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Abstract. Current evaluation of methane (CHy4) emissions to the atmosphere from global oil and gas (ONG)
sector is subject to considerable uncertainty. Particularly for China, few measurements have been conducted,
making it difficult to quantify emissions and conduct mitigation measures. Recently, the isotopic composition of
CHy, (8'3C) has been used for evaluating the contributions of fossil fuel sources to global budgets, providing a
more effective approach across both regional and global scales. Here, we present a field study of CH4 mixing
ratios and 8'3C based on UAV sampling and ground monitoring across 11 ONG sites located in southwestern
China. We found that the values of 8'3C-CHy provide a solid basis for identifying the CHy4 leakage and character-
izing source distributions at the ONG site-levels, despite that the meteorological and site conditions as well as the
surrounding environment could exert influence on the signal strengths. With the Keeling plot approach, we de-
termined that the mean §'3C source isotopic signatures of CHy emission from these ONG sites were —25.66 %o,
heavier than previously found for other sites globally. This also indicates that they were mainly thermogenic
sources. Finally, by incorporating the updated source isotopic signatures determined for China, we conducted a
back-of-envelope assessment to qualitatively infer the global CH4 emission from the fossil fuel sources. The re-
sult suggests an overestimation of global CH4 emission from the fossil fuel inventory by 2.86 Tg CH4 yr—!, and
an underestimation from the microbial sources. This study highlights the necessity of determining CH4 isotopes
on ONG site-levels, providing an indirect but important reference to quantifying CH4 inventories among global
industrial sectors.
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1 Introduction

Methane (CHy4) is a major greenhouse gas (GHG) in the at-
mosphere, with a global warming potential 82.5 times greater
than carbon dioxide (CO;) over a 20-year timeline, and
29.8 times greater over a 100-year period (Intergovernmental
Panel on Climate Change, 2021). The mixing ratios of CHy4
in the atmosphere has increased by 150 % since the indus-
trial revolution, primarily driven by human activities (Hmiel
et al., 2020; Tian et al., 2016; Skeie et al., 2023; Saunois et
al., 2025; Nisbet et al., 2025). However, for the past decades,
the major paradox of the CHy research community lie within
the nonlinear trend of CHy4 mixing ratios in the global at-
mosphere (Schwietzke et al., 2016; Montzka et al., 2011).
Debates have been raised regarding the contribution sources
of CHy (the drivers of the atmospheric CH4 growth) and
the high uncertainty of sector-wise CHy emission invento-
ries (Rice et al., 2016; Tibrewal et al., 2024; Saunois et al.,
2025; Nisbet et al., 2025; Michel et al., 2024; Zhao et al.,
2025). Therefore, the identification of CHy4 sources and the
quantification of their contributions are essential for solving
such puzzle.

The oil and natural gas (ONG) industry is one of the ma-
jor contributors to anthropogenic CH4 emissions accounting
for approximately 15 % of global emissions (Lauvaux et al.,
2022). China’s ONG industry emerges as potent CH4 emis-
sion sources, which are estimated to contribute 3216.61 Gg
in 2024 (International Energy Agency, 2024). However,
national-scale estimates remain highly variable and uncertain
(Zhang et al., 2014; Sun et al., 2022), largely due to limited
observation and poor estimation based on generalized emis-
sion factors. Further, the evaluation of CH4 emission from
ONG activities in China is complexed by other strong an-
thropogenic sources such as agricultural production (e.g., ru-
minants, rice paddies), wetlands, landfills, and wastewater
(Skeie et al., 2023).

Since conventional measurements of CH4 mixing ratios
cannot differentiate among various emission sources, recent
studies have applied stable isotope tools for source attribu-
tion, based on the distinct isotopic signatures (e.g., 8'3C-
CH4) of microbial and thermogenic CHy (Suzuki, 2021;
Peng et al., 2024; Leitner et al., 2020; Dlugokencky et al.,
2011). For example, by analyzing the atmospheric §'3C-CHy
data, Basu et al. (2022) found that microbial sources ac-
counted for 85 % of the growth in methane emissions be-
tween 2007 and 2016. Another isotope work indicates that
CH4 emissions from the fossil fuel sector remained largely
unchanged at the 1980s and 1990s levels, but increased sig-
nificantly between 2000 and 2009 (Rice et al., 2016). There-
fore, isotopic measurements from the atmosphere provide
important benchmarks for validating CH4 contributions from
particular sources, and could assist in evaluate CH4 emission
budgets (Michel et al., 2024; Kuhlmann et al., 2025).
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For ONG sources, global observations of CHy isotopic sig-
natures have not yet reached agreement, resulting in large de-
viations in estimating the source contributions and emission
trends (Schwietzke et al., 2016). While the isotope measure-
ment of the background atmosphere sheds light to the global
mean source signatures, local measurements of the ground
or the lower atmosphere could be more direct in reflect-
ing specific sources such as ONG production or processing.
One study has estimated CH4 emissions from the abandoned
ONG wells in the United States, indicating a major contri-
bution from the coalbed and natural gas sources (Townsend-
Small et al., 2016). Another research conducted the CHy iso-
topic measurements in the atmosphere over the ONG fields
in Romania, confirming the signature from the ONG sources
despite a large variation range for 8'°C (Menoud et al.,
2022). A recent study revealed that the isotopic character-
istics of CH4 enable differentiation of ONG sources by re-
gion and depth, reflecting both the spatial and vertical vari-
ability of fossil fuel extraction (Ars et al., 2024). Several re-
searchers used mobile monitoring in Kuwait and identified
distinct isotopic signatures from microbial, ONG, and vehic-
ular sources, finding that microbial emissions were the pre-
dominant contributor while ONG sources played a relatively
minor role (Al-Shalan et al., 2022).

Recent advancements in UAV technology have facilitated
novel approaches to monitor and quantify CH4 emissions,
particularly in industrial sites with limited access (Shaw et
al., 2021). UAV-based active AirCore systems enable high-
resolution sampling and quantification of CH4 emissions
from point sources such as mine ventilation shafts (Ander-
sen et al., 2023). Combined with inverse Gaussian and mass
balance approaches, this method allows effective upscaling
to regional emission estimates and has shown high accuracy
in the Upper Silesian Coal Basin (R? =0.7-0.9). So far, few
studies have deployed the UAV method for isotopic determi-
nation of methane from ONG site-level (Leitner et al., 2023),
and there is a knowledge gap of CH, isotopic measurement at
the site level considering various factors such as source types
(Zhang and Zhu, 2008; Schoell, 1980), processing (e.g., pu-
rification or production of light hydrocarbon), meteorologi-
cal condition, sampling method, size of the site and so on
(Liu et al., 2019).

Therefore, to address the CHy4 isotope signatures from
Chinese ONG plants and to examine the potential of UAV-
based sampling methods, we conducted a field sampling
campaign in Sichuan Province, SW China, covering 11 pro-
duction/processing sites. Vertical profiles (50-300 m) of the
air above ONG plants as well as the ground air had been
sampled for CHy isotopic analyses, in order to provide semi-
quantitative understanding of the emission source distribu-
tions and to reveal the isotope signatures from local Chinese
ONG production and processing activities.
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2 Method

2.1 Study sites

The study area is located in Sichuan Basin, Southwest China,
where about 19% of the country’s total natural gas re-
serves have been discovered (The People’s Government of
Sichuan Province, 2025). Until 2022, the region has about
77000km gas pipelines. Between 2013 and 2023, natural
gas production in this region increased from 21.31 x 10°
to 59.48 x 109 m3 (Sichuan Provincial Bureau of Statistics,
2025), with an average annual growth rate of about 11 %.
In 2020, ONG production in Sichuan accounted for 24 % of
China’s total ONG production.

We monitored CH4 mixing ratios and sampled air for iso-
tope measurements across 11 ONG processing or transporta-
tion stations in the central Sichuan Basin. The study region
is characterized by a humid subtropical climate, with con-
sistently warm and humid conditions throughout the year.
The areas of these stations vary from 2000 to 300 000 m?2,
while the production activities also vary, including natural
gas purification plants, gas gathering stations, light hydro-
carbon plants, pigging stations, pressurization stations, etc.
(Table 1). Most ONG sites are located in remote areas, where
the surrounding environment is farmland (paddy fields), bod-
ies of water, forests, and scattered residences, with no large-
scale cattle farms, pig manure sites, or landfill sites nearby.
In addition, during our observational campaign, no biomass
or coal burning was spotted in the surroundings. For the rea-
sons of privacy and confidentiality, the accurate locations and
contours of the ONG stations cannot be disclosed in this pa-
per.

2.2 Sampling methods

From 13 to 19 April 2023, we monitored and collected sam-
ples at 11 ONG production stations in the central Sichuan
Basin, obtaining a total of 74 air samples, including 28 from
ground and 46 from air overhead. Ground air samples were
collected at heights ranging from 0.5 to 2 m above the group.
Sampling locations were chosen in open areas of each sta-
tion, including areas near pipelines and production equip-
ment. The criteria for selecting the open-ground area in-
cludes: no significant elevation in CHs concentration com-
pared to the ambient background (Chen et al., 2024), as mea-
sured by a portable TDLAS methane analyzer; a minimum
distance of 20 m from any facility; and the absence of vis-
ible pipelines or valves. Sampling in the area of pipelines
and production equipment was performed at locations that
showed abnormal mixing ratios after ground monitoring;
sampling was performed in the central area if no apparent
CH4 emission was detected. For large sites (> 10000 mz),
multiple sampling points were established, while for small
sites (< 10000 m?), 1-2 sampling points were established in
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facility areas, and the sampling time for each sample was
about 45-50ss.

Air sampling was performed by an Unmanned Aerial Ve-
hicle (UAV) equipped with an automatic sampling pump
(Fig. 1). The UAV model was a DJI-T10 (upgraded ver-
sion), and the sampling pump model was KVP04-1.1-12V
(1.25Lmin~"). Taking into account the altitude ranges in
previous studies (Kim et al., 2025; Han et al., 2024; Chen
et al., 2024; Liu et al., 2021; Liu, 2018; Ali et al., 2017) and
the drone’s battery life, the monitoring altitudes were defined
at 50, 100, 200 and 300 m, respectively. Initially, a ground
sampling spot was identified, typically within the pipeline
vicinity of the plant. Subsequently, a UAV equipped with an
automatic sampling pump and air collection bags were lifted
to 300 m above the ground sampling site. The UAV then se-
quentially descended to altitudes of 200, 100, and 50 m, re-
spectively, dedicating 45 to 60 s at each elevation for collect-
ing air samples. This systematic approach ensures a compre-
hensive and stratified sampling strategy, facilitating the as-
sessment of atmospheric constituents at varying heights.

The volume of each air sample was approximately 1L,
stored in HOONPO Teflon gas bags (1 or 2L). Air was
sampled at varying altitudes from all sites except for S1,
which was sampled specifically at 50 and 100 m. Our sam-
pling was conducted in the daytime between 11:00 a.m. and
02:00 p.m.(UTC+8). Air sampling and UAV cruising were
synchronized. For comparison, we had sampled a production
well with significant emissions (built in the 1980s), which
was short of maintenance for long. This was meant for di-
rectly exploring source signals (2 samples from the leakage
point of the well, and one sample the open area of the site). In
addition, we sampled (2 from the riverbank, 2 from the park)
ambient air near an urban park and an urban river to analyze
the ambient CH4 mixing ratios and isotope values. The sam-
ple list and results are provided in Table S1 (Supplement).

The influence of meteorological conditions on the CHy
mixing ratios and isotopes at the ONG plants was also con-
sidered. Therefore, a portable meteorological station was de-
ployed at each station during the sampling periods. It was
equipped with a three-dimensional ultrasonic wind speed
and direction sensor (model: M307200), which recorded the
wind speed (horizontal and vertical) and direction (horizon-
tal and vertical) near the ground (3 to 10 m according to field
conditions). The sampling frequency was 32 Hz with a reso-
lution of 0.1 ms~! for wind speed and 0.1° for wind direc-
tion, and the precision of wind direction and speed is 2° and
0.2ms~!, respectively. We also obtained air pressure, solar
radiation, temperature, and relative humidity from weather
station.

2.3 Measurement methods

Gas samples were analyzed within one month after on-site
sampling. Picarro G2132-i was used to detect the isotope and
mixing ratio of CHy, which is based on Cavity Ring-Down

Atmos. Chem. Phys., 25, 11407-11422, 2025



11410

D. Chen et al.: Isotopic signatures of methane emission from oil and natural gas plants

Table 1. Background information of the studied production/processing sites for oil and natural gas.

Site Type Area Processing  Surrounding Activity
(m?) capacity  environment
10*m3da-1

(S1)  Purification plant 25000 445  Forests, farmland Natural gas processing, including
membrane separation, adsorption,

(52) 113000 3000  Forests, farmland, desulfurization, dehydration and other

ponds

processes

(S3) Gas gathering stations 9420 278  Forests, farmland Gas Collection and transportation

(S4) 4220 1000  Farmland, ponds

(85) 5096 115  Forests, reservoirs

(S7)  Light hydrocarbon 6650 10 Forests, farmland 3+ component of natural gas was

(S8) plant 25957 30 Forests recover.ed by low temperature
separation process

(89) Union Station 7958 2700 River ONG centralized treatment, sewage
treatment, product output

(S11)  Supercharging station 7740 24 Farmland, ponds Pressure and transmission

(S10)  Central well station 8679 90.3  Forests, farmland, Gas Collection and transportation

ponds
(S6) Pigging station 5167 630 River

Timerl

Timer4

Pumpl Timer2
Pump2
Ci'rcuit board Bag2 '
(Tied to the UAV

with a rope)

‘ Pump3 H Timer3 ‘

Figure 1. Site demonstration of the UAV automatic sampling system and the schematic diagram of the sampling device.
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Spectroscopy (CRDS). This system (in similar models) has
been previously used by other studies of in situ CHy source
characterization (Rella et al., 2015; Geum et al., 2024). For
each sample measurement, the total analysis time is over
180 s through the Picarro G2132-i instrument, and the av-
erage of the last 120 s of CHy isotope and mixing ratio data
was integrated and exported for raw sample data. We used
two international primary standards (VPDB-referenced; Std1
and Std2, —68.6 %0 and —40.0 %o, respectively) and one sec-
ondary standard (Hstd, —46.89 %o), all of which had been
cross-calibrated (more details could be found in the Supple-
ment, Sect. 3). During each measurement sequence (Supple-
ment, Fig. S1), all three standards were measured together
with the samples (five samples per sequence). Std1 was used
for calibration and for correcting sequence-related drift, Std2
served as a quality control check, and Hstd was used to
constrain long-term drift. All measurements were completed
within one week after sampling. In addition, repeated mea-
surements of the same isotope standard (Stdl) over a year
have demonstrated the excellent stability of the instrument
(Supplement, Fig. S2). The §'3C detection precision (1o, 1 h
window) of the instrument is as follows: when the mixing
ratio of CHy is greater than 1.8 ppm, the precision of 5 min
mean value is better than 0.8 %o, when the mixing ratio of
CH4 exceeds 10 ppm, the precision is better than 0.4 %o.

2.4 Calculation of source isotopic signatures

Based on the sample detection data, the Keeling plot method
was used to determine the CH4 source (Keeling, 1958; Pataki
et al., 2003) for each field station, the source isotopic signa-
tures were obtained using a linear regression method based
on the least squares approach (France et al., 2016; Akritas
and Bershady, 1996). As shown in Eq. (1):

8(a) = [CHagv) | x (8m) — 8s)) x (1/[CHa@)]) + 8¢s) (D

Where 8(a), (1), and &s) represent the §'3C values of the sam-
ple, the background air and the average source, respectively.
[CH4(a)] and [CHy] represent the CH4 mole fractions of
the sample and the background air, respectively. The inter-
cept (8(s)) of the fit line is the isotope value of the CHy4 source
present in the mixed sample. In linear regression, 1/[CHgaa)]
and d(,) represent independent (x-axis) and dependent (y-
axis) variables, respectively. This method is suitable for car-
bon dioxide, methane (Thom et al., 1993), water vapor (Mor-
eira et al., 1997), and other gases, but each gas has its specific
considerations (Pataki et al., 2003). The gas samples from
each station were collected within 30 min, during which the
atmospheric background values (isotope and mole fraction of
CHy) did not change, fulfilling the application conditions of
this method (Lu et al., 2021).
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2.5 HYSPLIT model

The Hybrid Single-Particle Lagrange Integrated Trajectory
(HYSPLIT) model developed by the National Oceanic and
Atmospheric Administration (NOAA) Air Resources Labo-
ratory, is a widely used public platform for different atmo-
spheric scales and supports online modules (Pereira et al.,
2019). The model has been used to calculate the air mass
transfer trajectories at different altitudes (Shan et al., 2009;
McGowan and Clark, 2008; Stein et al., 2015). In the air
above ONG plants, ground-based metrological station cannot
capture the dynamics of wind directions and speeds. Thus,
we deployed the HY SPLIT model to analyze the influence of
meteorological conditions on CH4 mixing ratios and isotopes
particularly for the UAV-based sampling and measurements.
The time resolution of the model could reach 1h and the
height resolution was 1 m. In this study, 24 h backward tra-
jectories were calculated at each site for five altitudes: ground
level, 50, 100, 200, and 300 m. The input data included the
longitude and latitude of the site from field measurements
and sampling time, while the output information were wind
direction and speed at different heights. Additionally, we
evaluated the stability indexes based on the HY SPLIT model
outputs. It shows that the Pasquill stability classes during
UAV sampling were mostly C in our sampling campaigns
(Slightly unstable conditions).

2.6 Source partitioning with end-member mixing method

End-member mixing method is a common method for iden-
tifying major sources and quantifying contributions of mul-
tiple sources (Bugaets et al., 2023; Barthold et al., 2011).
The end-member mixing model is conducted with the mass
balance of air mixing as well as composition of the trac-
ers, based the following assumptions: (1) the ambient atmo-
spheric constituents are constant, (2) the tracer is conserva-
tive, (3) and the source mixing ratios differ from the back-
ground. Here, we used CH4 mixing ratios and isotopes as
tracers to investigate the contribution of atmospheric back-
ground, open surface area, and facility area to the sampled
air above various ONG plants.

2.7 Statistics

Data analysis and graphing were performed using Origin
2024 software for Windows. Linear fitting was based on the
principle of the least square method, indicating the 0.95 con-
fidence intervals. A value of P < 0.05 was considered sig-
nificant for statistical analysis, and the fitting results are ex-
pressed as fitting mean and standard deviation. Maximum,
minimum, mean, median, outliers, and 25 %-75 % range val-
ues were also analyzed and reported in the figures or tables.

Atmos. Chem. Phys., 25, 11407-11422, 2025
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3 Results

3.1 Variations of CH4 mixing ratios and isotopes across
ONG plants

The CH4; mixing ratios and 8'3C-CHy values from the
studied 11 ONG sites ranged from 1.88 to 3.66 ppm and
from —48.14 %o to —30.41 %o, respectively (Supplement, Ta-
ble S1). The maximum and minimum values of CHy iso-
topes were observed at sites S2 and S6 (100 m), respectively.
The variation of the CH4 mixing ratios and isotopic val-
ues at stations S2, S4, and S7 is significantly greater than
that observed at other stations (Fig. 2). The results of direct
emissions from the production well were —16.19 £ 5.53 %o
and 118.98 +0.52 ppm, respectively. By comparison, the
CHy isotope and mixing ratio of the urban samples were
—46.20 £ 0.47 %o and 2.04 = 0.07 ppm, respectively.

More specifically, in the near-ground air, we found higher
CH4 mixing ratios and isotopic values in areas close to pro-
duction equipment than those in the open areas (Fig. 2),
although the mixing ratios and isotopic values at S6 and
S9 were very similar to the atmospheric background. Over-
all, the CHy isotopic values observed from the ground air
at the field stations ranged from —47.68 %o to —16.19 %o
(—41.9947.10 %0 on average), while the isotopic values from
the air over plants were more constrained in a small range of
—48.14 %0 to —44.11 %e.

3.2 Vertical profiles of CH4 mixing ratios and isotopes
and source partitioning

The vertical distribution of the CH4 mixing ratios and iso-
topes differed from site to site. For instance, the mean CHy
mixing ratios were higher at 100 m or above than at 50 m,
yet the isotopic values (813C) were somewhat lower (Fig. 3).
From the perspective of each ONG site, the patterns were
similar yet more complex (Supplement, Fig. S3). Some sta-
tions exhibited consistent trends (S1, S3, S6, S7, S9, S11),
while others displayed different trends (S2, S4, S5, S8, S10).
For instance, the CH4 mixing ratio and isotopic values at
100 and 200 m altitude of station S8 were inversely propor-
tional. As the altitude increased from the ground to 300 m,
the CH4 isotopic values of stations S4 and S1 exhibited a
decline, ranging from —45.47 %o to —47.00 %o (ground to
300 m) and from —42.17 %o to —47.12 %o (ground to 100 m),
respectively (Supplement, Fig. S3). The CHy isotopic val-
ues of stations S6 initially decreased with increasing altitude
and subsequently increased, reaching a minimum at 100 m
altitude (—48.14 %o). The variation of the CHy isotope ver-
tical profile at station S8 was analogous to that observed at
sites S6, with the exception that the CHy4 isotopic minimum
value reached —45.95 %o at 200 m altitude. The variation of
CHy4 isotopic values with altitude at station S9 was complex,
exhibiting a decrease followed by an increase, which then
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decreased again, reaching minimum and maximum values at
50m (—47.60 %o) and 200 m (—44.11 %o), respectively.

3.3 Source partitioning for CH4 emission from the ONG
plants

The end-member mixing method is a commonly employed
technique for calculating isotope mixing by various sources
of GHGs (Bugaets et al., 2023). In this study, we determined
the contribution fractions of CHy from the atmospheric back-
ground, surface, and facility areas to the air over the sites
(more details could be found in Supplement: Sect. 1 and Ta-
ble S4). The results indicate that atmospheric background is
the predominant source of methane, with larger contribution
compared with those determined for ground and facility area
(Fig. 4). Nevertheless, at altitudes of 100 m, the ground and
facility-derived contributions became slightly more impor-
tant, indicating that these two altitudes may be more repre-
sentative of the whole-plant emission signals. In particular,
at higher altitudes, the signal of CH4 emissions from ONG
plants below may be dampened by mixing of background air
or even biological sources in the vicinity of the sites. Despite
so, we didn’t find any strong emission signals from surround-
ing environment outside the regions of the ONG plants (no
apparent elevation of CHs mixing ratios along the vertical
profile in the atmosphere).

3.4 Characteristics of source isotopes

The Keeling plot method was employed to determine the
isotopic signatures (8 13Cy of CH4 sources at each station,
as presented in Fig. 5. The range of the CH4 source iso-
topic signatures varied from —52.71 +6.06 %o to —11.88 &+
2.32 %o (mean value of —25.66 %o), indicating that they were
mainly thermogenic sources (associated with oil production)
(Menoud et al., 2022; Sherwood Lollar et al., 2002). Glob-
ally, the range of CH4 isotopic values from fossil fuels is
—75 %o to —25 %o (Defratyka et al., 2021). Our results mostly
align with this large range, but were at the higher end.

The source isotopic signature for station S5 was —52.71+
6.06 %o, which was lower than the atmospheric background
value. However, the data fitting for this station was poor, indi-
cating large uncertainty (R = 0.08). On the other hand, the
direct measurements of emission from wells indicated that
source 13C signature was —19.42 +2.19 %o, which is close
to the result of the ground-air sample collected at the site
(=16.19 £ 5.53 %0) (Supplement, Table S1). We conducted
continuous monitoring of the natural gas production wells
where elevated methane mixing ratios were consistently ob-
served. Given that the sampling was carried out in close
proximity to the leakage sources (wells) surrounded by high
safety walls, we believe that the derived isotopic signatures
could represent the emission source from ONG plants rather
than being affected by the surrounding environment.
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4 Discussion
4.1 CH4 emission signals as revealed by the isotopic
measurements from both ground and atmosphere

During our sampling campaign, the mean §'3C-CHy at most
ONG plants was higher than the atmospheric background
(—47.0£0.3%0) (Tyler, 1986), although several sites (S1,
S3, and S5) had values close to the atmospheric background.
In the meanwhile, the average values of CH4 mixing ratios
were significantly higher than the atmospheric background
(1.9 ppm) at all sites (Skeie et al., 2023). This supports ap-
parent CHy leakage from most sites during our study. Fur-
ther, as referred to the Keeling plot approach, the correlation
between CH4 mixing ratios and isotopes at the ONG sites
was significant (R2=0.91) (Fig. 5). Besides, the ground
exhibited an even stronger correlation (R? =0.95) than the
air (R? =0.31) (Supplement, Fig. S4). These findings indi-
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cated that the CH4 sources at these ONG plants were gen-
erally consistent, reflecting single-source contribution. The
813C source isotopic signatures from each site may vary, but
the major range was consistent with the fossil-fuel sources
(Defratyka et al., 2021). In addition, an investigation of the
potential sources of CHy in the vicinity of the ONG sites re-
vealed that the primary source of CHy at the station was from
ONG, with other sources exerting less impact (Table 1).
Further, the variations of 513C-CH4 across sites may re-
flect the influence from sources and local facilities. As shown
in Fig. 5, the source isotopic signatures determined with the
Keeling plot method were distinctively higher in the purifica-
tion and production sites (S1-S2 and S7-S8) than in the gas
gathering and transport lines (S3-S6) (Fig. 5). Studies have
indicated that infrastructure, including components such as
dehydrators, valves, compressors, and pipelines, represents a
significant source of CH4 emissions from the ONG system.

Atmos. Chem. Phys., 25, 11407-11422, 2025



11414

D. Chen et al.: Isotopic signatures of methane emission from oil and natural gas plants

100 100
J1(a) [ Imean 71(b) N [_]50m
- mean - m
T +1SD 100
_ 80 80 om
B . < =
s ] s 7 1
52’ 60 - c‘é’ 60 — o
g ] 8 I L
2 40 4 B 40
| . =) . A
=] - = -
o - o -
O ] O ]
20 20
0 0 -
[ A d
ouiN TN
- packe nd ity AXCR o and iy AXCY
Nmowbeﬂc GO pacity A spnen® GO0 pachity

Figure 4. The fractional contributions from ambient background, surface, and facility areas contribute to the air sampling above ONG plants.
(a) the proportion of contributions to all heights of all stations with 1 SD; (b) the proportion of contributions to different heights with standard

€ITOor.

Infrastructure is particularly vulnerable to CH, leakage due
to corrosion and wear (Anifowose et al., 2014; Fernandez
et al., 2005; Burnham et al., 2012; Anifowose and Odubela,
2015).

On the other hand, sampling locations appear to influ-
ence the observational results, particularly when comparing
measurements near ground with those made in the air above
(Figs. 2 and 3). We discovered that a majority of the ONG
production stations exhibited both higher §'>C and CH, mix-
ing ratios in the ground measurement than in the air at 50—
200 m aboveground (Fig. 3). This suggests that ground-based
measurements are likely to exert more significant source sig-
nals when CHy leakage occurs nearby. However, this may
only apply to small ONG sites. Alternatively, measurements
of air above the plants could provide information on the site-
level emission, of which 100m (on average) seems to per-
form best in representing emission signals as confirmed by
the end-member analyses (Fig. 4) according to the local set-
tings. By contrast, the mixing ratios and 8'3C of CHy at S6
were lower in the near-ground air than in the air overhead.
This discrepancy may be attributed to the uncertainty asso-
ciated with the small plant size (5167 m? with a processing
capacity of 630 x 10*m?d~") and thus large impact from
surrounding environment sources of CHy in the air. There-
fore, the surrounding emission sources, together with the
meteorological conditions, are likely to exert an impact on
the UAV-based measurements considering local conditions
of the ONG plants.

4.2 Factors of drone-based isotope measurements in
the atmosphere

As shown in Figs. 2, 3 and 4, a wide range was found for
the CH4 mixing ratios and isotopic values determined at the
studied ONG plants, with particular variabilities observed at
varying altitudes above ground. This could be attributed to
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a number of factors, including the presence of other CHy
sources in the vicinity and the influence of meteorological
conditions (Kavitha and Nair, 2016). Around all ONG sites,
the dominant land-use types are rural roads and scattered
paddy fields, through which small ditches or streams flow.
No livestock farm or landfill was observed in these areas, and
no biomass burning was observed during our sampling pe-
riod (April), which aligns with the legal prohibition of such
activities in China. Taking this evidence into consideration,
we can rule out the possibility of significant contributions
from biological sources from the surrounding environment.
The dampened signals of both CH4 mixing ratios and iso-
topes in the air-borne measurements may be partly due to
convection with air carrying biological sources outside the
range of the ONG plants, but the overall strength is small as
confirmed with the Keeling plots (Fig. 5). Further, at station
S6 where the 200-300 m-measurement exhibited high CHy
levels, we also found higher 8'3C, which does not support
the importance of biological sources which is usually char-
acterized with lower §'3C (Fisher et al., 2011, 2017).
Importantly, our UAV sampling points were mostly lo-
cated near the center or at least away from the edges of the
ONG sites, which are significantly larger in area compared
to the scattered paddy fields nearby. The Pasquill stability
class during the sampling indicated slightly unstable atmo-
spheric conditions, suggesting predominant vertical mixing
over horizontal transport. This enhances the reliability of iso-
topic measurements in reflecting methane emissions from the
station itself, with the ONG site being the primary source
influencing the isotopic signatures. Furthermore, in a paral-
lel study conducted by our team in the same region (Chen
et al., 2024), several ambient air samples were collected for
813C-CHy analysis near paddy fields (1.5m above the sur-
face, 1020 m from field boundaries). The isotopic values
(8"3C-CH4 = —47.2 4 0.2 %0; unpublished data) were quite

https://doi.org/10.5194/acp-25-11407-2025
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close to the global background, indicating minimal influence
from the paddy fields. This could be attributed to the rela-
tively low methane emissions during the sampling period, as
April is typically dry in the Sichuan region.

The influence of meteorological conditions is significant
and complex, and challenging to analyze. Wind direction and
speed in the air above plants were obtained using the HY'S-
PLIT model (Supplement, Table S3), and the results for near-
ground air were cross-validated with those obtained from the
meteorological station (Supplement, Fig. S5). The correla-
tion analysis between wind speed and CHy isotope results
revealed an exponential relationship with a R? value of 0.33
(Supplement, Fig. S6). This indicates that as wind speed in-
creases, the impact of CHy diffusion and dilution becomes
more significant. Wind direction plays a role in the uncer-
tainty of CHy distribution, as it has a significant influence on
CHy transport near the surface, resulting in a non-uniform
distribution of CH4 and typically higher mixing ratios down-
wind from the emission source. Furthermore, upwind CHy4
sources can have a notable impact on CHy levels over the
station. The utilization of HYSPLIT model serves a crucial
function in this regard (Supplement, Fig. S7 for a detailed
example of S7 site).

Moreover, the local conditions of the ONG plants are
among the primary determining factors of the air-borne mea-
surements, encompassing factors such as the size of the sites,
the treatment processes employed, the processing capacity,
and the timing and location of sampling. Typically, a larger
site size is likely to produce greater signals of CHy in the
atmosphere above head and to be less affected by other bi-
ological sources from surrounding environment (Omara et
al., 2016). A clear positive correlation was observed be-
tween the site area and the isotope results for site areas
below 10000 m? (Supplement, Fig. S8). This is interesting
and probably also reasonable, as extra-large industrial sites
may encompass more complexed influence from both me-
teorological conditions and ground source distributions. Be-
sides, the intermittent nature of emissions from the site fa-
cilities introduces an element of uncertainty with regard to
the sampling time and locations (Omara et al., 2016). Over-
all, by conducting a simple Principal Component Analysis
(PCA), we identified a weak relationship among wind direc-
tion, wind speed and isotopes, and a strong correlation be-
tween the size and capacity of the sites with CHy isotopes
(Supplement, Fig. S9). This means that, during our sampling
campaign, ONG plant-related factors are the major players
in determining the measured CHy4 isotope results.

4.3 Global source isotopic signatures of ONG-derived
CHgy

While no studies have specifically focused on the isotopic
characteristics of CHy leakage from ONG plants in the
Sichuan region of China, several studies have investigated
the characteristics of CHy isotopes in Chinese ONG produc-
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tion regions, across the Sichuan Basin, Xinjiang, Northeast-
ern China, and the Ordos Basin (Cai et al., 2013; Huang et al.,
2017; Wang et al., 2018; Zhang et al., 2018; Zou et al., 2007,
Zhu et al., 2014; Liu et al., 2019; Dai et al., 1985, 1992). The
reported values of CHy isotopes cover a wide range from
—54.9 %0 to —17.4 %o (Supplement, Table S2). The differ-
ence in '3C-CHy reflects the origin of natural gas such as bio-
genic and abiogenic gases (Sherwood Lollar et al., 2002; Dai
et al., 2005), of which biogenic gases include coal- and oil-
type gases, respectively. The Sichuan Basin in our study has
a complex geological environment and many gas-production
layers, such as Cambrian, Ordovician, Carboniferous, Juras-
sic and so on (Zhang et al., 2018; Cai et al., 2013); also,
CHy from different geological layers can have variable iso-
topic characteristics. In comparison with the findings of other
researchers on CHy isotopes in the Sichuan Basin (Supple-
ment, Table S2), our results of 13C-CH4 isotope signatures
spanned more widely and appeared to be generally heavier
(Fig. 5).

Among the global observations, Menoud et al. (2022) ex-
amined isotopic signatures of CHy from an ONG extrac-
tion plant in Romania. Their methodology aligns closely
with ours, and their findings indicate a range of 8'3C val-
ues from —67.8 &= 1.2 %o to —22.4 4= 0.04 %0 (Menoud et al.,
2022). In Kuwait, methane from the southern Burgan field
had a 513C-CH4 of —48.9£0.2%o, and the signals were
slighter lower by measuring downwind of coastal refineries
(—=51.6 £ 0.5 %0) (Al-Shalan et al., 2022). A study on CHy
isotopes in the Western Canadian Sedimentary Basin showed
that the §!13C signatures of CH4 from ONG sources ranged
between —71 %o and —29.3 %o, and the isotopic composi-
tion was primarily controlled by geological structure rather
than the type of hydrocarbon (e.g., ONG sources) (Ars et al.,
2024). In an Arctic study, Fisher et al. (Fisher et al., 2011)
found that CH4 in the Arctic atmosphere during summer is
mainly of microbial origin, whereas in spring and winter,
the dominant source is likely CHs emissions from natural
gas fields, with a source §'3C-CH4 signature of —52.6 +
6.4 %o. In the UK, 5]3C—CH4 signatures from ONG sources
were well constrained, showing consistent values of approx-
imately —36 =+ 2 %o, reflecting homogenized North Sea gas
(Zazzeri et al., 2015). Compared with those previous work
on ONG-related CH4 sources, our results overlap with the
wide ranges as reported; the overall mean values are heavier
and well above the global mean of fossil fuel CHy isotope
(—44.0 £ 0.7 %0) (Michel et al., 2024). This discrepancy can
be attributed to a number of factors, including thermogenic
origin, geographical differences (Menoud et al., 2022), the
treatment processing of natural gas, and likely uncertainty
due to limited sample size.

The methane isotopic signatures observed in this study
were compared with those reported from major ONG pro-
duction regions worldwide (Fig. 6). The 8'3C of CH4 was
found to be lighter in the United States and Canada, but
heavier in China. Regional variations in §'3C values were
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observed, even within the same region (e.g. in China). Our
results exhibited a significantly heavier §'3C than those of
other studies. This is most likely to be attributed to differ-
ences in the origin of CHy (Zhang and Zhu, 2008; Wang et
al., 2018; Defratyka et al., 2021; Schoell, 1980), as we have
excluded the possibility of strong influence from biological
sources or biomass burning in the surrounding environment
as discussed above.

The §'3C of CH4 represents a valuable indicator for con-
straining and estimating CH4 emissions particularly from an-
thropogenic sources of the globe (Milkov et al., 2020). As a
sum-up, the mean §'3C signatures of CHy4 sources as indi-
cated from measurements of atmospheric background inte-
grated the collective contributions from various sources of
CH4. Hence, with the updated isotopic signatures for spe-
cific sources such as ONG industry, the previous conclusions
on global contribution/flux of CH4 from ONG industry may
need to be revised (Schwietzke et al., 2016). In comparison
with previous studies, the §'3C values from ONG industry
in our work (—25.66 %o, mean values of the 11 stations) are
higher, especially different from the global flux-weighted av-
eraged by Schwietzke et al. (Schwietzke et al., 2016). By
incorporation of flux contribution from Chinese ONG indus-
try, isotope signatures as well as global datasets utilized in
the previous work (Schwietzke et al., 2016), we conducted
a sensitivity analysis, examining the effect on diverse source
contributions (in flux) when updated the 813C-CHj4 from Chi-
nese ONG industry (Supplement, Sect. 2).

Our finding suggests that, the updated '3C isotope signa-
ture based on field observation from China would elevate
global fossil fuel-derived CH4 isotopes signature by about
0.46 %o; as a consequence, the new result would lead to a
smaller contribution from global ONG industry (corresponds
to an overestimation of emissions by 2.86 Tg CH4 yr™!) but
a larger contribution from microbial sources. This finding is

https://doi.org/10.5194/acp-25-11407-2025
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consistent with some recent research findings, such as Chan-
dra et al. (2024), who reported that CH4 emissions decreased
in fossil fuel sources, while increasing in microbial sources
during 1990-2020. In Australia, CH4 emissions from agri-
cultural ponds, which are microbial in origin, have been un-
derestimated in national greenhouse gas inventories, indicat-
ing that actual CH4 emissions may be higher than officially
reported (Malerba et al., 2022).

4.4 Feasibility and limitations

Atmosphere CHy isotopic research has shown its power in
distinguishing between microbial and fossil sources of global
atmospheric CHy trends (Basu et al., 2022; Bruhwiler et al.,
2017). However, due to scarcity of observational evidence of
various CHy source signatures, large uncertainties still exist
for such estimations. The objective of our research was to
distinguish sources of CHy as well as to indicate CH4 leak-
age strength at site-level, providing basic but convincing in-
formation for constraining CH,4 leakage. With both ground-
and air-based approaches, our study has demonstrated the
feasibility of our sampling method and research design in
studying the characteristics of CH4 sources and their in-
fluencing factors at ONG stations in SW China. Neverthe-
less, it is necessary to point out, that the impact of meteo-
rological conditions and site conditions on the dampening/-
masking of CHy isotope signatures in the atmosphere cannot
be neglected, particularly considering the limited sampling
sizes during our campaign. Therefore, the reconciliation be-
tween ground-based and atmospheric measurements as well
as source partitioning remain to be further validated, given
more sampling coverage both spatially and temporally. In ad-
dition, more sampling at different locations or different ONG
plants would be greatly beneficial to better confirm the CHy
source isotope signature from fossil fuel industry in China.

Recently, the debates on the global atmospheric trends of
CHy4 levels and the driving sources are continuing (Saunois et
al., 2025; Kirschke et al., 2013; Rice et al., 2016; Tibrewal et
al., 2024). Overall, the decline of global mean CH4 isotopic
signals seems to slightly speed up in recent years, likely sup-
porting the importance of microbial emissions (Fisher et al.,
2017). The atmospheric chemists have recently clarified the
important link of air pollutants with atmospheric CH4 sink
strengths, further complicating the story. For the ONG in-
dustry, previous studies have reported improvements in tech-
nology, equipment, and management practices which will
assist in reducing CHy leakage (US Environmental Protec-
tion Agency, 2012). Therefore, the contribution from ONG
sources to the global CH4 budget is likely to decline. With
more field observation and more up-to-date database being
established, we would be able to pursue a more realistic eval-
uation of ONG-contributed CH4 emission inventory, provid-
ing guidance on further mitigation measures.
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5 Summary

In this study, we examined the §'3C isotopic characteristics
of air samples collected from ONG stations in the central
Sichuan Basin, China. The CH4 isotopes were measured near
the ground and in the air along a vertical profiles of alti-
tudes. By comparing isotopic results across sites and among
sampling locations, we found that source distributions by in-
dustrial facilities as well as processing capacity/site sizes act
as the major driving factors of CH4 mixing ratios and iso-
topic signals, while the influence from meteorological con-
ditions and other sources from the surrounding environment
may exert less impact. Based on the Keeling plot method, we
determined that the source §'3C signature of CHy4 from the
ONG sites ranged was —25.66 %o, indicating a heavy §'3C
of fossil fuel. In comparison with the CHy4 isotopic values
from the global ONG sources, our study reported generally
heavier isotopic signatures. By updating the isotope signa-
tures of Chinese ONG with our observation, we conducted a
weighted calculation of flux and isotope for the global CHy
budget, suggesting that the global CH4 emissions from mi-
crobial sources may be underestimated, while those from
fossil fuel sources may be overestimated. Overall, our study
confirms the effectiveness of isotope method in distinguish-
ing industrial CHy sources and sheds light to the global es-
timation of CHy4 budgets utilizing the isotope geochemistry
approach.
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