Articles | Volume 24, issue 2
https://doi.org/10.5194/acp-24-1415-2024
https://doi.org/10.5194/acp-24-1415-2024
Research article
 | 
30 Jan 2024
Research article |  | 30 Jan 2024

Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs)

Rona L. Thompson, Stephen A. Montzka, Martin K. Vollmer, Jgor Arduini, Molly Crotwell, Paul B. Krummel, Chris Lunder, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Stefan Reimann, Isaac Vimont, Hsiang Wang, Ray F. Weiss, and Dickon Young

Data sets

AGAGE AGAGE (Advanced Global Atmospheric Gases Experiment) https://agage2.eas.gatech.edu/data_archive/agage/

Community GHG Database (a collaboration between the European Commission, Joint Research Centre (JRC), the Inter- national Energy Agency (IEA), and comprising IEA-EDGAR CO2, EDGAR CH4, EDGAR N2O, EDGAR F-GASES version 7.0 EDGAR (Emissions Database for Global Atmospheric Research) https://edgar.jrc.ec.europa.eu/dataset_ghg70

Gridded CH4 emissions from termites J. Doubalova and K. Sindelarova https://atmosphere.copernicus.eu/sites/default/files/2019-11/26_CAMS81_2017SC1_D81.3.4.1-201808_v1_APPROVED_Ver1.pdf

Gridded maps of geological methane emissions and their isotopic signature (https://gml.noaa.gov/ccgg/arc/index.php?id=130) G. Etiope, G. Ciotoli, S. Schwietzke, and M. Schoell https://doi.org/10.5194/essd-11-1-2019

Atmospheric Methane Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1983-2022 X. Lan, J. W. Mund, A. M. Crotwell, M. J. Crotwell, E. Moglia, M. Madronich, D. Neff, and K. W. Thoning https://doi.org/10.15138/VNCZ-M766

Halocarbons & other Atmospheric Trace Species (HATS) NOAA GML (NOAA Global Monitoring Laboratory) https://doi.org/10.15138/845f-af13

Global fireemissions estimatesduring 1997–2016 (https://www.geo.vu.nl/~gwerf/GFED/GFED4/) G. R. van der Werf, J. T. Randerson, L. Giglio, T. T. van Leeuwen, Y. Chen, B. M. Rogers, M. Mu, M. J. E. van Marle, D. C. Morton, G. J. Collatz, R. J. Yokelson, and P. S. Kasibhatla https://doi.org/10.5194/essd-9-697-2017

Atmospheric histories and global emissions of the anthro- pogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC- 227ea, and HFC-236fa M. K. Vollmer, B. R. Miller, M. Rigby, S. Reimann, J. Mühle, P. B. Krummel, S. O’Doherty, J. Kim, T. S. Rhee, R. F. Weiss, P. J. Fraser, P. G. Simmonds, P. K. Salameh, C. M. Harth, R. H. J. Wang, L. P. Steele, D. Young, C. R. Lunder, O. Hermansen, D. Ivy, T. Arnold, N. Schmidbauer, K. Kim, B. R. Greally, M. Hill, M. Leist, A. Wenger, and R. G. Prinn https://doi.org/10.1029/2010JD015309

ocean_ch4.nc T. Weber https://doi.org/10.6084/m9.figshare.9034451.v1

Model code and software

AGAGE 12-box model with adjoint for optimisation of OH using hydrofluorocarbons (HFCs) Rona Thompson https://zenodo.org/record/8172277

Download
Short summary
The hydroxyl radical determines the atmospheric lifetimes of numerous species including methane. Since OH is very short-lived, it is not possible to directly measure its concentration on scales relevant for understanding its effect on other species. Here, OH is inferred by looking at changes in hydrofluorocarbons (HFCs). We find that OH levels have been fairly stable over our study period (2004 to 2021), suggesting that OH is not the main driver of the recent increase in atmospheric methane.
Altmetrics
Final-revised paper
Preprint