagnetic equator.

lower EsI in the SAMA zone caused by the distribution
of horizontal geomagnetic field, which diminishes the EsI
over the corresponding latitude zones. Furthermore, the daily
RMSE in Fig. 11 is generally stable below 0.2 TECU km−1,
with unusual sudden enhancements only in a few days. Over-
all, these results fully demonstrate the good ability of SML
for stable EsI prediction and characteristics reconstruction in
long-term periods.

4.3 Short-term evaluation of SML performance

The response of EsI to geomagnetic storms has been widely
reported (Resende et al., 2021; Moro et al., 2022; Tang et
al., 2022b; Qiu and Liu, 2025), which is usually a com-
bined effect of neutral wind and electric field variations.
We have conducted two case studies to evaluate the short-
term prediction performance of SML during the geomagnetic
quiet and storm time periods. Figure 12 shows the latitude–
longitude and latitudinal distributions of ground truth, SML-
predicted EsI, and the corresponding error maps on 2 quiet
days, 4 July 2014 and 24 January 2018. Compared with
ground truth, SML can effectively predict the general dis-
tribution of EsI, particularly the considerable agreement in
latitudinal distribution, which is similar to that in Fig. 9.
The prediction errors are mostly within ±0.1 TECU km−1,

with a small number of underestimates which are with
larger errors mainly existing in the summer hemisphere.
The ME/RMSE for the 2 quiet days are −0.006/0.183 and
0.006/0.133 TECU km−1, respectively.

Figure 13 shows the latitude–longitude and latitudinal dis-
tributions of ground truth, SML-predicted EsI, and the cor-
responding error maps on 2 storm days, 7 December 2014
(moderate storm, Dst =−43 nT) and 22 June 2015 (major
storm, Dst =−121 nT). Compared to quiet days, the EsI
distributions during storm days are more complex, showing
more irregular patches of EsI enhancement. The general dis-
tributions of SML predictions still agree well with ground
truth, while there are more outliers in the summer hemi-
sphere and at low latitudes compared to quiet days, as shown
in the error maps. The ME/RMSE for the 2 storm days are
0.008/−0.004 and 0.278/0.268 TECU km−1, respectively. In
addition, SML has more overestimations of EsI on 7 Decem-
ber 2014, while there are both overestimations and underes-
timations on 22 June 2015. Liu et al. (2022) reported that EsI
usually has a decrease during moderate storms than during
quiet times and presents a complex variation during major
storms. Although their study is from a climatological per-
spective, it may explain our prediction results during geo-
magnetic storms. Nonetheless, Figs. 12 and 13 suggest that
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Figure 9. Latitude–longitude and latitudinal distributions of ground truth, SML-predicted EsI, and the corresponding error maps in four
seasons.

the SML model has a reliable ability for short-term EsI pre-
diction under different geomagnetic levels.

4.4 External validation using ionosonde observations

In the previous empirical modeling of EsI, ionosonde foEs
observations are usually used to verify the accuracy of RO
measurements (Niu et al., 2019; Hu et al., 2022). To com-
pare the SML-predicted EsI (Smax) and ionosonde foEs on
the testing set, they should be matched under a specific spa-
tiotemporal window. Luo et al. (2019) indicated that the in-
fluence of the increase in the spatial window on the match-
ing results is much greater than that in the time window.
Therefore, we adopt the window of (0.5°, 0.5°, 1 h) to en-
sure both the amount and consistency of the matched pairs.
Figure 14 demonstrates the scatter plots of the matched
ground truth and the SML-predicted EsI with ionosonde
foEs. The results show that the fitted equation between SML
predictions and foEs is much closer to that between ground
truth and foEs. The fitted RMSE of 0.122 TECU km−1 for
SML is only slightly worse than that of the ground truth of
0.121 TECU km−1, while the CC becomes even better, from
0.716 for ground truth to 0.727 for SML. The high consis-

tency between the metrics of SML predictions and ground
truth indicates the good performance of SML.

Furthermore, we verify the consistency of the long-term
trends of SML results and ionosonde observations. Three
ionosondes located at different latitudes, DW41K, BP440,
and SO166, are selected for evaluation. Figure 15 shows the
daily maximum of the SML-predicted EsI and foEs over the
selected ionosondes during 2014–2019. Note that here EsI
and foEs are matched over the location of each ionosonde
rather than within the spatiotemporal window. The clima-
tological variations of SML-predicted EsI correspond well
with those of the ionosonde foEs in low latitudes, mid-
latitudes, and high latitudes. The CCs of SML-predicted EsI
and ionosonde foEs over the three ionosondes are 0.613,
0.739, and 0.636, respectively.

5 Discussion

5.1 Advantage of incorporating physical observations in
EsI prediction

To investigate the effect of incorporating physical observa-
tions on the prediction performance of the SML model, we
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Table 1. Metrics of SML with different input variables.

Input variables ME (TECU km−1) RMSE (TECU km−1)

1. EsI, Time, Lat, Lon, Alt, VIC, GW Ep, F10.7, Dst 0.032 0.158
2. EsI, Time, Lat, Lon, Alt, VIC, GW Ep, F10.7 0.032 0.160
3. EsI, Time, Lat, Lon, Alt, VIC, GW Ep 0.038 0.162
4. EsI, Time, Lat, Lon, Alt, VIC 0.040 0.164
5. EsI, Time, Lat, Lon, Alt 0.049 0.184

Table 2. Comparison results of EsI estimation models.

COSMIC product EsI proxy Method RMSE (MHz)

Yu et al. (2022) S4 index S4max Nonlinear least-squares fitting 1.787
Niu and Fang (2023) TEC profiles Smax Multivariable functional fitting 1.650
Liu et al. (2024a) Electron density profiles Electron density Linear fitting 1.601
Emmons et al. (2023) 50 Hz SNR profiles Normalized SNR SVM regression 1.331
This paper TEC profiles Smax SML 1.064

Figure 10. LT-DOY distributions of ground truth and SML-
predicted EsI. The right label of the right panel of each row rep-
resents the latitude range of this row.

have evaluated the contributions of each physical parameter
by removing them from the input variables one at a time.
The sequence of removal is Dst, F10.7, GW Ep, and VIC.

Figure 11. Latitudinal distribution of daily ground truth and SML-
predicted EsI, as well as the daily RMSE on the testing set.

Table 1 represents the metrics of SML with different input
variable combinations on the testing set, which are desig-
nated as Combinations 1–5. The models with Combinations
1–4 (with physical parameters) have ME/RMSE smaller than
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Figure 12. Latitude–longitude and latitudinal distributions of ground truth, SML-predicted EsI and the corresponding error maps during
geomagnetic quiet times on 4 July 2014 and 24 January 2018.

Figure 13. Latitude–longitude and latitudinal distributions of ground truth, SML-predicted EsI, and the corresponding error maps during
geomagnetic storm times on 7 December 2014 and 22 June 2015.

Combination 5 (without physical parameter), and the SML
model with Combination 1 has the smallest ME and RMSE
compared to other combinations. We can see that after re-
moving each parameter, ME and RMSE generally increase
with different magnitudes. The increases are larger after re-
moving VIC and F10.7 (ME of 0.009/0.006 and RMSE of
0.018/0.002 TECU km−1), while they are smaller after re-
moving GW Ep and Dst (ME of 0.002/0.000 and RMSE of
0.002/0.002 TECU km−1), indicating that the contributions
of VIC and F10.7 to the model performance are more signifi-

cant than those of GWEp and Dst. The possible reason is that
the effects of VIC and F10.7 on EsI are on long timescales,
such as seasonal, annual, and solar cycles, while GW Ep
and Dst tend to impact the small-scale EsI distributions (e.g.,
hourly or during geomagnetic storms). For example, the re-
lationship between VIC and seasonal/annual variation of Es
layers has been widely revealed based on many observations
and simulations (Shinagawa et al., 2017; Qiu et al., 2019; Yu
et al., 2019; Luo et al., 2021a; Yamazaki et al., 2022; Ruan
et al., 2025), and the variations of EsI and Es occurrence rate
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Figure 14. Scatter plots of the matched ground truth and the SML-
predicted EsI with ionosonde foEs.

Figure 15. Time series of daily maximum of SML-predicted EsI
and foEs over DW41K, BP440, and SO166 ionosondes during
2014–2019.

within one solar cycle have also been reported by Bergsson
and Syndergaard (2022) and Fontes et al. (2024). In compari-
son, Qiu et al. (2023) and Liu et al. (2024c) indicated that the
modulation of Es layers by GWs has timescales comparable

Figure 16. Monthly RMSEs of SML with different input variables.

to the periods of GWs, and there is no significant consis-
tency of the seasonal variation of Es occurrence with that of
GWs. Liu et al. (2022) and Qiu and Liu (2025) pointed out
that the downward impacts of geomagnetic storm on the Es
layers mainly occur during the recovery phase. Furthermore,
the monthly RMSE of SML with different input variables
are shown in Fig. 16. It is evident that the monthly RMSEs
of SML with Combination 5 are larger than the SML models
with other combinations. The SML with Combination 1 per-
forms better than other models during January–November.
The above results show the necessity of incorporating mul-
tiple related physical factors to consider the interactions of
different atmospheric layers as a coupling system when con-
structing the Es prediction model, in which VIC and F10.7
are of significant contributions.

In recent years, some methods have been proposed for EsI
modeling and prediction. Niu and Fang (2023) used COS-
MIC RO data to develop an empirical model that reproduces
the climatological characteristics of EsI at low latitudes
and mid-latitudes, with averaged deviation of 0.23 MHz.
Emmons et al. (2023) presented two improved prediction
model for EsI and demonstrated better performance than
those of the empirical models. Although the above methods
achieved considerable EsI prediction performance, the lack
of Es-related physical observations limited the further im-
provements of model accuracy. Tian et al. (2023) conducted
the importance ranking of potential Es-related lower atmo-
spheric parameters (zonal wind, geopotential, temperature,
etc.), based on which they selected the input variables for
their prediction model, but they did not consider VIC, the
most important physical factor. In this study, we compre-
hensively incorporate VIC, GW Ep, F10.7, and Dst, which
have been proven to have significant correlations with EsI.
Hence, we have obtained a better performance than the pre-
vious models with only the EsI information as inputs.
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5.2 Comparison of SML and other EsI estimation
models

We have collected EsI estimation models using RO measure-
ments from the literature in recent years. These models uti-
lize different COSMIC RO products to derive various EsI
proxies using statistical or ML methods. For intuitive com-
parison, all EsI predictions are validated by ionosonde foEs
observations on the same testing set using the same colloca-
tion window in Sect. 4.4, and their metric units are all con-
verted to MHz. The comparison results are listed in Table 2.
SML has the best prediction performance, and its RMSE is
considerably smaller than all the other four models, with im-
provements of 40.5 %, 35.5 %, 33.5 %, and 20.1 %, respec-
tively. Emmons et al. (2023) used an ML model (SVM re-
gression) to achieve a smaller RMSE than the other three em-
pirical models, while it is still larger than the SML RMSE of
this work. This may be due to that single SVM model being
not as robust as SML.

6 Conclusions

This study proposes an SML method for global EsI predic-
tion, in which a variety of Es-related physical observations
are incorporated as inputs together with EsI derived from
GNSS RO measurements. SML combines the strengths of
the optimized base models to obtain lower prediction bias
and variance. Taking RO-derived EsI as reference, the ME
and RMSE of SML are 0.032 and 0.158 TECU km−1, re-
spectively, and the reductions compared with the maximum
ME and RMSE of base models are 39.6 % and 7.1 %, re-
spectively. The evaluation results during 2014–2019 show
that SML performs well in the prediction and the charac-
teristics reconstruction of both long-term and short-term EsI
variations. Taking ionosonde foEs observations as reference,
SML shows better performance in EsI prediction compared
to the existing methods, with the RMSE decreases of 20.1 %–
40.5 %. Overall, this study presents an effective tool for
high-precision global EsI prediction, which can be expected
to provide valuable information for ionospheric irregulari-
ties monitoring and space weather forecasting. The method’s
incorporation of multiple Es-related physical factors is of
significant contribution for deepening the understanding of
complex interactions between the lower atmosphere, thermo-
sphere, ionosphere, and solar–terrestrial environment.
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