Articles | Volume 25, issue 18
https://doi.org/10.5194/acp-25-11407-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-25-11407-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Isotopic signatures of methane emission from oil and natural gas plants in southwestern China
Dingxi Chen
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Yi Liu
Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu 610041, China
Zetong Niu
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Ao Wang
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Pius Otwil
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Yuanyuan Huang
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Zhongcong Sun
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Xiaobing Pang
College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
Liyang Zhan
Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
Related authors
No articles found.
Wangwang Ye, Hermann W. Bange, Damian L. Arévalo-Martínez, Hailun He, Yuhong Li, Jianwen Wen, Jiexia Zhang, Jian Liu, Man Wu, and Liyang Zhan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-334, https://doi.org/10.5194/bg-2021-334, 2022
Manuscript not accepted for further review
Short summary
Short summary
CH4 is the second important greenhouse gas after CO2. We show that CH4 consumption and sea-ice melting influence the CH4 distribution in the Ross Sea (Southern Ocean), causing undersaturation and net uptake of CH4 during summertime. This study confirms the capability of surface water in the high-latitude Southern Ocean regions to take up atmospheric CH4 which, in turn, will help to improve predictions of how CH4 release/uptake from the ocean will develop when sea-ice retreats in the future.
Cited articles
Akritas, M. G. and Bershady, M. A.: Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter, The Astrophysical Journal, 470, 177901, https://doi.org/10.48550/arXiv.astro-ph/9605002, 1996.
Ali, H., Odeh, M., Odeh, A., Abou-ElNour, A. A., and Tarique, M.: Unmanned Aerial Vehicular System for Greenhouse Gas Measurement and Automatic Landing, Netw. Protoc. Algorithms, 9, 56–76, https://doi.org/10.5296/npa.v9i3-4.12319, 2017.
Al-Shalan, A., Lowry, D., Fisher, R. E., Nisbet, E. G., Zazzeri, G., Al-Sarawi, M., and France, J. L.: Methane emissions in Kuwait: Plume identification, isotopic characterisation and inventory verification, Atmospheric Environment, 268, 118763, https://doi.org/10.1016/j.atmosenv.2021.118763, 2022.
Andersen, T., Zhao, Z., de Vries, M., Necki, J., Swolkien, J., Menoud, M., Röckmann, T., Roiger, A., Fix, A., Peters, W., and Chen, H.: Local-to-regional methane emissions from the Upper Silesian Coal Basin (USCB) quantified using UAV-based atmospheric measurements, Atmos. Chem. Phys., 23, 5191–5216, https://doi.org/10.5194/acp-23-5191-2023, 2023.
Anifowose, B. and Odubela, M.: Methane emissions from oil and gas transport facilities – exploring innovative ways to mitigate environmental consequences, Journal of Cleaner Production, 92, 121–133, https://doi.org/10.1016/j.jclepro.2014.12.066, 2015.
Anifowose, B., Lawler, D., van der Horst, D., and Chapman, L.: Evaluating interdiction of oil pipelines at river crossings using Environmental Impact Assessments, Area, 46, 4–17, https://doi.org/10.1111/area.12065, 2014.
Ars, S., Arismendi, G. G., Muehlenbachs, K., Worthy, D. E. J., and Vogel, F.: Using in situ measurements of δ13C in methane to investigate methane emissions from the western Canada sedimentary basin, Atmospheric Environment: X, 23, 100286, https://doi.org/10.1016/j.aeaoa.2024.100286, 2024.
Barthold, F. K., Tyralla, C., Schneider, K., Vaché, K. B., Frede, H.-G., and Breuer, L.: How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis, Water Resources Research, 47, https://doi.org/10.1029/2011WR010604, 2011.
Basu, S., Lan, X., Dlugokencky, E., Michel, S., Schwietzke, S., Miller, J. B., Bruhwiler, L., Oh, Y., Tans, P. P., Apadula, F., Gatti, L. V., Jordan, A., Necki, J., Sasakawa, M., Morimoto, S., Di Iorio, T., Lee, H., Arduini, J., and Manca, G.: Estimating emissions of methane consistent with atmospheric measurements of methane and δ13C of methane, Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, 2022.
Bruhwiler, L. M., Basu, S., Bergamaschi, P., Bousquet, P., Dlugokencky, E., Houweling, S., Ishizawa, M., Kim, H.-S., Locatelli, R., Maksyutov, S., Montzka, S., Pandey, S., Patra, P. K., Petron, G., Saunois, M., Sweeney, C., Schwietzke, S., Tans, P., and Weatherhead, E. C.: U.S. CH4 emissions from oil and gas production: Have recent large increases been detected?, Journal of Geophysical Research: Atmospheres, 122, 4070-4083, https://doi.org/10.1002/2016JD026157, 2017.
Bugaets, A., Gartsman, B., Gubareva, T., Lupakov, S., Kalugin, A., Shamov, V., and Gonchukov, L.: Comparing the Runoff Decompositions of Small Experimental Catchments: End-Member Mixing Analysis (EMMA) vs. Hydrological Modelling, Water, 15, 752, https://doi.org/10.3390/w15040752, 2023.
Burnham, A., Han, J., Clark, C. E., Wang, M., Dunn, J. B., and Palou-Rivera, I.: Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum, Environmental science & technology, 46, 619–627, https://doi.org/10.1021/es201942m, 2012.
Cai, C., Zhang, C., He, H., and Tang, Y.: Carbon isotope fractionation during methane-dominated TSR in East Sichuan Basin gasfields, China: A review, Marine and Petroleum Geology, 48, 100–110, https://doi.org/10.1016/j.marpetgeo.2013.08.006, 2013.
Chandra, N., Patra, P. K., Fujita, R., Höglund-Isaksson, L., Umezawa, T., Goto, D., Morimoto, S., Vaughn, B. H., and Röckmann, T.: Methane emissions decreased in fossil fuel exploitation and sustainably increased in microbial source sectors during 1990–2020, Communications Earth & Environment, 5, 147, https://doi.org/10.1038/s43247-024-01286-x, 2024.
Chen, L., Pang, X., Wu, Z., Huang, R., Hu, J., Liu, Y., Zhou, L., Zhou, J., and Wang, Z.: Unmanned aerial vehicles equipped with sensor packages to study spatiotemporal variations of air pollutants in industry parks, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 382, 20230314, https://doi.org/10.1098/rsta.2023.0314, 2024.
Dai, J., Qi, H., and Song, Y.: Primary discussion of some parameters for identification of coal-and oil-type gases, Acta Petrolei Sinica, 6, 31–38, 1985 (in Chinese with English Abstract).
Dai, J., Pei, X., and Qi, H.: Natural Gas Geology of China, Beijing: Petroleum Industry Press, 1, 42–46, 1992 (in Chinese with English Abstract).
Dai, J., Yang, S., Chen, H., and Shen, X.: Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins, Organic Geochemistry, 36, 1664–1688, https://doi.org/10.1016/j.orggeochem.2005.08.007, 2005.
Defratyka, S. M., Paris, J.-D., Yver-Kwok, C., Fernandez, J. M., Korben, P., and Bousquet, P.: Mapping Urban Methane Sources in Paris, France, Environmental Science & Technology, 55, 8583–8591, https://doi.org/10.1021/acs.est.1c00859, 2021.
Dlugokencky, E. J., Nisbet, E. G., Fisher, R., and Lowry, D.: Global atmospheric methane: budget, changes and dangers, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 2058–2072, https://doi.org/10.1098/rsta.2010.0341, 2011.
Fernandez, R., Petrusak, R., Robinson, D., and Zavadil, D.: Cost-Effective Methane Emissions Reductions for Small and Midsize Natural Gas Producers, Journal of Petroleum Technology, 57, 34–42, https://doi.org/10.2118/0605-0034-JPT, 2005.
Fisher, R. E., Sriskantharajah, S., Lowry, D., Lanoisellé, M., Fowler, C. M. R., James, R. H., Hermansen, O., Lund Myhre, C., Stohl, A., Greinert, J., Nisbet-Jones, P. B. R., Mienert, J., and Nisbet, E. G.: Arctic methane sources: Isotopic evidence for atmospheric inputs, Geophysical Research Letters, 38, https://doi.org/10.1029/2011GL049319, 2011.
Fisher, R. E., France, J. L., Lowry, D., Lanoisellé, M., Brownlow, R., Pyle, J. A., Cain, M., Warwick, N., Skiba, U. M., Drewer, J., Dinsmore, K. J., Leeson, S. R., Bauguitte, S. J.-B., Wellpott, A., O'Shea, S. J., Allen, G., Gallagher, M. W., Pitt, J., Percival, C. J., Bower, K., George, C., Hayman, G. D., Aalto, T., Lohila, A., Aurela, M., Laurila, T., Crill, P. M., McCalley, C. K., and Nisbet, E. G.: Measurement of the 13C isotopic signature of methane emissions from northern European wetlands, Global Biogeochemical Cycles, 31, 605–623, https://doi.org/10.1002/2016GB005504, 2017.
France, J. L., Cain, M., Fisher, R. E., Lowry, D., Allen, G., O'Shea, S. J., Illingworth, S., Pyle, J., Warwick, N., Jones, B. T., Gallagher, M. W., Bower, K., Le Breton, M., Percival, C., Muller, J., Welpott, A., Bauguitte, S., George, C., Hayman, G. D., Manning, A. J., Myhre, C. L., Lanoisellé, M., and Nisbet, E. G.: Measurements of δ13C in CH4 and using particle dispersion modeling to characterize sources of Arctic methane within an air mass, Journal of Geophysical Research: Atmospheres, 121, 14257–14270, https://doi.org/10.1002/2016JD026006, 2016.
Geum, S., Park, H., Choi, H., Kim, Y., Lee, H., Joo, S., Oh, Y.-S., Michel, S. E., and Park, S.: Identifying emission sources of CH4 in East Asia based on in-situ observations of atmospheric δ13C-CH4 and C2H6, Science of The Total Environment, 908, 168433, https://doi.org/10.1016/j.scitotenv.2023.168433, 2024.
Han, T., Xie, C., Yang, Y., Zhang, Y., Huang, Y., Liu, Y., Chen, K., Sun, H., Zhou, J., Liu, C., Guo, J., Wu, Z., and Li, S.-M.: Spatial mapping of greenhouse gases using a UAV monitoring platform over a megacity in China, Science of The Total Environment, 951, 175428, https://doi.org/10.1016/j.scitotenv.2024.175428, 2024.
Hmiel, B., Petrenko, V. V., Dyonisius, M. N., Buizert, C., Smith, A. M., Place, P. F., Harth, C., Beaudette, R., Hua, Q., Yang, B., Vimont, I., Michel, S. E., Severinghaus, J. P., Etheridge, D., Bromley, T., Schmitt, J., Faïn, X., Weiss, R. F., and Dlugokencky, E.: Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions, Nature, 578, 409–412, https://doi.org/10.1038/s41586-020-1991-8, 2020.
Huang, S., Feng, Z., Gu, T., Gong, D., Peng, W., and Yuan, M.: Multiple origins of the Paleogene natural gases and effects of secondary alteration in Liaohe Basin, northeast China: Insights from the molecular and stable isotopic compositions, International Journal of Coal Geology, 172, 134–148, https://doi.org/10.1016/j.coal.2017.01.009, 2017.
Intergovernmental Panel on Climate Change: Climate Chang 2021 The Physical Science Basis, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1017, 2021.
International Energy Agency: Global Methane Tracker, https://www.iea.org/reports/global-methane-tracker-2024 (last access: 12 June 2025), 2024.
Kavitha, M. and Nair, P. R.: Non-homogeneous vertical distribution of methane over Indian region using surface, aircraft and satellite based data, Atmospheric Environment, 141, 174–185, https://doi.org/10.1016/j.atmosenv.2016.06.068, 2016.
Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas, Geochimica et Cosmochimica Acta, 13, 322–334, https://doi.org/10.1016/0016-7037(58)90033-4, 1958.
Kim, H., Kim, K. T., Jeong, S., Lee, Y. S., Zhao, X., and Kim, J. Y.: Enhancing Uncrewed Aerial Vehicle Techniques for Monitoring Greenhouse Gas Plumes at Point Sources, Atmospheric Environment, 342, 120924, https://doi.org/10.1016/j.atmosenv.2024.120924, 2025.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C., Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and sinks, Nature Geoscience, 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013.
Kuhlmann, G., Stavropoulou, F., Schwietzke, S., Zavala-Araiza, D., Thorpe, A., Hueni, A., Emmenegger, L., Calcan, A., Röckmann, T., and Brunner, D.: Evidence of successful methane mitigation in one of Europe's most important oil production region, Atmos. Chem. Phys., 25, 5371–5385, https://doi.org/10.5194/acp-25-5371-2025, 2025.
Lauvaux, T., Giron, C., Mazzolini, M., d'Aspremont, A., Duren, R., Cusworth, D., Shindell, D., and Ciais, P.: Global assessment of oil and gas methane ultra-emitters, Science, 375, 557–561, https://doi.org/10.1126/science.abj4351, 2022.
Leitner, S., Hood-Nowotny, R., and Watzinger, A.: Successive and automated stable isotope analysis of CO2, CH4 and N2O paving the way for unmanned aerial vehicle-based sampling, Rapid Communications in Mass Spectrometry, 34, e8929, https://doi.org/10.1002/rcm.8929, 2020.
Leitner, S., Feichtinger, W., Mayer, S., Mayer, F., Krompetz, D., Hood-Nowotny, R., and Watzinger, A.: UAV-based sampling systems to analyse greenhouse gases and volatile organic compounds encompassing compound-specific stable isotope analysis, Atmos. Meas. Tech., 16, 513–527, https://doi.org/10.5194/amt-16-513-2023, 2023.
Liu, Q., Wu, X., Wang, X., Jin, Z., Zhu, D., Meng, Q., Huang, S., Liu, J., and Fu, Q.: Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas, Earth-Science Reviews, 190, 247–272, https://doi.org/10.1016/j.earscirev.2018.11.017, 2019.
Liu, S.: Development of a UAV-based system to monitor air quality over an oil field, Graduate Theses & Non-Theses, Montana Technological University, 187, 2018.
Liu, S., Yang, X., and Zhou, X.: Development of a low-cost UAV-based system for CH4 monitoring over oil fields, Environmental Technology, 42, 3154–3163, https://doi.org/10.1080/09593330.2020.1724199, 2021.
Lu, X., Harris, S. J., Fisher, R. E., France, J. L., Nisbet, E. G., Lowry, D., Röckmann, T., van der Veen, C., Menoud, M., Schwietzke, S., and Kelly, B. F. J.: Isotopic signatures of major methane sources in the coal seam gas fields and adjacent agricultural districts, Queensland, Australia, Atmos. Chem. Phys., 21, 10527–10555, https://doi.org/10.5194/acp-21-10527-2021, 2021.
Malerba, M. E., de Kluyver, T., Wright, N., Schuster, L., and Macreadie, P. I.: Methane emissions from agricultural ponds are underestimated in national greenhouse gas inventories, Communications Earth & Environment, 3, 306, https://doi.org/10.1038/s43247-022-00638-9, 2022.
McGowan, H. and Clark, A.: Identification of dust transport pathways from Lake Eyre, Australia using Hysplit, Atmospheric Environment, 42, 6915–6925, https://doi.org/10.1016/j.atmosenv.2008.05.053, 2008.
Menoud, M., van der Veen, C., Maazallahi, H., Hensen, A., Velzeboer, I., van den Bulk, P., Delre, A., Korben, P., Schwietzke, S., Ardelean, M., Calcan, A., Etiope, G., Baciu, C., Scheutz, C., Schmidt, M., and Röckmann, T.: CH4 isotopic signatures of emissions from oil and gas extraction sites in Romania, Elementa: Science of the Anthropocene, 10, https://doi.org/10.1525/elementa.2021.00092, 2022.
Michel, S. E., Lan, X., Miller, J., Tans, P., Clark, J. R., Schaefer, H., Sperlich, P., Brailsford, G., Morimoto, S., Moossen, H., and Li, J.: Rapid shift in methane carbon isotopes suggests microbial emissions drove record high atmospheric methane growth in 2020–2022, Proceedings of the National Academy of Sciences, 121, e2411212121, https://doi.org/10.1073/pnas.2411212121, 2024.
Milkov, A. V., Schwietzke, S., Allen, G., Sherwood, O. A., and Etiope, G.: Using global isotopic data to constrain the role of shale gas production in recent increases in atmospheric methane, Scientific Reports, 10, 4199, https://doi.org/10.1038/s41598-020-61035-w, 2020.
Montzka, S. A., Dlugokencky, E. J., and Butler, J. H.: Non-CO2 greenhouse gases and climate change, Nature, 476, 43–50, https://doi.org/10.1038/nature10322, 2011.
Moreira, M., Sternberg, L., Martinelli, L., Victoria, R., Barbosa, E., Bonates, L., and Nepstad, D.: Contribution of transpiration to forest ambient vapour based on isotopic measurements, Global Change Biology, 3, 439–450, https://doi.org/10.1046/j.1365-2486.1997.00082.x, 1997.
Nisbet, E. G., Manning, M. R., Lowry, D., Fisher, R. E., Lan, X., Michel, S. E., France, J. L., Nisbet, R. E. R., Bakkaloglu, S., Leitner, S. M., Brooke, C., Röckmann, T., Allen, G., Denier van der Gon, H. A. C., Merbold, L., Scheutz, C., Woolley Maisch, C., Nisbet-Jones, P. B. R., Alshalan, A., Fernandez, J. M., and Dlugokencky, E. J.: Practical paths towards quantifying and mitigating agricultural methane emissions, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 481, 20240390, https://doi.org/10.1098/rspa.2024.0390, 2025.
Omara, M., Sullivan, M. R., Li, X., Subramanian, R., Robinson, A. L., and Presto, A. A.: Methane emissions from conventional and unconventional natural gas production sites in the Marcellus Shale Basin, Environmental science & technology, 50, 2099–2107, https://doi.org/10.1021/acs.est.5b05503, 2016.
Pataki, D. E., Ehleringer, J. R., Flanagan, L. B., Yakir, D., Bowling, D. R., Still, C. J., Buchmann, N., Kaplan, J. O., and Berry, J. A.: The application and interpretation of Keeling plots in terrestrial carbon cycle research, Global Biogeochemical Cycles, 17, https://doi.org/10.1029/2001GB001850, 2003.
Peng, L., Ti, C., Yin, B., Dong, W., Li, M., Tao, L., and Yan, X.: Traceability of atmospheric ammonia in a suburban area of the Beijing-Tianjin-Hebei region, Science of The Total Environment, 907, 167935, https://doi.org/10.1016/j.scitotenv.2023.167935, 2024.
The People's Government of Sichuan Province: Energy Resources, https://www.sc.gov.cn/10462/10778/10876/2021/1/4/abbdfe3e4cb943d885236f623361caf7.shtml#:~:text=%E6%B2%B9%E6%B0%94%E8%B5%84%E6%BA%90%E4%BB%A5%E5%A4%A9%E7%84%B6%E6%B0%94,%E5%8C%BA%E3%80%81%E5%B7%9D%E4%B8%9C%E5%8C%97%E7%89%87%E5%8C%BA%E3%80%82 (last access: 12 June 2025), 2025.
Pereira, A. P. M. F., Rodrigues, L. A. d. C., Santos, E. A. d., Cardoso, T. A. d. O., and Cohen, S. C.: CBRN events management and the use of the Hysplit model: an integrative literature review, Saúde em Debate, 43, 925–938, https://doi.org/10.1590/0103-1104201912221, 2019.
Rella, C. W., Hoffnagle, J., He, Y., and Tajima, S.: Local- and regional-scale measurements of CH4, δ13CH4, and C2H6 in the Uintah Basin using a mobile stable isotope analyzer, Atmos. Meas. Tech., 8, 4539–4559, https://doi.org/10.5194/amt-8-4539-2015, 2015.
Rice, A. L., Butenhoff, C. L., Teama, D. G., Röger, F. H., Khalil, M. A. K., and Rasmussen, R. A.: Atmospheric methane isotopic record favors fossil sources flat in 1980s and 1990s with recent increase, Proceedings of the National Academy of Sciences, 113, 10791–10796, https://doi.org/10.1073/pnas.1522923113, 2016.
Saunois, M., Martinez, A., Poulter, B., Zhang, Z., Raymond, P. A., Regnier, P., Canadell, J. G., Jackson, R. B., Patra, P. K., Bousquet, P., Ciais, P., Dlugokencky, E. J., Lan, X., Allen, G. H., Bastviken, D., Beerling, D. J., Belikov, D. A., Blake, D. R., Castaldi, S., Crippa, M., Deemer, B. R., Dennison, F., Etiope, G., Gedney, N., Höglund-Isaksson, L., Holgerson, M. A., Hopcroft, P. O., Hugelius, G., Ito, A., Jain, A. K., Janardanan, R., Johnson, M. S., Kleinen, T., Krummel, P. B., Lauerwald, R., Li, T., Liu, X., McDonald, K. C., Melton, J. R., Mühle, J., Müller, J., Murguia-Flores, F., Niwa, Y., Noce, S., Pan, S., Parker, R. J., Peng, C., Ramonet, M., Riley, W. J., Rocher-Ros, G., Rosentreter, J. A., Sasakawa, M., Segers, A., Smith, S. J., Stanley, E. H., Thanwerdas, J., Tian, H., Tsuruta, A., Tubiello, F. N., Weber, T. S., van der Werf, G. R., Worthy, D. E. J., Xi, Y., Yoshida, Y., Zhang, W., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.: Global Methane Budget 2000–2020, Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, 2025.
Schoell, M.: The hydrogen and carbon isotopic composition of methane from natural gases of various origins, Geochimica et Cosmochimica Acta, 44, 649–661, https://doi.org/10.1016/0016-7037(80)90155-6, 1980.
Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiope, G., Dlugokencky, E. J., Michel, S. E., Arling, V. A., Vaughn, B. H., White, J. W. C., and Tans, P. P.: Upward revision of global fossil fuel methane emissions based on isotope database, Nature, 538, 88–91, https://doi.org/10.1038/nature19797, 2016.
Shan, W., Yin, Y., Lu, H., and Liang, S.: A meteorological analysis of ozone episodes using HYSPLIT model and surface data, Atmospheric Research, 93, 767–776, https://doi.org/10.1016/j.atmosres.2009.03.007, 2009.
Shaw, J. T., Shah, A., Yong, H., and Allen, G.: Methods for quantifying methane emissions using unmanned aerial vehicles: A review, Philosophical Transactions of the Royal Society A, 379, 20200450, https://doi.org/10.1098/rsta.2020.0450, 2021.
Sherwood Lollar, B., Westgate, T., Ward, J., Slater, G., and Lacrampe-Couloume, G.: Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs, Nature, 416, 522–524, https://doi.org/10.1038/416522a, 2002.
Sichuan Provincial Bureau of Statistics: National data, https://tjj.sc.gov.cn/scstjj/c111701/common_list.shtml (last access: 12 June 2025), 2025.
Skeie, R. B., Hodnebrog, Ø., and Myhre, G.: Trends in atmospheric methane concentrations since 1990 were driven and modified by anthropogenic emissions, Communications Earth & Environment, 4, 317, https://doi.org/10.1038/s43247-023-00969-1, 2023.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System, Bulletin of the American Meteorological Society, 96, 2059-2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Sun, S., Ma, L., and Li, Z.: A Source-Level Estimation and Uncertainty Analysis of Methane Emission in China's Oil and Natural Gas Sector, Energies, 15, 3684, https://doi.org/10.3390/en15103684, 2022.
Suzuki, Y.: Achieving food authenticity and traceability using an analytical method focusing on stable isotope analysis, Analytical Sciences, 37, 189–199, https://doi.org/10.2116/analsci.20SAR14, 2021.
Thom, M., Bösinger, R., Schmidt, M., and Levin, I.: The regional budget of atmospheric methane of a highly populated area, Chemosphere, 26, 143–160, https://doi.org/10.1016/0045-6535(93)90418-5, 1993.
Tian, H., Lu, C., Ciais, P., Michalak, A. M., Canadell, J. G., Saikawa, E., Huntzinger, D. N., Gurney, K. R., Sitch, S., Zhang, B., Yang, J., Bousquet, P., Bruhwiler, L., Chen, G., Dlugokencky, E., Friedlingstein, P., Melillo, J., Pan, S., Poulter, B., Prinn, R., Saunois, M., Schwalm, C. R., and Wofsy, S. C.: The terrestrial biosphere as a net source of greenhouse gases to the atmosphere, Nature, 531, 225–228, https://doi.org/10.1038/nature16946, 2016.
Tibrewal, K., Ciais, P., Saunois, M., Martinez, A., Lin, X., Thanwerdas, J., Deng, Z., Chevallier, F., Giron, C., and Albergel, C.: Assessment of methane emissions from oil, gas and coal sectors across inventories and atmospheric inversions, Communications Earth & Environment, 5, 26, https://doi.org/10.1038/s43247-023-01190-w, 2024.
Townsend-Small, A., Ferrara, T. W., Lyon, D. R., Fries, A. E., and Lamb, B. K.: Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States, Geophysical Research Letters, 43, 2283–2290, https://doi.org/10.1002/2015GL067623, 2016.
Tyler, S. C.: Stable carbon isotope ratios in atmospheric methane and some of its sources, Journal of Geophysical Research: Atmospheres, 91, 13232–13238, https://doi.org/10.1029/JD091iD12p13232, 1986.
US Environmental Protection Agency: Summary Report: Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990–2030: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100FE8H.PDF?Dockey=P100FE8H.PDF (last access: 12 June 2025), 2012.
Wang, Y., Chen, J., Pang, X., Zhang, B., Chen, Z., Zhang, G., Luo, G., and He, L.: Origin of deep sour natural gas in the Ordovician carbonate reservoir of the Tazhong Uplift, Tarim Basin, northwest China: Insights from gas geochemistry and formation water, Marine and Petroleum Geology, 91, 532–549, https://doi.org/10.1016/j.marpetgeo.2018.01.029, 2018.
Zazzeri, G., Lowry, D., Fisher, R. E., France, J. L., Lanoisellé, M., and Nisbet, E. G.: Plume mapping and isotopic characterisation of anthropogenic methane sources, Atmospheric Environment, 110, 151–162, https://doi.org/10.1016/j.atmosenv.2015.03.029, 2015.
Zhang, B., Chen, G. Q., Li, J. S., and Tao, L.: Methane emissions of energy activities in China 1980–2007, Renewable and Sustainable Energy Reviews, 29, 11–21, https://doi.org/10.1016/j.rser.2013.08.060, 2014.
Zhang, S. and Zhu, G.: Natural gas origins of large and medium-scale gas fields in China sedimentary basins, Science in China Series D: Earth Sciences, 51, 1–13, https://doi.org/10.1007/s11430-008-5013-1, 2008.
Zhang, S., He, K., Hu, G., Mi, J., Ma, Q., Liu, K., and Tang, Y.: Unique chemical and isotopic characteristics and origins of natural gases in the Paleozoic marine formations in the Sichuan Basin, SW China: Isotope fractionation of deep and high mature carbonate reservoir gases, Marine and Petroleum Geology, 89, 68–82, https://doi.org/10.1016/j.marpetgeo.2017.02.010, 2018.
Zhao, Y., Zheng, B., Saunois, M., Ciais, P., Hegglin, M. I., Lu, S., Li, Y., and Bousquet, P.: Air pollution modulates trends and variability of the global methane budget, Nature, 642, 369–375, https://doi.org/10.1038/s41586-025-09004-z, 2025.
Zhu, G., Wang, Z., Dai, J., and Su, J.: Natural gas constituent and carbon isotopic composition in petroliferous basins, China, Journal of Asian Earth Sciences, 80, 1–17, https://doi.org/10.1016/j.jseaes.2013.10.007, 2014.
Zou, Y.-R., Cai, Y., Zhang, C., Zhang, X., and Peng, P. A.: Variations of natural gas carbon isotope-type curves and their interpretation – A case study, Organic Geochemistry, 38, 1398–1415, https://doi.org/10.1016/j.orggeochem.2007.03.002, 2007.
Short summary
We carried out a field study across eleven industrial sites of oil and natural gas production/processing in Southwest China, investigating the methane leakage pattern based on ground and airborne monitoring/sampling techniques. Based on a novel isotope method to trace methane sources, we identified that the methane emission from the oil and gas sites makes the major contribution to changes in atmospheric methane isotope signals.
We carried out a field study across eleven industrial sites of oil and natural gas...
Special issue
Altmetrics
Final-revised paper
Preprint