Articles | Volume 24, issue 15
https://doi.org/10.5194/acp-24-8797-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-8797-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Trends in observed surface solar radiation and their causes in Brazil in the first 2 decades of the 21st century
Lucas Ferreira Correa
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Sciences, ETH Zurich, Zurich, Switzerland
Doris Folini
Institute for Atmospheric and Climate Sciences, ETH Zurich, Zurich, Switzerland
Boriana Chtirkova
Institute for Atmospheric and Climate Sciences, ETH Zurich, Zurich, Switzerland
Martin Wild
Institute for Atmospheric and Climate Sciences, ETH Zurich, Zurich, Switzerland
Related authors
No articles found.
Qinghai Qi, Yuting Tan, Christian A Gueymard, Martin Wild, Bo Hu, Wenmin Qin, Taowen Sun, Ming Zhang, and Lunche Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-368, https://doi.org/10.5194/essd-2025-368, 2025
Preprint under review for ESSD
Short summary
Short summary
This research presents China's first long-term (1981–2023) hyperspectral ultraviolet radiation dataset with exceptional 0.5 nm spectral resolution. The spectral detail enables precise identification of UV absorption characteristics and atmospheric interactions previously obscured in conventional broadband measurements. These results provide new capabilities for monitoring ozone depletion, and optimizing solar energy systems across China's diverse climatic regions.
Junli Yang, Weijun Quan, Li Zhang, Jianglin Hu, Qiying Chen, and Martin Wild
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-74, https://doi.org/10.5194/gmd-2024-74, 2024
Revised manuscript not accepted
Short summary
Short summary
Due to the difficulties involved in the measurements of the Downward long-wave irradiance (DnLWI), the numerical weather prediction (NWP) models have been developed to obtain the DnLWI indirectly. In this study, a long-term high time-resolution (1 min) observational dataset of the DnLWI in China was used to evaluate the radiation scheme in the CMA-MESO model over various underlying surfaces and climate zones.
Weijun Quan, Zhenfa Wang, Lin Qiao, Xiangdong Zheng, Junli Jin, Yinruo Li, Xiaomei Yin, Zhiqiang Ma, and Martin Wild
Earth Syst. Sci. Data, 16, 961–983, https://doi.org/10.5194/essd-16-961-2024, https://doi.org/10.5194/essd-16-961-2024, 2024
Short summary
Short summary
Radiation components play important roles in various fields such as the Earth’s surface radiation budget, ecosystem productivity, and human health. In this study, a dataset consisting of quality-assured daily data of nine radiation components is presented based on the in situ measurements at the Shangdianzi regional GAW station in China during 2013–2022. The dataset can be applied in the validation of satellite products and numerical models and investigation of atmospheric radiation.
Boyang Jiao, Yucheng Su, Qingxiang Li, Veronica Manara, and Martin Wild
Earth Syst. Sci. Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023, https://doi.org/10.5194/essd-15-4519-2023, 2023
Short summary
Short summary
This paper develops an observational integrated and homogenized global-terrestrial (except for Antarctica) SSRIH station. This is interpolated into a 5° × 5° SSRIH grid and reconstructed into a long-term (1955–2018) global land (except for Antarctica) 5° × 2.5° SSR anomaly dataset (SSRIH20CR) by an improved partial convolutional neural network deep-learning method. SSRIH20CR yields trends of −1.276 W m−2 per decade over the dimming period and 0.697 W m−2 per decade over the brightening period.
Qiuyan Wang, Hua Zhang, Su Yang, Qi Chen, Xixun Zhou, Bing Xie, Yuying Wang, Guangyu Shi, and Martin Wild
Atmos. Chem. Phys., 22, 15867–15886, https://doi.org/10.5194/acp-22-15867-2022, https://doi.org/10.5194/acp-22-15867-2022, 2022
Short summary
Short summary
The present-day land energy balance over East Asia is estimated for the first time. Results indicate that high aerosol loadings, clouds, and the Tibet Plateau (TP) over East Asia play vital roles in the shortwave budgets, while the TP is responsible for the longwave budgets during this regional energy budget assessment. This study provides a perspective to understand fully how the potential factors influence the diversifying regional energy budget assessments.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Jan Wohland, Doris Folini, and Bryn Pickering
Earth Syst. Dynam., 12, 1239–1251, https://doi.org/10.5194/esd-12-1239-2021, https://doi.org/10.5194/esd-12-1239-2021, 2021
Short summary
Short summary
Surface winds fluctuate. From around 1980 to 2010, surface onshore winds generally became weaker, and they have gained in strength since then. While these fluctuations are well known, we currently do not fully understand why they happen. To investigate the reasons, we use a large set of climate simulations with one model, a so-called large ensemble. We find that the observed long-term wind fluctuations occur naturally under current and future conditions and do not require a specific trigger.
Xinyuan Hou, Martin Wild, Doris Folini, Stelios Kazadzis, and Jan Wohland
Earth Syst. Dynam., 12, 1099–1113, https://doi.org/10.5194/esd-12-1099-2021, https://doi.org/10.5194/esd-12-1099-2021, 2021
Short summary
Short summary
Solar photovoltaics (PV) matters for the carbon neutrality goal. We use climate scenarios to quantify climate risk for PV in Europe and find higher PV potential. The seasonal cycle of PV generation changes in most places. We find an increase in the spatial correlations of daily PV production, implying that PV power balancing through redistribution will be more difficult in the future. Thus, changes in the spatiotemporal structure of PV generation should be included in power system design.
Marcia Akemi Yamasoe, Nilton Manuel Évora Rosário, Samantha Novaes Santos Martins Almeida, and Martin Wild
Atmos. Chem. Phys., 21, 6593–6603, https://doi.org/10.5194/acp-21-6593-2021, https://doi.org/10.5194/acp-21-6593-2021, 2021
Short summary
Short summary
Spatio-temporal disparity to assess global dimming and brightening phenomena has been a critical topic. For instance, few studies addressed surface solar irradiation (SSR) long-term trend in South America. In this study, SSR, sunshine duration (SD) and the diurnal temperature range (DTR) are analysed for São Paulo, Brazil. We found a dimming phase, identified by SSR, SD and DTR, extending till 1983. Then, while SSR is still declining, consistent with cloud increasing, SD and DTR are increasing.
Kine Onsum Moseid, Michael Schulz, Trude Storelvmo, Ingeborg Rian Julsrud, Dirk Olivié, Pierre Nabat, Martin Wild, Jason N. S. Cole, Toshihiko Takemura, Naga Oshima, Susanne E. Bauer, and Guillaume Gastineau
Atmos. Chem. Phys., 20, 16023–16040, https://doi.org/10.5194/acp-20-16023-2020, https://doi.org/10.5194/acp-20-16023-2020, 2020
Short summary
Short summary
In this study we compare solar radiation at the surface from observations and Earth system models from 1961 to 2014. We find that the models do not reproduce the so-called
global dimmingas found in observations. Only model experiments with anthropogenic aerosol emissions display any dimming at all. The discrepancies between observations and models are largest in China, which we suggest is in part due to erroneous aerosol precursor emission inventories in the emission dataset used for CMIP6.
Cited articles
Artaxo, P., Oliveira, P. H., Lara, L. L., Pauliquevis, T. M., Rizzo, L. V., Junior, C. P., Paixão, M. A., Longo, K. M., de Freitas, S., and Correia, A. L.: Efeitos climáticos de partículas de aerossóis biogênicos e emitidos em queimadas na Amazônia, Revista Brasileira de Meteorologia, 21, 168–189, 2006.
Augustine, J. A. and Capotondi, A.: Forcing for multidecadal surface solar radiation trends over Northern Hemisphere continents, J. Geophys. Res.-Atmos., 127, e2021JD036342, https://doi.org/10.1029/2021JD036342, 2022.
Byrne, R. N., Somerville, R. C. J., and Subaşilar, B.: Broken-cloud enhancement of solar radiation absorption, J. Atmos. Sci., 53, 878–886, https://doi.org/10.1175/1520-0469(1996)053<0878:BCEOSR>2.0.CO;2, 1996.
Chiacchio, M. and Wild, M.: Influence of NAO and clouds on long-term seasonal variations of surface solar radiation in Europe, J. Geophys. Res.-Atmos., 115, D00D22, https://doi.org/10.1029/2009JD012182, 2010.
Chtirkova, B., Folini, D., Correa, L. F., and Wild, M.: Internal variability of the climate system mirrored in decadal-scale trends of surface solar radiation, J. Geophys. Res.-Atmos., 128, e2023JD038573, https://doi.org/10.1029/2023JD038573, 2023.
Correa, L. F., Folini, D., Chtirkova, B., and Wild, M.: A Method for Clear-Sky Identification and Long-Term Trends Assessment Using Daily Surface Solar Radiation Records, Earth and Space Science, 9, e2021EA002197, https://doi.org/10.1029/2021EA002197, 2022.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, https://doi.org/10.5194/essd-10-1987-2018, 2018.
Da Silva, V. D. P. R., e Silva, R. A., Cavalcanti, E. P., Braga, C. C., de Azevedo, P. V., Singh, V. P., and Pereira, E. R. R.: Trends in solar radiation in NCEP/NCAR database and measurements in northeastern Brazil, Sol. Energy, 84, 1852–1862, https://doi.org/10.1016/j.solener.2010.07.011, 2010.
de Jong, P., Barreto, T. B., Tanajura, C. A., Kouloukoui, D., Oliveira-Esquerre, K. P., Kiperstok, A., and Torres, E. A.: Estimating the impact of climate change on wind and solar energy in Brazil using a South American regional climate model, Renew. Energ., 141, 390–401, https://doi.org/10.1016/j.renene.2019.03.086, 2019.
de Lima, F. J. L., Martins, F. R., Costa, R. S., Gonçalves, A. R., dos Santos, A. P. P., and Pereira, E. B.: The seasonal variability and trends for the surface solar irradiation in northeastern region of Brazil, Sustainable Energy Technologies and Assessments, 35, 335–346, https://doi.org/10.1016/j.seta.2019.08.006, 2019.
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D., Nguyen, C., Wielicki, B. A., and Sun, M.: Geostationary enhanced temporal interpolation for CERES flux products, J. Atmos. Ocean. Tech., 30, 1072–1090, https://doi.org/10.1175/JTECH-D-12-00136.1, 2013.
Doelling, D. R., Sun, M., Nordeen, M. L., Haney, C. O., Keyes, D. F., and Mlynczak, P. E.: Advances in geostationary-derived longwave fluxes for the CERES synoptic (SYN1deg) product, J. Atmos. Ocean. Tech., 33, 503–521, https://doi.org/10.1175/JTECH-D-15-0147.1, 2016.
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C. J., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Dutton, E. G., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Lanconelli, C., Long, C., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline surface radiation data (1992-2017), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.880000, 2018a.
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018b.
Dutton, E. G., Stone, R. S., Nelson, D. W., and Mendonca, B. G.: Recent interannual variations in solar radiation, cloudiness, and surface temperature at the South Pole, J. Climate, 4, 848–858, https://doi.org/10.1175/1520-0442(1991)004<0848:RIVISR>2.0.CO;2, 1991.
ECMWF: CAMS Reanalysis, https://www.ecmwf.int/en/research/climate-reanalysis/cams-reanalysis, last access: 21 February 2024.
EDGAR - Emissions Database for Global Atmospheric Research: https://edgar.jrc.ec.europa.eu/emissions_data_and_maps, last access: 21 February 2024.
Feng, F. and Wang, K.: Determining factors of monthly to decadal variability in surface solar radiation in China: Evidences from current reanalyses, J. Geophys. Res.-Atmos., 124, 9161–9182, https://doi.org/10.1029/2018JD030214, 2019.
Ferreira, G. W. and Reboita, M. S.: A new look into the South America precipitation regimes: Observation and Forecast, Atmosphere, 13, 873, https://doi.org/10.3390/atmos13060873, 2022.
Fisch, G., Marengo, J. A., and Nobre, C. A.: Uma revisão geral sobre o clima da Amazônia, Acta Amazon., 28, 101–101, https://doi.org/10.1590/1809-43921998282126, 1998 (in Portuguese with English abstract).
Gilgen, H., Roesch, A., Wild, M., and Ohmura, A.: Decadal changes in shortwave irradiance at the surface in the period from 1960 to 2000 estimated from Global Energy Balance Archive Data, J. Geophys. Res.-Atmos., 114, D00D08, https://doi.org/10.1029/2008JD011383, 2009.
Gueymard, C. A. and Yang, D.: Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations, Atmos. Environ., 225, 117216, https://doi.org/10.1016/j.atmosenv.2019.117216, 2020.
Hakuba, M. Z., Folini, D., and Wild, M.: On the zonal near-constancy of fractional solar absorption in the atmosphere, J. Climate, 29, 3423–3440, https://doi.org/10.1175/JCLI-D-15-0277.1, 2016.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2023.
IAG-USP Estação Meteorológica: IAG/USP station data, http://www.estacao.iag.usp.br/sol_dados.php, last access: 21 February 2024.
IBGE: Censo Demográfico, Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, Brazil, https://censo2022.ibge.gov.br/panorama/index.html (last access: 1 November 2023), 2022.
INMET (Instituto Nacional de Meteorologia): Banco de Dados Meteorológicos (BDMEP), https://bdmep.inmet.gov.br/, last access: 21 February 2024.
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019.
Jiao, B., Su, Y., Li, Q., Manara, V., and Wild, M.: An integrated and homogenized global surface solar radiation dataset and its reconstruction based on a convolutional neural network approach, Earth Syst. Sci. Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023, 2023.
Kambezidis, H. D., Kaskaoutis, D. G., Kharol, S. K., Moorthy, K. K., Satheesh, S. K., Kalapureddy, M. C. R., Vinoj, V., Wild, M., Anantha, R., and Kuniyal, J. C.: Multi-decadal variation of the net downward shortwave radiation over south Asia: The solar dimming effect, Atmos. Environ., 50, 360–372, https://doi.org/10.1016/j.atmosenv.2011.11.008, 2012.
Karlsson, K.-G., Riihelä, A., Trentmann, J., Stengel, M., Solodovnik, I., Meirink, J. F., Devasthale, A., Jääskeläinen, E., Kallio-Myers, V., Eliasson, S., Benas, N., Johansson, E., Stein, D., Finkensieper, S., Håkansson, N., Akkermans, T., Clerbaux, N., Selbach, N., Schröder, M., and Hollmann, R.: CLARA-A3: CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data - Edition 3, Satellite Application Facility on Climate Monitoring (CM SAF) [data set], https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V003, 2023.
Kazadzis, S., Founda, D., Psiloglou, B. E., Kambezidis, H., Mihalopoulos, N., Sanchez-Lorenzo, A., Meleti, C., Raptis, P. I., Pierros, F., and Nabat, P.: Long-term series and trends in surface solar radiation in Athens, Greece, Atmos. Chem. Phys., 18, 2395–2411, https://doi.org/10.5194/acp-18-2395-2018, 2018.
Kendall, M. G.: Rank correlation methods, 2nd impression, Charles Griffin and Company Ltd., London and High Wycombe, 1975.
Kudo, R., Uchiyama, A., Ijima, O., Ohkawara, N., and Ohta, S.: Aerosol impact on the brightening in Japan, J. Geophys. Res.-Atmos., 117, D07208, https://doi.org/10.1029/2011JD017158, 2012.
Li, Z., Barker, H. W., and Moreau, L.: The variable effect of clouds on atmospheric absorption of solar radiation, Nature, 376, 486–490, https://doi.org/10.1038/376486a0, 1995.
Liepert, B. G.: Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990, Geophys. Res. Lett., 29, 61-1–61-4, https://doi.org/10.1029/2002GL014910, 2002.
Liley, J. B.: New Zealand dimming and brightening, J. Geophys. Res.-Atmos., 114, D00D10, https://doi.org/10.1029/2008JD011401, 2009.
Lobo, C. and Cunha, J. M. P. d.: Migração e mobilidade pendular nas áreas de influência de metrópoles brasileiras, Mercator (Fortaleza), 18, e18017, https://doi.org/10.4215/rm2019.e18017, 2019.
Long, C. N. and Dutton, E. G.: BSRN Global Network Recommended QC Tests, V2.0, BSRN Technical Report, http://hdl.handle.net/10013/epic.38770.d001 (last access: 1 August 2024), 2002.
Long, C. N., Dutton, E. G., Augustine, J. A., Wiscombe, W., Wild, M., McFarlane, S. A., and Flynn, C. J.: Significant decadal brightening of downwelling shortwave in the continental United States, J. Geophys. Res.-Atmos., 114, D00D06, https://doi.org/10.1029/2008JD011263, 2009.
Madhavan, B. L., Deneke, H., Witthuhn, J., and Macke, A.: Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers, Atmos. Chem. Phys., 17, 3317–3338, https://doi.org/10.5194/acp-17-3317-2017, 2017.
Manara, V., Brunetti, M., Celozzi, A., Maugeri, M., Sanchez-Lorenzo, A., and Wild, M.: Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013), Atmos. Chem. Phys., 16, 11145–11161, https://doi.org/10.5194/acp-16-11145-2016, 2016.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
NASA/LARC/SD/ASDC: CERES Time-Interpolated TOA Fluxes, Clouds and Aerosols Monthly Terra Edition4A, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/TERRA/CERES/SSF1DEGMONTH_L3.004A, 2015.
Natsis, A., Bais, A., and Meleti, C.: Trends from 30-Year Observations of Downward Solar Irradiance in Thessaloniki, Greece, Appl. Sci., 14, 252, https://doi.org/10.3390/app14010252, 2023.
Nishizawa, S. and Yoden, S.: Distribution functions of a spurious trend in a finite length data set with natural variability: Statistical considerations and a numerical experiment with a global circulation model, J. Geophys. Res.-Atmos., 110, D12105, https://doi.org/10.1029/2004JD005714, 2005.
Norris, J. R. and Wild, M.: Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming”, and solar “brightening”, J. Geophys. Res.-Atmos., 112, D08214, https://doi.org/10.1029/2006JD007794, 2007.
Ohmura, A.: Observed decadal variations in surface solar radiation and their causes, J. Geophys. Res.-Atmos., 114, D00D05, https://doi.org/10.1029/2008JD011290, 2009.
Ohmura, A. and Lang, H.: Secular variation of global radiation over Europe, in: Current Problems in Atmospheric Radiation, edited by: Lenoble, J. and Geleyn, J. F., Proceedings of the International Radiation Symposium 1988, 298–301, 1989.
Ohmura, A., Dutton, E. G., Forgan, B., Fröhlich, C., Gilgen, H., Hegner, H., Heimo, A., König-Langlo, G., McArthur, B., Müller, G., Philipona, R., Pinker, R. T., Whitlock, C. H., Dehne, K., and Wild, M.: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research, B. Am. Meteorol. Soc., 79, 2115–2136, https://doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2, 1998.
Pfeifroth, U., Sanchez-Lorenzo, A., Manara, V., Trentmann, J., and Hollmann, R.: Trends and variability of surface solar radiation in Europe based on surface- and satellite-based data records, J. Geophys. Res.-Atmos., 123, 1735–1754, https://doi.org/10.1002/2017JD027418, 2018.
Power, H. C.: Trends in solar radiation over Germany and an assessment of the role of aerosols and sunshine duration, Theor. Appl. Climatol., 76, 47–63, https://doi.org/10.1007/s00704-003-0005-8, 2003.
Raichijk, C.: Observed trends in sunshine duration over South America, Int. J. Climatol., 32, 669–680, https://doi.org/10.1002/joc.2296, 2012.
Reboita, M. S., Gan, M. A., Da Rocha, R. P., and Ambrizzi, T.: Precipitation regimes in South America: a bibliography review, Revista Brasileira de Meteorologia, 25, 185–204, https://doi.org/10.1590/S0102-77862010000200004, 2010.
Rosário, N. E., Sauini, T., Pauliquevis, T., Barbosa, H. M. J., Yamasoe, M. A., and Barja, B.: Aerosol optical depth retrievals in central Amazonia from a multi-filter rotating shadow-band radiometer calibrated on-site, Atmos. Meas. Tech., 12, 921–934, https://doi.org/10.5194/amt-12-921-2019, 2019.
Russak, V.: Trends of solar radiation, cloudiness and atmospheric transparency during recent decades in Estonia, Tellus B, 42, 206-210, https://doi.org/10.3402/tellusb.v42i2.15205, 1990.
Schwartz, R. D.: Global dimming: Clear-sky atmospheric transmission from astronomical extinction measurements, J. Geophys. Res.-Atmos., 110, D14210, https://doi.org/10.1029/2005JD005882, 2005.
Schwarz, M., Folini, D., Hakuba, M. Z., and Wild, M.: From point to area: Worldwide assessment of the representativeness of monthly surface solar radiation records, J. Geophys. Res.-Atmos., 123, 13857–13877, https://doi.org/10.1029/2018JD029169, 2018.
Schwarz, M., Folini, D., Yang, S., and Wild, M.: The annual cycle of fractional atmospheric shortwave absorption in observations and models: spatial structure, magnitude, and timing, J. Climate, 32, 6729–6748, https://doi.org/10.1175/JCLI-D-19-0212.1, 2019.
Schwarz, M., Folini, D., Yang, S., Allan, R. P., and Wild, M.: Changes in atmospheric shortwave absorption as important driver of dimming and brightening, Nat. Geosci., 13, 110–115, https://doi.org/10.1038/s41561-019-0528-y, 2020.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.2307/2285891, 1968.
Silva Junior, C. H., Pessôa, A. C., Carvalho, N. S., Reis, J. B., Anderson, L. O., and Aragão, L. E.: The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade, Nature Ecology & Evolution, 5, 144–145, https://doi.org/10.1038/s41559-020-01368-x, 2021.
Stanhill, G. and Moreshet, S.: Global radiation climate changes: The world network, Climatic Change, 21, 57–75, https://doi.org/10.1007/BF00143253, 1992.
Stjern, C. W., Kristjánsson, J. E., and Hansen, A. W.: Global dimming and global brightening–An analysis of surface radiation and cloud cover data in northern Europe, Int. J. Climatol., 29, 643–653, https://doi.org/10.1002/joc.1735, 2009.
Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., Veefkind, P., Levelt, P., and De Leeuw, G.: Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview, J. Geophys. Res.-Atmos., 112, D24S47, https://doi.org/10.1029/2007JD008809, 2007.
Torres, O. O.: OMI/Aura Near UV Aerosol Optical Depth and Single Scattering Albedo L3 1 day 1.0 degree x 1.0 degree V3, NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/Aura/OMI/DATA3003, 2008.
Vera, C., Baez, J., Douglas, M., Emmanuel, C. B., Marengo, J., Meitin, J., Nicolini, M., and Zipser, E.: The South American low-level jet experiment, B. Am. Meteorol. Soc., 87, 63–77, https://doi.org/10.1175/BAMS-87-1-63, 2006.
Wang, C., Jeong, G. R., and Mahowald, N.: Particulate absorption of solar radiation: anthropogenic aerosols vs. dust, Atmos. Chem. Phys., 9, 3935–3945, https://doi.org/10.5194/acp-9-3935-2009, 2009.
Wang, K., Ma, Q., Li, Z., and Wang, J.: Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses, J. Geophys. Res.-Atmos., 120, 6500–6514, https://doi.org/10.1002/2015JD023420, 2015.
Wang, X. L.: Penalized maximal F test for detecting undocumented mean shift without trend change, J. Atmos. Ocean. Tech., 25, 368–384, https://doi.org/10.1175/2007JTECHA982.1, 2008.
Wild, M.: Global dimming and brightening: A review, J. Geophys. Res.-Atmos., 114, D00D16, https://doi.org/10.1029/2008JD011470, 2009.
Wild, M., Wacker, S., Yang, S., and Sanchez-Lorenzo, A.: Evidence for clear-sky dimming and brightening in central Europe, Geophys. Res. Lett., 48, e2020GL092216, https://doi.org/10.1029/2020GL092216, 2021.
Xia, X., Chen, H., Li, Z., Wang, P., and Wang, J.: Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China, J. Geophys. Res.-Atmos., 112, D22S02, https://doi.org/10.1029/2006JD007562, 2007.
Yamasoe, M. A., Rosário, N. M. É., Almeida, S. N. S. M., and Wild, M.: Fifty-six years of surface solar radiation and sunshine duration over São Paulo, Brazil: 1961–2016, Atmos. Chem. Phys., 21, 6593–6603, https://doi.org/10.5194/acp-21-6593-2021, 2021.
Yang, S., Wang, X. L., and Wild, M.: Homogenization and trend analysis of the 1958–2016 in situ surface solar radiation records in China, J. Climate, 31, 4529–4541, https://doi.org/10.1175/JCLI-D-17-0891.1, 2018.
Yuan, M., Leirvik, T., and Wild, M.: Global trends in downward surface solar radiation from spatial interpolated ground observations during 1961–2019, J. Climate, 34, 9501–9521, https://doi.org/10.1175/JCLI-D-21-0165.1, 2021.
Zuluaga, C. F., Avila-Diaz, A., Justino, F. B., and Wilson, A. B.: Climatology and trends of downward shortwave radiation over Brazil, Atmos. Res., 250, 105347, https://doi.org/10.1016/j.atmosres.2020.105347, 2021.
Short summary
We investigated the causes of the decadal trends of solar radiation measured at 34 stations in Brazil in the first 2 decades of the 21st century. We observed strong negative trends in north and northeast Brazil associated with changes in both atmospheric absorption (anthropogenic) and cloud cover (natural). In other parts of the country no strong trends were observed as a result of competing effects. This provides a better understanding of the energy balance in the region.
We investigated the causes of the decadal trends of solar radiation measured at 34 stations in...
Altmetrics
Final-revised paper
Preprint