Articles | Volume 24, issue 1
https://doi.org/10.5194/acp-24-725-2024
https://doi.org/10.5194/acp-24-725-2024
Research article
 | 
18 Jan 2024
Research article |  | 18 Jan 2024

The high-resolution Global Aviation emissions Inventory based on ADS-B (GAIA) for 2019–2021

Roger Teoh, Zebediah Engberg, Marc Shapiro, Lynnette Dray, and Marc E. J. Stettler

Related authors

Ground-based contrail observations: comparisons with reanalysis weather data and contrail model simulations
Jade Low, Roger Teoh, Joel Ponsonby, Edward Gryspeerdt, Marc Shapiro, and Marc E. J. Stettler
Atmos. Meas. Tech., 18, 37–56, https://doi.org/10.5194/amt-18-37-2025,https://doi.org/10.5194/amt-18-37-2025, 2025
Short summary
The importance of an informed choice of CO2-equivalence metrics for contrail avoidance
Audran Borella, Olivier Boucher, Keith P. Shine, Marc Stettler, Katsumasa Tanaka, Roger Teoh, and Nicolas Bellouin
Atmos. Chem. Phys., 24, 9401–9417, https://doi.org/10.5194/acp-24-9401-2024,https://doi.org/10.5194/acp-24-9401-2024, 2024
Short summary
Forecasting contrail climate forcing for flight planning and air traffic management applications: The CocipGrid model in pycontrails 0.51.0
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
EGUsphere, https://doi.org/10.5194/egusphere-2024-1361,https://doi.org/10.5194/egusphere-2024-1361, 2024
Short summary
Global aviation contrail climate effects from 2019 to 2021
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024,https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Aviation contrail climate effects in the North Atlantic from 2016 to 2021
Roger Teoh, Ulrich Schumann, Edward Gryspeerdt, Marc Shapiro, Jarlath Molloy, George Koudis, Christiane Voigt, and Marc E. J. Stettler
Atmos. Chem. Phys., 22, 10919–10935, https://doi.org/10.5194/acp-22-10919-2022,https://doi.org/10.5194/acp-22-10919-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A CO2–Δ14CO2 inversion setup for estimating European fossil CO2 emissions
Carlos Gómez-Ortiz, Guillaume Monteil, Sourish Basu, and Marko Scholze
Atmos. Chem. Phys., 25, 397–424, https://doi.org/10.5194/acp-25-397-2025,https://doi.org/10.5194/acp-25-397-2025, 2025
Short summary
Maximum ozone concentrations in the southwestern US and Texas: implications of the growing predominance of the background contribution
David D. Parrish, Ian C. Faloona, and Richard G. Derwent
Atmos. Chem. Phys., 25, 263–289, https://doi.org/10.5194/acp-25-263-2025,https://doi.org/10.5194/acp-25-263-2025, 2025
Short summary
Derivation of atmospheric reaction mechanisms for volatile organic compounds by the SAPRC mechanism generation system (MechGen)
William P. L. Carter, Jia Jiang, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 25, 199–242, https://doi.org/10.5194/acp-25-199-2025,https://doi.org/10.5194/acp-25-199-2025, 2025
Short summary
Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024,https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
The potential of drone observations to improve air quality predictions by 4D-Var
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024,https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary

Cited articles

Abrahamson, J. P., Zelina, J., Andac, M. G., and Vander Wal, R. L.: Predictive Model Development for Aviation Black Carbon Mass Emissions from Alternative and Conventional Fuels at Ground and Cruise, Environ. Sci. Technol., 50, 12048–12055, https://doi.org/10.1021/acs.est.6b03749, 2016. 
Airbus: Airbus Global Market Forecast 2021–2040, https://www.airbus.com/sites/g/files/jlcbta136/files/2021-11/Airbus-Global-Market-Forecast-2021-2040.pdf (last access: 5 July 2022), 2021. 
Airlines for America: World Airlines Traffic and Capacity, https://www.airlines.org/dataset/world-airlines-traffic-and-capacity/ (last access: 12 August 2022), 2022. 
ATAG: Aviation: Benefits Beyond Borders, https://aviationbenefits.org/media/167517/aw-oct-final-atag_abbb-2020-publication-digital.pdf (last access: 12 August 2022), 2020. 
Barrett, S. R. H., Britter, R. E., and Waitz, I. A.: Global mortality attributable to aircraft cruise emissions, Environ. Sci. Technol., 44, 7736–7742, https://doi.org/10.1021/es101325r, 2010. 
Download
Short summary
Emissions from aircraft contribute to climate change and degrade air quality. We describe an up-to-date 4D emissions inventory of global aviation from 2019 to 2021 based on actual flown trajectories. In 2019, 40.2 million flights collectively travelled 61 billion kilometres using 283 Tg of fuel. Long-haul flights were responsible for 43 % of CO2. The emissions inventory is made available for use in future studies to evaluate the negative externalities arising from global aviation.
Altmetrics
Final-revised paper
Preprint