Articles | Volume 24, issue 22
https://doi.org/10.5194/acp-24-13025-2024
https://doi.org/10.5194/acp-24-13025-2024
Research article
 | 
26 Nov 2024
Research article |  | 26 Nov 2024

Analysis of the cloud fraction adjustment to aerosols and its dependence on meteorological controls using explainable machine learning

Yichen Jia, Hendrik Andersen, and Jan Cermak

Related authors

A satellite-based analysis of semi-direct effects of biomass burning aerosols on fog and low-cloud dissipation in the Namib Desert
Alexandre Mass, Hendrik Andersen, Jan Cermak, Paola Formenti, Eva Pauli, and Julian Quinting
Atmos. Chem. Phys., 25, 491–510, https://doi.org/10.5194/acp-25-491-2025,https://doi.org/10.5194/acp-25-491-2025, 2025
Short summary
A systematic evaluation of high-cloud controlling factors
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024,https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Algorithm for continual monitoring of fog life cycles based on geostationary satellite imagery as a basis for solar energy forecasting
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
EGUsphere, https://doi.org/10.5194/egusphere-2023-2885,https://doi.org/10.5194/egusphere-2023-2885, 2024
Short summary
Fractional solubility of iron in mineral dust aerosols over coastal Namibia: a link to marine biogenic emissions?
Karine Desboeufs, Paola Formenti, Raquel Torres-Sánchez, Kerstin Schepanski, Jean-Pierre Chaboureau, Hendrik Andersen, Jan Cermak, Stefanie Feuerstein, Benoit Laurent, Danitza Klopper, Andreas Namwoonde, Mathieu Cazaunau, Servanne Chevaillier, Anaïs Feron, Cécile Mirande-Bret, Sylvain Triquet, and Stuart J. Piketh
Atmos. Chem. Phys., 24, 1525–1541, https://doi.org/10.5194/acp-24-1525-2024,https://doi.org/10.5194/acp-24-1525-2024, 2024
Short summary
Sensitivities of cloud radiative effects to large-scale meteorology and aerosols from global observations
Hendrik Andersen, Jan Cermak, Alyson Douglas, Timothy A. Myers, Peer Nowack, Philip Stier, Casey J. Wall, and Sarah Wilson Kemsley
Atmos. Chem. Phys., 23, 10775–10794, https://doi.org/10.5194/acp-23-10775-2023,https://doi.org/10.5194/acp-23-10775-2023, 2023
Short summary

Related subject area

Subject: Climate and Earth System | Research Activity: Machine Learning | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Opinion: Why all emergent constraints are wrong but some are useful – a machine learning perspective
Peer Nowack and Duncan Watson-Parris
EGUsphere, https://doi.org/10.5194/egusphere-2024-1636,https://doi.org/10.5194/egusphere-2024-1636, 2024
Short summary

Cited articles

Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, https://doi.org/10.1038/nature03174, 2004. a
Adebiyi, A. A. and Zuidema, P.: The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments, Q. J. Roy. Meteorol. Soc., 142, 1574–1589, https://doi.org/10.1002/qj.2765, 2016. a
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
Andersen, H. and Cermak, J.: How thermodynamic environments control stratocumulus microphysics and interactions with aerosols, Environ. Res. Lett., 10, 024004, https://doi.org/10.1088/1748-9326/10/2/024004, 2015. a
Andersen, H., Cermak, J., Fuchs, J., and Schwarz, K.: Global observations of cloud-sensitive aerosol loadings in low-levelmarine clouds, J. Geophys. Res., 121, 936–12, https://doi.org/10.1002/2016JD025614, 2016. a
Download
Short summary
We present a near-global observation-based explainable machine learning framework to quantify the response of cloud fraction (CLF) of marine low clouds to cloud droplet number concentration (Nd), accounting for the covariations with meteorological factors. This approach provides a novel data-driven method to analyse the CLF adjustment by assessing the CLF sensitivity to Nd and numerous meteorological factors as well as the dependence of the Nd–CLF sensitivity on the meteorological conditions.
Altmetrics
Final-revised paper
Preprint