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Abstract. Aerosol–cloud interactions (ACI) have a pronounced influence on the Earth’s radiation budget but
continue to pose one of the most substantial uncertainties in the climate system. Marine boundary-layer clouds
(MBLCs) are particularly important since they cover a large portion of the Earth’s surface. One of the biggest
challenges in quantifying ACI from observations lies in isolating adjustments of cloud fraction (CLF) to aerosol
perturbations from the covariability and influence of the local meteorological conditions. In this study, this iso-
lation is attempted using 9 years (2011–2019) of near-global daily satellite cloud products in combination with
reanalysis data of meteorological parameters. With cloud-droplet number concentration (Nd) as a proxy for
aerosol, MBLC CLF is predicted by region-specific gradient boosting machine learning (ML) models. By means
of SHapley Additive exPlanation (SHAP) regression values, CLF sensitivity to Nd and meteorological factors
as well as meteorological influences on the Nd–CLF sensitivity are quantified. The regional ML models are
able to capture, on average, 45 % of the CLF variability. Based on our statistical approach, global patterns of
CLF sensitivity suggest that CLF is positively associated with Nd, particularly in the stratocumulus-to-cumulus
transition regions and the Southern Hemispheric midlatitudes. However, Nd retrieval bias may contribute to
non-causality in these positive sensitivities, and hence they should be considered upper-bound estimates. CLF
sensitivity to estimated inversion strength (EIS) is ubiquitously positive and strongest in tropical and subtrop-
ical regions topped by stratocumulus and within the midlatitudes. Globally, increased sea-surface temperature
(SST) reduces CLF, particularly in stratocumulus regions. The spatial patterns of CLF sensitivity to horizontal
wind components in the free troposphere may point to the impact of synoptic-scale weather systems and vertical
wind shear on MBLCs. The Nd–CLF relationship is found to depend more on the selected thermodynamical
variables than dynamical variables and in particular on EIS and SST. In the midlatitudes, a stronger inversion
is found to amplify the Nd–CLF relationship, while this is not observed in the stratocumulus regions. In the
stratocumulus-to-cumulus transition regions, the Nd–CLF sensitivity is found to be amplified by higher SSTs,
potentially pointing to Nd more frequently delaying this transition in these conditions. The expected climatic
changes in EIS and SST may thus influence future forcings from the CLF adjustment. The novel data-driven
framework, whose limitations are also discussed, produces a quantification of the response of MBLC CLF to
aerosols, taking into account the covariations with meteorology.
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1 Introduction

The emission of aerosols into the atmosphere affects the
Earth’s climate in particular by masking part of the warm-
ing effect from greenhouse gases by reflecting solar radiation
and changing cloud properties. Aerosol–cloud interactions
(ACIs) can strongly influence the Earth’s energy distribu-
tion and thus also contribute a substantial uncertainty to past
and future climate projections. The effective radiative forc-
ing due to ACI (ERFaci) is assessed to be −1.0 Wm−2, with
an uncertainty range of −1.7 to −0.3 Wm−2 (Forster et al.,
2021) albeit decades of effort and headway have been made
in understanding the complex system of aerosols, clouds, and
their environmental controls. The correct representation of
ACI in Earth system models (ESMs) remains a tremendous
challenge because of the lack of accurate global quantifica-
tion of the cloud-related fine-scale processes and the lack of
larger-scale constraints from the existing measurement sys-
tems at the ESM spatiotemporal resolution (Fan et al., 2016;
Seinfeld et al., 2016; Sato et al., 2018).

Marine boundary-layer clouds (MBLCs) cover over 23 %
of the global ocean surface (Wood, 2012). Due to relatively
small temperature differences between MBLC top and the
sea surface, they only weakly impact outgoing longwave
radiation but greatly reflect incoming shortwave radiation,
leading to a strong net cooling effect (Hartmann et al., 1992).
MBLCs play a critical role in the Earth’s radiative balance
(Zheng et al., 2021) and, in this regard, are the most impor-
tant cloud type (Chen et al., 2014). Furthermore, MBLCs are
especially susceptible to aerosol perturbations due to their
relatively low optical depths (Turner, 2007; Leahy et al.,
2012) and their formation in environments typically char-
acterized by lower anthropogenic aerosol loading than con-
tinental clouds (Platnick and Twomey, 1994). Therefore, a
deeper understanding of the aerosol–MBLC interactions is
crucial to reduce the uncertainties in climate predictions. At-
mospheric aerosols are critical for the formation of clouds as
cloud condensation nuclei (CCN). Increases in aerosols are
associated with increases in cloud-droplet number concen-
tration (Nd). As the cloud water is distributed among more
droplets, cloud-droplet effective radius (re) shrinks at con-
stant liquid water content, resulting in an enhancement of
cloud brightness and a negative instantaneous radiative forc-
ing (Twomey, 1977). The likelihood of collision and coa-
lescence subsequently decreases due to smaller drop sizes,
hampering rainfall formation, which can prolong cloud life-
time and thus increase cloud fraction (CLF) (Albrecht, 1989).
However, the aerosol–CLF relationship is complex, and the
sign of the CLF adjustment can also be the opposite. This
has been found in particular for non-precipitating clouds,
stemming from enhanced entrainment mixing with ambient
air over the clouds owing to shorter evaporation timescales
(Wang et al., 2003; Jiang et al., 2006; Small et al., 2009)
or reduced sedimentation (Ackerman et al., 2004; Bretherton
et al., 2007) because of smaller droplet sizes.

From the perspective of observations at satellite scales,
though there are studies suggesting a negative relationship
between aerosols and CLF (Dey et al., 2011; Small et al.,
2011), it has been documented by multiple studies that the
overall CLF increases in response to increasing aerosols (e.g.
Kaufman and Koren, 2006; Yuan et al., 2011; Gryspeerdt
et al., 2016; Christensen et al., 2017; Andersen et al., 2017;
Fuchs et al., 2018; Rosenfeld et al., 2019; Christensen et al.,
2020). Likewise, studies based on ESMs reported substantial
negative ERFaci due to liquid water path (LWP) and CLF ad-
justments (e.g. Zelinka et al., 2014). In spite of the attribution
of such adjustments in ESMs primarily to LWP adjustments
(Ghan et al., 2016), a global satellite-based study by Bender
et al. (2019) suggested that LWP adjustments are overesti-
mated in ESMs and that aerosol impact on CLF dominates
the negative aerosol forcing. This is supported by observa-
tional evidence presented by Toll et al. (2019), who also re-
ported an overestimation of LWP adjustment in climate mod-
els, and by Y. Chen et al. (2022), who recently highlighted the
role of CLF increases due to aerosols from a large volcano
eruption as the main cause of the associated forcing. Some
large-eddy simulations have, however, suggested a negative
response of CLF of trade wind cumulus to aerosol perturba-
tions (Xue and Feingold, 2006; Seifert et al., 2015). While
most studies, from both observational and model points of
view, are in agreement that generally CLF increases with in-
creasing aerosols due to a prolonged lifetime (Douglas and
L’Ecuyer, 2022), the magnitude of the response of CLF to
aerosols and its corresponding adjustments are still highly
uncertain. For satellite-based analyses, one of the most chal-
lenging aspects in the quantification of CLF adjustment is
isolating the influence of the aerosol loading on cloud proper-
ties from confounding covariations with meteorological pa-
rameters (Andersen et al., 2016; Gryspeerdt et al., 2019; Bel-
louin et al., 2020) paired with aerosol retrieval issues related
to aerosol swelling and 3D radiative effects in the vicinity
of clouds (Loeb and Schuster, 2008; Schwarz et al., 2017).
Recent observational studies have utilized different methods
to tackle this issue. A first approach is to stratify the data by
meteorological factors, therefore accounting for local mete-
orology in the relationships (e.g. Su et al., 2010; Chen et al.,
2014; Andersen and Cermak, 2015). Secondly, using Nd as a
mediating variable was proposed by Gryspeerdt et al. (2016)
to analyse the causal pathway between aerosol optical depth
and CLF. Another approach is to use a sampling strategy
that applies a cloud–aerosol pairing algorithm (Christensen
et al., 2017). However, these methods do not account for
aerosol retrieval issues, meteorological influencing factors,
and confounders at once, which is essential to constrain the
CLF adjustment. Recently, several studies have successfully
used machine learning (ML) to account for non-linearities
and meteorological factors to quantify ACI (Andersen et al.,
2017; Fuchs et al., 2018; Dadashazar et al., 2021; Zipfel
et al., 2022). ML regression algorithms allow for the pre-
diction of CLF (predictand) on the basis of aerosol and me-
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teorological factors at the same time and treat the aerosol–
cloud–meteorology system as a whole. In addition, ML mod-
els can represent non-linear interactive systems, which can be
analysed in sensitivity analyses with explainable ML tech-
niques. Explainable ML refers to the techniques explaining
the predictions of a trained ML model by explicitly quanti-
fying the relationships, which helps improve the understand-
ability, transparency, and trustworthiness of the ML models
(Beucler et al., 2023).

In this study, we set up region-specific ML models at a
global scale using satellite and reanalysis data sets to predict
CLF to analyse Nd-induced changes in MBLCs. The goal
of the explainable ML framework is to quantify the global
sensitivity patterns of CLF to Nd and meteorological factors.
In addition, we aim to estimate the magnitude of the depen-
dence of Nd–CLF sensitivity on the meteorological factors
using SHapley Additive exPlanation (SHAP) interaction val-
ues, providing a new and insightful pathway to more pro-
found knowledge of the physical processes relevant to the
CLF adjustment and, hence, to a global constraint on aerosol-
induced CLF changes accounting for meteorological covari-
ations. The hypothesis of this study is that the response of
cloud fraction of MBLCs to aerosol perturbations is positive
but buffered, i.e. reduced or amplified, by ambient meteorol-
ogy and that both the sensitivities and the interactions with
meteorological factors have distinct regional patterns.

2 Data and methods

2.1 Data sets

This work combines 9 years (2011–2019) of satellite
retrievals from Moderate Resolution Imaging Spec-
troradiometer (MODIS) and reanalysis data from the
European Centre for Medium-Range Weather Forecasts
(ECMWF) from 60° N to 60° S. In this study, MBLCs
are defined as single-layer warm cloud fields with cloud
top temperatures higher than 268 K. To achieve this, the
information on CLF (Cloud_Retrieval_Fraction_1L_Liquid
product), re (Cloud_Effective_Radius_1L_Liquid_Mean
product), cloud optical depth (τc;
Cloud_Optical_Thickness_1L_Liquid_Mean
product), cloud top temperature (CTT;
Cloud_Top_Temperature_Mean product), and satellite
viewing geometry are obtained from MODIS level-3
collection-6.1 atmosphere daily products on the Terra
platform (MOD08_D3), which are gridded into 1°× 1°
globally from level-2 atmospheric products. CLF serves as
the predictand in this study. The computation of Nd relies on
τc and re, with filtering criteria based on CTT, solar zenith
viewing angle, and satellite zenith angle, as elaborated in the
following.

The equation used to calculate the MODIS Nd is from
Quaas et al. (2006) depends on the retrievals of re and τc
and so do the uncertainties in the errors propagated from re

and τc:

Nd = ατ
0.5
c r−2.5

e , (1)

where α = 1.37× 10−5 m−0.5 is a constant related to adia-
batic growth rate. The uncertainties in Nd retrievals are ex-
haustively evaluated by Grosvenor et al. (2018), which sug-
gests that the uncertainties in averagedNd over a 1°× 1° grid
box (spatial resolution of the MODIS products used in this
study) decrease by over 50 % compared to pixel-level uncer-
tainties. This derivation approach relies on the assumed adi-
abaticity in global marine warm clouds where liquid water
content and re increase monotonically and Nd is distributed
as constant vertically. Departure from the adiabatic assump-
tion (e.g. due to entrainment) would result in Nd retrieval
biases (Merk et al., 2016; Bennartz and Rausch, 2017). The
uncertainty related to the estimation ofNd from MODIS also
depends on liquid CLF. Nd is less biased in the regions of
larger CLF, where clouds are more homogeneous, while in
the regions with lower CLF Nd retrievals are sparser and less
reliable (Grosvenor et al., 2018; Zhu et al., 2018). In such
heterogeneous cloud fields, subpixel effects in the retrieval
of re can negatively bias the retrieved Nd values (Zhang and
Platnick, 2011; Zhang et al., 2012; Grosvenor et al., 2018).
Such retrieval biases could cause a bias in the Nd–CLF rela-
tionship as well. Furthermore, the interpretation of the causal
effect ofNd on CLF can also be obscured by small-scale sam-
pling issues. In particular, apart from the retrieval errors in re
and τc, the natural spatial variability in cloud fields can also
propagate to the Nd estimate and distort the Nd–CLF rela-
tionship (Arola et al., 2022; Liu et al., 2024).

Following the screening criteria for a more reliable Nd de-
marcated by Gryspeerdt et al. (2022), only clouds restricted
to a single layer in the liquid phase with a CTT higher than
268 K are considered. As suggested by Quaas et al. (2006),
samples with re < 4 µm and τc < 4 are excluded to cope with
the high re retrieval uncertainties at low τc. In addition, so-
lar and sensor viewing zenith angles respectively greater than
65° and 55° are removed to avoid the large biases in re and τc
retrievals (as in Grosvenor et al., 2018). The pixels selected
according to the above sampling strategies generate more re-
liable Nd estimates.

Atmospheric and oceanic variables are taken from the
fifth-generation ECMWF atmospheric reanalysis of the
global climate (ERA5) at an hourly frequency (Table 1)
(Hersbach et al., 2020). The ERA5 data sets are harmo-
nized to fit the level-3 MODIS data by first being resam-
pled to 1°× 1° from their default 0.25°× 0.25° spatial res-
olution using bilinear interpolation; they are subsequently
collocated with Terra MODIS by extracting hourly data to
align with the UTC overpass times of the Terra satellite for
each grid cell, yielding a spatiotemporally matched MODIS-
ERA5 combined data set for training the ML models. For
Nd retrievals, only samples within 1st–99th percentiles are
retained to exclude potential unrealistic outliers from re and
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τc retrievals (Zipfel et al., 2022). Furthermore, the explana-
tion of ML models in this study relies on using linear re-
gressions to capture the distribution of individual prediction
instances, and the extreme values may excessively magnify
or reduce the sensitivity or interactive effects quantified by
SHAP (shown in Fig. 1 and discussed in Sect. 2.3.2). The
threshold of 1st–99th percentiles for each predictor is thus
adopted to remove the values at the very tails of the specific
distribution and to improve the robustness of the estimated
sensitivities. To define the sensitivities of CLF and the inter-
active effects of meteorological factors, the natural logarithm
of Nd is taken (see Sect. 2.3.2 in detail). Estimated inversion
strength (EIS) is calculated based on the formulation from
Wood and Bretherton (2006), and in this study, it is depen-
dent only on atmospheric temperatures at 700 hPa and at the
level of 1000 hPa.

All input predictors for each Extreme Gradient Boosting
(XGB) model (i.e. for each 5°× 5° window aggregated from
1°× 1° grid boxes, as detailed in Sect. 2.2) are standard-
ized by centring around the mean and scaling to have unit
variance as in Scott et al. (2020). Hamby (1994) suggested
that the standardization process is a standard practice when
aiming for comparability of sensitivity estimates across pre-
dictors. This process eliminates the influence of units and
aligns data on the same scale instead of the original natu-
ral ones, thereby ensuring the comparability of the quantified
sensitivities and interactive effects with meteorology among
different variables. This standardization procedure has been
applied in other studies investigating different cloud sensi-
tivities to various cloud-controlling factors (e.g. Ceppi and
Nowack, 2021; Andersen et al., 2023). This procedure, how-
ever, may result in reduced spatial comparability due to vari-
ations in mean and standard deviation values across different
5°× 5° windows. To assess the trade-off between compara-
bility among different predictors and comparability in space,
we provide results without standardization in the Supplement
(Figs. S2 to S7 therein) as done by Grise and Kelleher (2021).
In terms of spatial patterns, the results are nearly identical to
their corresponding ones presented in the following sections
of the main text, suggesting that standardizing the data based
on the local mean and standard deviation for each window
has only a small impact on comparability across each win-
dow. Therefore, we primarily benefit from achieving com-
parability among different predictors while making only a
minor compromise in spatial comparability.

2.2 Machine learning model setup

Extreme Gradient Boosting (XGB) is a distributed tree boost-
ing algorithm aiming to provide a scalable, portable, and
flexible library under the gradient boosting framework (Chen
and Guestrin, 2016). The state-of-the-art XGB algorithm can
be implemented efficiently in Python and has been recently
used to study clouds and ACI (Andersen et al., 2022; Dou-
glas and L’Ecuyer, 2022). As an extension of previous gradi-

ent boosting methods, XGB has incorporated regularization
techniques which help prevent overfitting and improve model
generalization. Besides, the subsampling on training subsets
and column (feature) subsampling techniques can shorten
the running time and also avert overfitting and hence elevate
model performance (Chen and Guestrin, 2016). Relevant reg-
ularization and subsampling hyperparameters are tuned us-
ing Bayesian optimization to determine the best combina-
tion; see Table 2 for the search space.

Data from 2011 to 2016 are used for training and data
from 2017 to 2019 for testing (ratio of independent train to
test split of about 67 % / 33 %). By chronologically splitting
the training and test sets without random shuffling, we en-
sure that the training data does not see future information
and the autocorrelation in data does not lead to overopti-
mistic evaluation of the model’s performance (Beucler et al.,
2023; Kapoor et al., 2023). As suggested by Karpatne et al.
(2017), a single ML model may not perform well across
all regions due to the heterogeneity of relevant processes.
Therefore, data at a 1°× 1° spatial resolution are aggregated
into 5°× 5° geographical windows, where an individual in-
dependent XGB model is trained and tested for each “win-
dow”. Hereby, a region-specific ML framework is established
to potentially capture regional relationships and characteris-
tics and thus the regional patterns of CLF adjustment. The
coarser 5°× 5° spatial resolution of the modelling grid in-
creases the sample size by a factor of ≈ 25, which is helpful
to establish robust sensitivity estimates. In addition, at the
spatial resolution of 1°× 1° summarized in 5°× 5° windows,
the spatial scale is adequate for ACI sensitivity estimation
(Grandey and Stier, 2010). To ensure a sufficient data amount
for training and testing the XGB models, only the geograph-
ical windows with over 6000 available data points are re-
tained. Consequently, 34 out of 1190 oceanic windows have
been excluded. These windows located between 47.5° W and
122.5° E and 52.5 and 57.5° S in the Southern Ocean (Fig. 2)
contain fewer than 6000 valid samples due to the screening
for Nd retrievals. For each model, the hyperparameters are
tuned by implementing Bayesian optimization, which uses a
Gaussian process prior distribution over hyperparameters to
initialize a probabilistic model for the objective function to
be optimized. After the initialization, the probabilistic model
is updated iteratively, and Bayesian optimization suggests the
optimal combination of hyperparameters to try for the next
iteration according to the previous one and samples gath-
ered from the search space (Table 2) (Snoek et al., 2012).
Each iteration is evaluated by five-fold cross-validation us-
ing the root mean square error (RMSE) as score. The num-
ber of boosting rounds (the number of trees) for each XGB
model is then determined by the early stopping technique to
further avoid overfitting; i.e. the training of the model stops
early once it is monitored, so the score of cross-validation
does not improve within 20 iteration rounds.
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Table 1. Summary of the predictors from ERA5 reanalysis.

Predictor name Abbreviation Unit

Instantaneous pressure-level parameters (at 700 hPa, 850 hPa)

Relative humidity RH700, RH850 %
Specific humidity SH700, SH850 kgkg−1

Temperature t700, t850 K
Vertical velocity ω700, ω850 Pas−1

Eastward wind component u700, u850 ms−1

Northward wind component v700, v850 ms−1

Surface and single-level parameters (instantaneous or mean rates/fluxes)

Eastward and northward wind component at 10 m u10, v10 ms−1

Boundary-layer height BLH m
Convective available potential energy CAPE Jkg−1

Sea surface temperature SST K
Total column water vapour TCWV kgm−2

Mean large-scale precipitation fraction PF proportion
Mean surface sensible/latent heat flux SHF/LHF Wm−2

Calculated

Estimated inversion strength EIS K

Table 2. Overview of the hyperparameters tuned for regional Ex-
treme Gradient Boosting models using Bayesian optimization.

Hyperparameter name Search space

learning_rate 0.01–0.5
max_depth 3–10
min_child_weight 1–10
subsample 0.5–1
colsample_bytree 0.5–1
gamma 0–10
alpha 0–10
lambda 0–10

2.3 Explaining the machine learning models

2.3.1 SHapley Additive exPlanation (SHAP) values

SHAP values were proposed by Lundberg and Lee (2017) on
the basis of cooperative game theory to explain the outputs
of ML models. The SHAP approach has been implemented
with XGB in Python, and it has been reported that outputs
from XGB models with various number of trees can be well
explained by the SHAP framework in different subject areas
(e.g. Padarian et al., 2020; Lundberg et al., 2018, 2020; Kim
et al., 2021; Li et al., 2022). The contribution of a predic-
tor value to a specific model prediction is calculated as the
difference between the predictions of the model in the pres-
ence and absence of this particular predictor for all possi-
ble combinations of predictor values. Since this is performed
at a “local” level (i.e. for this specific instance’s prediction),

it allows for insights into how a certain model outcome is
achieved, thereby complementing more traditional “global”
(considering all instances) feature importance measures (e.g.
partial dependence plot).

The base value in the context of SHAP values is what
would be predicted in the absence of any feature information
(Lundberg and Lee, 2017), and it is typically computed as
the average of all predictions by ML models over the entire
training data set. Positive (negative) SHAP values indicate
that the specific feature value increases (decreases) the pre-
diction compared to this base value. In other words, the base
value serves as the reference point against which the contri-
butions of individual features are measured. SHAP values for
all features always sum up to the difference between the base
value and the final model prediction so that SHAP values are
additive and internally consistent. The base value could be
analogous to the climatological CLF for a given geographical
window, assuming no information about the input parameters
is known. In this context, the SHAP values of input features
indicate the extent to which knowing information about each
feature value would deviate the prediction from the climato-
logical CLF (base value).

Furthermore, the quantification of the influence of mete-
orology on the Nd–CLF relationship can be analysed using
SHAP interaction values, which are an extension of SHAP
values. They measure the difference between the SHAP val-
ues for a feature when another (secondary) feature is in-
cluded versus when it is not included, offering a potential
tool for insights into feature interactions captured by the
tree ensembles. SHAP values have been applied to study at-
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mospheric aerosols in the context of air pollution Stirnberg
et al. (2021) and have been used by Zipfel et al. (2022) to
explore satellite-observed Nd–LWP relationship in MBLCs
in the southeast Atlantic, finding that meteorological vari-
ables have considerable influences on the Nd–LWP relation-
ship using SHAP interactive values. Moreover, the use of
SHAP interaction values in these studies allows for a more
profound and in-depth comprehension of the underlying pro-
cesses with respect to local meteorology. SHAP values pro-
vide insights into the behaviour of the XGB models, and as
all statistical/ML models, they may not necessarily reflect
real-world physical causality. Nevertheless, this state-of-the-
art technique allows us to account for meteorological covari-
ations when deriving sensitivities and to appraise to what ex-
tent the meteorological predictors interact with and influence
the Nd–CLF relationship beyond traditional global-level fea-
ture attributions.

2.3.2 Quantification of sensitivities and interactive
effects

Figure 1 is an exemplary graph for a regional XGB model at
a specific 5°× 5° window (27.5–32.5° S, 122.5–127.5° W).
SHAP values and SHAP interaction values are used to ex-
plain this XGB model and to quantify and isolate the CLF
sensitivity to Nd and the interactive effects of meteorologi-
cal factors (here sea-surface temperature, SST). Each dot in
Fig. 1 represents an individual data instance (i.e. a single ob-
servation at a specific grid cell and time step) and shows how
individual Nd or lnNd values impact the CLF prediction.

Plotting SHAP values of Nd against Nd values without
the standardization process (Fig. 1a) for each data sample
illustrates that increased Nd values lead to an increase in the
predicted CLF, while the rate of the increase (dSHAP / dNd)
drops withNd as shown by the orange line. For each 20 cm−3

wide bin ofNd, dSHAP / dNd is calculated as the slope of the
linear regression betweenNd andNd SHAP values. The non-
linear positive association between Nd and predicted CLF
aligns well with findings of prior studies (e.g. Gryspeerdt
et al., 2016; Rosenfeld et al., 2019) that the aerosol impact
on CLF saturates at relatively high aerosol loading. This re-
lationship also resembles the one reported by Yuan et al.
(2023), which is attributed to the precipitation suppression
effect due to a relatively high Nd.

Expressing the sensitivity logarithmically in Nd is ideal
because cloud processes are prone to respond to a rela-
tive change in Nd rather than an absolute one (Carslaw
et al., 2013; Bellouin et al., 2020). Furthermore, the log-
transformed Nd facilitates the application of simple linear
regressions to capture the relationship between the contribu-
tion of Nd and the predicted CLF (Nd SHAP values) and its
feature values. As depicted in Fig. 1b, the contribution of
lnNd to the predicted CLF increases almost linearly with a
rising lnNd. Thus, the CLF sensitivity to Nd is estimated as
the slope of the linear regression between lnNd SHAP values

and lnNd values (0.098 CLF σ−1). A similar method to esti-
mate sensitivity has also been used by Li et al. (2022), where
it is also suggested that this method can enhance the robust-
ness of the sensitivity estimation. Because it can leverage the
benefits of an XGB model, including bagging techniques and
no need for distribution assumptions, along with the advan-
tages of SHAP, which provides global interpretations con-
sistent with local explanations (Lundberg et al., 2020; Mol-
nar, 2022). It should be noted that the notably linear rela-
tionship in Fig. 1b does not hold across all geographical
windows. Figure S1 displays additional exemplary windows
where the relationships exhibit less linearity. Our approach
also captures non-linearity in the system; in these cases, the
linear regression helps decrease the convolved relationships
as in Gryspeerdt et al. (2016). Note that unlike Nd (cm−3)
in panel (a), lnNd and SST in (b) and (c) have been stan-
dardized, and thus sensitivities and interaction indices (IAIs)
are expressed with the unit of cloud fraction change per stan-
dard deviation (CLF σ−1). Standardizing all predictors en-
sures that the results become comparable across all of them.
We also present the SHAP dependence plots for the same ex-
ample window in Fig. S2 where non-standardized lnNd and
SST are used to plot panels (b) and (c). The patterns are alike
and only the magnitudes of the example sensitivity and IAI
are different because they are no longer expressed on a phys-
ical scale.

The vertical dispersion around the lnNd–CLF relationship
captured by the SHAP dependence plot is due to the depen-
dence of the lnNd contribution to the predicted CLF on me-
teorological factors (e.g. SST) in the model, which is cap-
tured by SHAP interaction values, as displayed in Fig. 1c.
The colouring of the data points by SST illustrates how in-
teractions with SST split up the lnNd–CLF relationship, with
low SST values amplifying the lnNd contribution and vice
versa. To quantify this interaction effect, the meteorological
data are then divided into a group of above-average feature
values and a group of below-average feature values. A linear
regression is fit to the lnNd values and the SHAP interaction
values in each group. An interaction index (IAI) is derived
from these regression fits and defined as the slope for the
high-value group (> mean) with the slope for the low-value
group (< mean) subtracted:

IAI= βx,high−βx,low, (2)

where β is the slope of the linear regression between SHAP
interaction values and lnNd values and the subscripts de-
note the high-value group and the low-value group for a
specific meteorological variable x (SST in the example) re-
spectively. At the exemplary geographical window, the in-
fluence of SST on the Nd–CLF sensitivity is quantified by
IAI=−0.029 CLF σ−1 (Fig. 1c). Similar to sensitivities,
the unit of IAIs is also CLF σ−1. Therefore, for a positive
sensitivity such as the Nd–CLF sensitivity shown in Fig. 1b,
a negative IAI value means that the Nd–CLF sensitivity is
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larger with low feature values, as shown in Fig. 1c (the pos-
itive relationship is weakened by high SST values). On the
contrary, a positive IAI value corresponds to a larger positive
sensitivity with high feature values.

2.3.3 Limitations of observation-based machine
learning of aerosol-cloud processes

In this section, limitations of this study are discussed. A
fundamental limitation of our study is that the assertion of
causality from the statistical relationships of aerosols/Nd and
cloud fraction/properties is not easily done. While causal in-
ference approaches exist and have been applied in the field
of aerosol–cloud interactions (Fons et al., 2023), we em-
ploy a more traditional approach of analysing statistical re-
lationships of instantaneous observations (i.e. correlations).
Unless nonetheless explicitly incorporating such causal in-
ference approaches, studies utilizing statistical or ML mod-
els to explore observational aerosol–cloud processes contend
with this common limitation. For instance, some studies as-
sessed satellite-based statistical relationships between CLF
and Nd (Christensen et al., 2016, 2017), between LWP and
Nd (Michibata et al., 2016; Rosenfeld et al., 2019), and be-
tween Nd and other aerosol proxies (Gryspeerdt et al., 2017;
McCoy et al., 2017a), all resting on statistically inferring sen-
sitivities of cloud quantities to aerosol proxies (Forster et al.,
2021). While we interpret the derived relationships with re-
spect to the known physical relationships, uncertainties re-
garding the physical interpretation are mainly driven by two
sources: uncertainties in the data and uncertainties from the
methods.

1. Data. Uncertainties exist for each satellite/reanalysis
quantity, but may be particularly large in Nd. For ex-
ample, the subpixel effect can introduce more bias in the
Nd retrieval process within broken-cloud regimes due to
increased heterogeneity. The Nd retrieval biases are dis-
cussed in Sect. 2.1. Also, Nd and CLF observations are
not fully independent, which may introduce a spurious
positive correlation between the two variables. As such,
we expect the physical relationship ofNd and CLF to be
weaker than our estimate so that the derived sensitivities
present an upper bound of the physical relationship.

Another caveat in our data is that Nd values in our
study are computed using MODIS level-3 large-scale
mean re and τc values instead of joint histograms as in
Gryspeerdt et al. (2016). This may introduce additional
biases considering the non-linearity of the Nd calcula-
tion. In future work,Nd data calculated from underlying
joint histograms or pre-filtered data by Gryspeerdt et al.
(2022) could be applied to be compared with the results
in this study.

2. Methods.

a. The exact quantification of sensitivities is de-
pendent on the choice of the statistical/machine
learning model. While for (more linearly related)
monthly data, Andersen et al. (2022) have shown
that XGB, artificial neural networks, and linear
models tend to lead to very similar results, this
is not expected for more instantaneous data. Here,
non-linear relationships are expected, and a more
complex non-linear model is a more appropriate
choice. XGB and other tree ensemble methods are
a particularly popular choice because of their in-
terpretability, high accuracy considering computa-
tional efficiency (Lundberg et al., 2020), and ability
to model the interactions between predictors (Elith
et al., 2008). They have been frequently used to
study aerosols and clouds in the past (Fuchs et al.,
2018; Dadashazar et al., 2021; Andersen et al.,
2021; Y. Chen et al., 2022; Bender et al., 2024).
Besides, the Tree SHAP algorithm, specifically tai-
lored for tree-based models to compute exact Shap-
ley values, can even further enhance their inter-
pretability and has been applied in this field as well
(Stirnberg et al., 2021; Zipfel et al., 2022).

b. The quantification of sensitivities with SHAP val-
ues depends on details: the choice of the algo-
rithm to effectively estimate Shapley values is
application-specific and comes to the trade-off be-
tween being true to the data and true to the model,
which relies on an observational and interventional
conditional expectation respectively (Chen et al.,
2020). The true to the model approach is prefer-
able when trying to understand how an ML model
makes a prediction, which requires assuming fea-
ture independence. In this study, we focus on poten-
tial mechanisms behind CLF sensitivities, and thus
we tend to respect the correlations spread among
input features (true to the data) (Frye et al., 2021;
Chen et al., 2022). Consequently, we suffer from
the disadvantage of being true to the data: entangled
importance attributions of correlated features, e.g. a
feature not explicitly used by the model for the pre-
diction task, might be assigned a non-zero contri-
bution. Yet we refrain from the drawback of being
true to the model – unrealistic input instances (Sun-
dararajan and Najmi, 2020; Linardatos et al., 2021;
H. Chen et al., 2023). Despite the inherent trade-off,
SHAP approach has been employed in the context
of being true to the data (e.g. Stirnberg et al., 2021;
Zipfel et al., 2022; Li et al., 2022).

The derived estimates of sensitivities and interactive ef-
fects in this paper should thus be interpreted with these limi-
tations and uncertainties in mind.
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Figure 1. SHAP dependence plots for the cloud-droplet number concentration (Nd) in the region from 27.5 to 32.5° S and from 122.5 to
127.5° W. (a) Dots show Nd SHAP values versus Nd values. The orange line shows the change rate of Nd SHAP values with respect to Nd
(dSHAP / dNd) versus Nd values for each Nd bin of 20 cm−3 wide. Panel (b) is similar to panel (a) but shows the relationship between lnNd
SHAP values and lnNd with the corresponding sensitivity defined as the slope of the linear regression. Panel (c) shows SHAP interaction
values coloured by sea-surface temperature (SST) showing the dependence of lnNd–CLF relationship on the interactive effects of SST. The
interaction values are further divided into two groups by the mean feature value of SST. Linear regressions are performed respectively for
the high-value group and low-value group and the interaction index (IAI) is defined as the slope for the high-value group by subtracting the
slope for the low-value group. The horizontal dashed lines are a demarcation between negative and positive SHAP (interaction) values. Note
that Nd in (a) is not standardized, while lnNd and SST in (b) and (c) are standardized.

3 Results and discussion

3.1 Model performance

The skills of the region-specific XGB models in predict-
ing CLF are evaluated by the coefficient of determination
(R2) on the unseen hold-out test data. The global weighted
mean R2 is 0.45 (about 45 % on weighted average and up
to 73.57 % of the variability in CLF prediction is explained)
and the standard deviation 0.10. While this means that, on
average, about half of the variability in CLF cannot be ex-
plained by the machine learning models, this is expected as
previous studies have shown that the performance of statisti-
cal models decreases when going from monthly to daily data
(Andersen et al., 2017; Fuchs et al., 2018; Dadashazar et al.,
2021), and the performance is on par with that reported by
Dadashazar et al. (2021), who used machine learning mod-
els to predict Nd with daily reanalysis data. The models in
tropical regions in the Indian Ocean and the western Pacific
relatively poorly explain the variability in CLF, while XGB
models perform well in the stratocumulus regions in the sub-
tropics near the continents and in the midlatitudes, particu-
larly the Southern Hemispheric midlatitudes. The high skill
of predicting CLF in the Southern Hemispheric midlatitudes
is in contrast to a recent study where this region has been
found to be particularly difficult to model statistically with
monthly data (Andersen et al., 2023). In this region, the day-
to-day CLF variability is high due to the large influence of
synoptic-scale weather systems, and hence data at the daily
resolution are more adequate to represent the CLF variability
in these regions.

3.2 CLF sensitivity: global perspectives and regional
characteristics

3.2.1 Global overview of CLF sensitivities

Figure 3 summarizes the means and distributions of the near-
global sensitivities of CLF to all predictors. The sensitivities
are estimated as described in Sect. 2.3.2. The sequence is
sorted by descending mean values of the absolute sensitivi-
ties (i.e. by feature importance) of the predictor variables. A
strong and consistently positiveNd–CLF sensitivity is found.
The fact that CLF is the most sensitive to Nd is to be ex-
pected, as cloud observations from the same sensor are more
directly related than a reanalysis product, so their overall
magnitude should not be compared (Zipfel et al., 2022). The
entrainment of relatively dry air from the free troposphere
into the MBL is impeded by a stronger inversion (i.e. higher
EIS), resulting in a shallower, better-mixed, and more hu-
mid MBL conducive to stratocumulus clouds (Bretherton and
Wyant, 1997; Wood and Hartmann, 2006; Qu et al., 2015a;
Myers et al., 2021). The salient positive sensitivity to EIS
is in accordance with the links found in previous studies
(e.g. Klein and Hartmann, 1993; Qu et al., 2015b; Ander-
sen et al., 2017), suggesting that EIS is a crucial controlling
factor for low marine cloud cover. Note that in some studies,
the strength of the inversion over the boundary layer is mea-
sured by lower tropospheric stability, which can be regarded
as a similar metric outperformed by EIS (Wood and Brether-
ton, 2006). Precipitation fraction is the fraction of the origi-
nal ERA5 grid box covered by large-scale precipitation. The
strong positive CLF sensitivity to precipitation fraction is
likely caused by the ML model learning that precipitation can
be viewed as a proxy for cloudiness rather than being an indi-
cator of the physical processes via which precipitation exerts
controls on the macrophysics of MBLCs. Humidity shows
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Figure 2. R2 score of regional Extreme Gradient Boosting models predicting the cloud fraction of marine boundary-layer clouds in the
independent test data set (2017–2019).

positive CLF sensitivities greater at 850 hPa, where cloud
tops are often located (Gryspeerdt and Stier, 2012), than at
700 hPa, which is typically in the free troposphere above
the MBLCs (Myers and Norris, 2013). Likewise, the atmo-
spheric temperature at 850 hPa (t850) presents stronger CLF
sensitivity than the temperature at 700 hPa (t700). Nonethe-
less, in the case of winds the 700 hPa pressure level is more
relevant than that at 850 hPa. A relatively pronounced neg-
ative sensitivity to the eastward wind component at 700 hPa
(u700) seems to indicate that clouds are depleted due to more
westerlies at this level. CLF exhibits negative sensitivities to
vertical pressure velocities at both 850 and 700 hPa, showing
that large-scale ascending motion is connected to increases
in MBLCs (Myers and Norris, 2013; Bretherton et al., 2013;
Blossey et al., 2013). In general, the global averages of CLF
sensitivity in terms of dynamical predictors (i.e. 3D winds at
surface and pressure levels) vary in sign and are less strong.
A marked negative sensitivity of CLF to SST is found, which
is in agreement with many prior studies (e.g. Qu et al., 2015b;
Scott et al., 2020), where increases in SST have been found to
lead to low cloud breakup and dissipation due to a number of
processes as described in, for example, Scott et al. (2020).
One of these is that the associated enhancement of mean
surface latent heat flux (LHF) deepens MBL and facilitates
buoyancy and thus the entrainment of dry free-tropospheric
air (Rieck et al., 2012; Andersen et al., 2022). However, CLF
is much less sensitive to LHF than to SST, which may in-
dicate that this mechanism is less important at the spatial
scale and timescale considered in this study. CLF exhibits
a considerable negative sensitivity to mean surface sensible
heat flux (SHF), which quantifies an increase in CLF with
increasing SHF (upward SHF is negative). While increased
SHF can promote the transition from decks of stratus or stra-
tocumulus clouds (high CLF) to more convective clouds (low
CLF) due to the deepening of the boundary layer (Fan et al.,

2016), potentially leading to a positive SHF–CLF relation-
ship, increased SHF is associated with situations of cold air
advection where turbulent surface fluxes are enhanced, which
could lead to marked increases in CLF (Miyamoto et al.,
2018; Zelinka et al., 2018; Grise and Kelleher, 2021).

3.2.2 Spatial patterns of the CLF sensitivity to Nd

The sensitivity of the MBLC fraction associated with the
aerosol proxy, Nd, is ubiquitously positive in accordance
with the global correlations or sensitivities found in, for ex-
ample, Gryspeerdt et al. (2016) and Andersen et al. (2017).
This is presumably due to the lifetime effect but could
also partially result from Nd retrieval biases discussed in
Sect. 2.1. The global weighted mean value of the Nd–CLF
sensitivity is 0.074 CLF σ−1, with a standard deviation of
0.036 CLF σ−1. The relationship between CLF and Nd is
found to be particularly strong in the regions of frequent
stratocumulus-to-cumulus transition off the western conti-
nental coasts. These marked positive Nd–CLF sensitivities
may be caused by high Nd, delaying the transition from stra-
tocumulus to cumulus clouds (Gryspeerdt et al., 2016; Chris-
tensen et al., 2020). However, as this cloud regime transi-
tion involves clouds shifting from more overcast to more
broken, the strong relationships in these regions may be
more affected by Nd retrieval errors. The Nd–CLF sensitiv-
ity is also pronounced in the Southern Hemispheric midlati-
tudes, where stratiform clouds dominate. The Nd–CLF sen-
sitivity is weak and close to zero in the tropics, in partic-
ular in the deep convective warm-pool region. These spa-
tial patterns of Nd–CLF sensitivity resemble those found by
Gryspeerdt et al. (2016), in particular the ones where they
mediated the aerosol optical depth–CLF relationship by Nd
but are more pronounced in the Southern Hemispheric mid-
latitudes. This difference in estimated sensitivity seems note-
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Figure 3. The distribution of the sensitivities of the cloud fraction to all predictors as depicted in Table 1. Boxes represent the interquartile
range, which is extended by whiskers to up to 1.5 interquartile ranges, with outliers shown as points outside the range. The solid line and
white dot in each box show the median and mean values of the sensitivities respectively. Predictors are sorted by the mean values of absolute
sensitivity values. The dashed line across the figure separates positive and negative sensitivity values.

worthy and should thus be investigated in future work. As
Nd retrievals tend to negatively bias at lower CLF and pos-
itively bias at higher CLF, the Nd–CLF sensitivity may be
overestimated and, at the scales considered here, should be
interpreted as an upper bound to the physical Nd–CLF sensi-
tivity. The global weighted average of the CLF–lnNd sensi-
tivity without standardization is 0.112 (unitless), and its spa-
tial pattern is shown in Fig. S4. This value is higher than
the upper bound of 0.1 reported by Bellouin et al. (2020),
which is based on global climate models and large-eddy sim-
ulations. This may be partly due to the aforementioned bias.
However, it is important to note that our non-standardized
CLF–Nd sensitivity, shown in Fig. 1a, closely mirrors that
from Yuan et al. (2023), with a similar range. In addition, the
high lnCLF–lnNd values estimated in Y. Chen et al. (2022)
and Chen et al. (2024) suggest that values exceeding the up-
per bound of 0.1 might be plausible. These recent observa-
tional studies, including quantifying cloud fraction adjust-
ment based on ship tracks (Yuan et al., 2023), volcano aerosol
perturbations (Y. Chen et al., 2022; Chen et al., 2024), and
our SHAP approach using global satellite observations, in-
dicate that the 0.1 upper bound may be extended. In future
work, estimating a radiative forcing using the SHAP-based
sensitivities will make our study more comparable with other
research on cloud fraction adjustment.

3.2.3 Spatial patterns of the CLF sensitivity to
thermodynamical drivers

There has been a strong consensus that EIS and SST are
the two important determinants of cloud fraction of ma-
rine boundary clouds and their corresponding radiative ef-
fects across different geographical regions and on varying
timescales (e.g. Bretherton, 2015; Myers and Norris, 2015;
McCoy et al., 2017b; Wall et al., 2017). Stronger inversions
capping MBL (i.e. higher EIS) will hamper the entrainment
of aloft dry air from the troposphere and thus lead to a shal-
lower MBL and more moisture trapped within MBL, promot-
ing the development and maintenance of low-level clouds
(Andersen et al., 2017). The regional EIS–CLF sensitivity
patterns (Fig. 5a) show that low marine cloud fraction in-
creases ubiquitously in response to stronger EIS, in particular
in the tropical and subtropical stratocumulus-capped regions
and within the midlatitudes. The sensitivity pattern is in good
agreement with that found by Scott et al. (2020) and Ander-
sen et al. (2023), related studies at different timescales (Grise
and Medeiros, 2016; Kelleher and Grise, 2019; de Szoeke
et al., 2016).

MBLC cover reduces globally in response to increased
SST, particularly pronounced in the stratocumulus regions
over eastern oceanic basins (Fig. 5b), consistent well with
(Scott et al., 2020). SST can favour MBLC dissipation
through increasing surface latent heat fluxes and deepen-
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Figure 4. Sensitivity of the marine boundary-layer cloud fraction to lnNd.

ing MBL, facilitating dry entrainment and eventually desic-
cating the MBL and clouds (Rieck et al., 2012; Qu et al.,
2015b). Yet as stated in Sect. 3.2.1, the weak CLF sensitivity
to LHF in relation to the strong sensitivity to SST may imply
that the other process makes more substantial contributions
– namely, that the higher moisture gradient between the tro-
posphere and MBL arising from the increased SST makes
the entrained air more efficient in evaporating cloud water
(van der Dussen et al., 2015; Qu et al., 2015b). This process
has been shown to be the driving mechanism for the observed
reduction in marine low cloud cover near the coast of Baja
California (Andersen et al., 2022).

Figure 5c shows that low marine cloud fraction increases
with negative (upward) SHF most markedly in the stratocu-
mulus regions. CLF can increase in response to increased
surface fluxes in situations of cold advection (Zelinka et al.,
2018). Over the south Indian Ocean, a marked SHF–CLF
sensitivity is also found. Here, enhancements of SHF due to
the subtropical anticyclone and midlatitude storm-track ac-
tivity have been found to increase CLF (Miyamoto et al.,
2018). The results may be a hint that the increase in CLF pre-
sumably due to increased SHF (e.g. due to cold advection)
outweighs the influence of SHF on CLF by controlling the
transition from marine stratocumulus to open-cellular marine
clouds (Kazil et al., 2014; Fan et al., 2016) in the core stra-
tocumulus regions. Consequently, the SHF–CLF sensitivity
is less pronounced in regions of frequent closed- to open-
cell and cumulus transitions. Relative humidity at 850 hPa
(RH850) is positively related to marine low liquid cloud frac-
tion across the globe. The positive sensitivity is particularly
strong in the trade cumulus regions, where the 850 hPa level
is representative of the boundary layer. In the coastal stra-
tocumulus regions, clouds are frequently below this level

(Adebiyi and Zuidema, 2016), so that clouds are not as sen-
sitive to variability in RH at that level.

3.2.4 Spatial patterns of the CLF sensitivity to
dynamical drivers

Large-scale circulations and dynamical conditions play an
essential role in controlling cloud fraction and the indirect
effects of aerosols (Su et al., 2010; Small et al., 2011). The
large-scale dynamics are represented by the horizontal and
vertical winds at 700 and 850 hPa, which display clear and
distinct regional patterns of CLF sensitivity (Fig. 6). It can
also be seen that at the considered scales and pressure levels,
horizontal wind vectors have stronger CLF sensitivities than
large-scale vertical motion. There is a coherent pattern of
negative CLF sensitivity to the zonal wind at 700 hPa in the
stratocumulus-dominated regions (also apparent at 850 hPa),
and the Southern Hemispheric midlatitudes, indicating a de-
crease in MBLCs with westerly anomalies at this pressure
level. Recently, a study using monthly data has also found
a similar sensitivity pattern of stratocumulus clouds to zonal
wind at 700 hPa, finding that the reduced CLF is related to
increased vertical wind shear (as the boundary-layer flow is
easterly), leading to increased turbulence and dry-air entrain-
ment (Andersen et al., 2023). However, using monthly data,
Andersen et al. (2023) did not find a similar CLF sensitiv-
ity to zonal winds in the Southern Hemispheric midlatitudes.
As the CLF sensitivity to u700 in the Southern Hemispheric
midlatitudes is only apparent using daily data and only at
700 hPa, it seems likely that it is related to synoptic variabil-
ity that drives day-to-day variability in MBLCs in this region
(Kelleher and Grise, 2019). Positive CLF sensitivities to u700
(higher CLF with westerly anomalies) and, to a lesser de-
gree, u850 are found off the eastern Asian and North Amer-

https://doi.org/10.5194/acp-24-13025-2024 Atmos. Chem. Phys., 24, 13025–13045, 2024



13036 Y. Jia et al.: Analysis of the cloud fraction adjustment to aerosols

Figure 5. Sensitivity of the marine boundary-layer cloud fraction to the estimated inversion strength (EIS), sea-surface temperature (SST),
sensible heat flux (SHF), and relative humidity at 850 hPa (RH850). Note that the range of colour bars of SHF and RH850 (−0.075 to 0.075)
is narrower than EIS and SST (−0.15 to 0.15).

ican continents. CLF increases due to cold-air outbreaks in
NW Atlantic and NW Pacific may be the reason for these
positive sensitivities. Cold-air outbreaks occur during winter
as cold continental air moves over warmer SSTs, increasing
moisture and heat fluxes into the MBL so that the formation
of MBLCs is favoured (Young et al., 2002). This leads to
wintertime maxima in CLF in these regions (Yuan and Ore-
opoulos, 2013).

The sensitivity of CLF to the meridional winds at 700 hPa
exhibits two bands straddling the subtropical regions be-
tween about 15 and 35° in both hemispheres but opposite
in sign (positive in the Northern Hemisphere and negative in
the Southern Hemisphere), illustrating that in these regions,
the poleward winds are associated with an increase in low
cloud fraction. The bands are still apparent at 850 hPa, while
the negative band in the Southern Hemisphere extends north-
ward to tropical areas. These hemispheric sensitivity bands
to the v wind component at 700 hPa closely resemble those
found in Andersen et al. (2023), with their analysis suggest-
ing that the poleward winds on the eastern side of midlati-
tude cyclones may be related to warm and moist advection,
increasing CLF. However, they also find a strong correlation
of these free-tropospheric poleward winds with large-scale
ascending air motion making the assertion of causality dif-
ficult. Poleward winds are also found to decrease CLF over
the Southern Hemispheric midlatitudes.

CLF is negatively connected to the vertical pressure ve-
locity at both 700 and 850 hPa (ω700 and ω850) over the en-

tire Earth, indicating that ascending large-scale air motion
enhances the cover of MBLCs globally. It is shown in the
bottom of Fig. 6 column (a) that the CLF sensitivity to ω700
is larger in the midlatitude ocean basins, whereas the CLF
sensitivity to ω850 is larger in the subtropical oceans, where
subsidence is climatologically prevalent (Myers and Norris,
2015, 2016; Scott et al., 2020). This seems indicative of CLF
being the most sensitive to large-scale ascending motion at
the typical altitude of the clouds. It is interesting to note that
between 30° N and 30° S, no marked CLF sensitivity to ω700
is found, contrasting the finding of enhanced subsidence at
this level reducing MBLCs by Myers and Norris (2013). This
effect is likely better described in the ω850 data, which is
more related to the altitude of the cloud top.

3.3 Dependence of Nd–CLF relationship on
meteorology

3.3.1 Global overview of the interaction indices

In this section, we use the IAI as defined in Sect. 2.3.2 to
quantitatively show how the response of MBLC fraction at-
tributed to the aerosol proxy Nd varies with the meteorolog-
ical factors. As discussed in Sect. 2.3.2, since the sensitivity
related to Nd is positive across the globe (Fig. 5d), a pos-
itive IAI can be interpreted as an amplification of the Nd–
CLF sensitivity with high (above-average) feature values of
a meteorological variable, whereas a negative IAI signifies
an amplification of the sensitivity at low feature values.
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Figure 6. Sensitivity of cloud fraction to wind component vectors u and v and vertical velocities at 700 hPa (column a) and 850 hPa (column
b). Note that the range of the colour bars is in general smaller (−0.04–0.04) than in Fig. 5.

In Fig. 7, analogous to Fig. 3, the features along the x axis
are arranged in descending order based on their averaged ab-
solute IAIs, that is, by the strength of the impact of each
meteorological feature on the Nd–CLF sensitivity. Similar
to the feature importance summarized by Fig. 3, EIS, SST,
RH850, and SHF have relatively large strength of interaction
effect and can thus be regarded as critical controlling factors
for not only marine low cloud cover but also their response
to changes in Nd (and in extension aerosols). Compared to
the CLF sensitivities, the IAIs associated with atmospheric
temperatures at 700 and 850 hPa have greater strengths. Fur-
thermore, it can also be seen that the vertical and horizontal
winds at the surface and different pressure levels are gener-
ally ranked lower. In general, the thermodynamical factors
seem to have a stronger influence on the Nd–CLF sensitivity
than the dynamical factors.

3.3.2 Spatial patterns of the interaction indices

Coherent and distinct spatial distributions of the impact of
selected meteorological parameters on the Nd–CLF relation-
ship can be observed. Hereafter, we show the regional char-
acteristics of the interaction effects of EIS and SST, which
are the two most important meteorological factors for CLF in
MBLCs and have the greatest absolute strengths of IAI. EIS
exerts the most noticeable positive IAIs over the midlatitude
oceanic areas (Fig. 8a), reflecting that stronger temperature
inversions capping the MBL over these regions may amplify
the positive Nd–CLF relationship. The interpretation of pos-
sible underlying physical mechanisms of these interaction ef-
fects is difficult and remains speculative. The results seem to
suggest that in these regions, potentially through hampering
the entrainment of drier air from the free troposphere, the
stronger inversion and more stable conditions are capable of
trapping more moisture within a shallower MBL and could
thus weaken the evaporation–entrainment feedback. As a re-

https://doi.org/10.5194/acp-24-13025-2024 Atmos. Chem. Phys., 24, 13025–13045, 2024



13038 Y. Jia et al.: Analysis of the cloud fraction adjustment to aerosols

Figure 7. Similar to Fig. 3 but for the interaction effect of Nd with all environmental parameters, quantified by the interaction index (CLF
σ−1).

sult, it may ultimately favour a more positive Nd–CLF rela-
tionship (Chen et al., 2014; Christensen et al., 2020). It is
interesting to note that these interactions are not apparent
in the stratocumulus regions, where EIS is a strong control
of CLF, and in the stratocumulus-to-cumulus transition re-
gions, where Christensen et al. (2020) found the aerosol ef-
fect on this transition to be confined to stable atmospheric
conditions. This may imply that the suggested entrainment
effect is dependent on the EIS and stronger at slightly lower
EIS values typically found in the midlatitudes (Scott et al.,
2020). The observed impact of EIS on the Nd–CLF relation-
ship found in the midlatitudes may also have implications
within the context of climate change. While in the subtrop-
ics global climate models predict an increase in EIS with a
warming climate, in the midlatitudes EIS is predicted to de-
crease (Myers et al., 2021), potentially decreasing the sensi-
tivity of CLF to Nd there.

Figure 8b shows that higher SSTs are found to amplify the
positive Nd–CLF relationship (positive IAI) in the regions
of frequent stratocumulus-to-cumulus transition (Cesana and
Del Genio, 2021). The physical interpretation could be the
following: here, higher SSTs tend to lead to the transition
from stratocumulus clouds to shallow convective clouds (Ce-
sana et al., 2019); however, this transition has been found to
be delayed when aerosol is increased (Goren et al., 2019;
Christensen et al., 2020). Tentatively, the positive IAIs in
these transition regions may thus point to increased control
ofNd on CLF at higher SST values as these are the situations

where transitions typically occur and when increased Nd can
act to delay this transition. In these regions, higher SSTs in
the future might thus increase the sensitivity of MBLC CLF
to aerosols. It should be noted that the quantification of the
dependence of the Nd–CLF relationship on meteorological
factors (EIS, SST discussed in this section) is also likely sub-
ject to the biases in the Nd–CLF sensitivity caused by the Nd
retrieval biases as a function of CLF. This would potentially
contribute to the non-causal facets of the relationships and
interactive effects quantified by SHAP values.

4 Conclusions

In this study, 9 years (2011–2019) of daily satellite and re-
analysis data have been analysed to better understand the ef-
fect of Nd on CLF in MBLC and its dependence on meteo-
rological factors. We have established a near-global machine
learning framework to predict the cloud fraction of marine
boundary clouds using regionally specific XGB regression
models. Including many confounding and influencing fac-
tors as a whole, the explainable machine learning technique
of SHAP regression values has been used to explain the re-
gional XGB models; to quantify the CLF sensitivity to all
cloud controlling factors with a specific focus on Nd; and,
moreover, to quantify the meteorological influence on the
Nd–CLF relationship at a global scale. The statistical sen-
sitivities and interactive effects are interpreted with the guid-
ance of hypothesized causal pathways and the state-of-the-art
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Figure 8. Patterns of the interaction index showing the dependence of the Nd–CLF relationship on estimated inversion strength (EIS) (a)
and sea-surface temperature (SST) (b).

physical understanding of the system. The main findings of
this study, which should be interpreted in light of the data and
methodology limitations discussed in Sect. 2.3.3), are sum-
marized as follows:

1. The marine boundary-layer cloud fraction shows a no-
table positive sensitivity toNd (a surrogate for aerosols)
in the regions of stratocumulus-to-cumulus transition,
which may arise from the high Nd delaying this tran-
sition. The Nd–CLF sensitivity in the Southern Hemi-
spheric midlatitudes is observed to be higher than in
previous studies, which should be investigated in future
work. The estimated Nd–CLF sensitivity and its mag-
nitude suggest that aerosols likely have a considerable
impact on MBL cloudiness although this may partially
result from an overestimation caused by the effect of a
positive retrieval bias of Nd at high CLF.

2. Consistent with the literature, our statistical method
shows that EIS and SST are two important determinants
for low marine clouds by regulating surface fluxes and
dry-air entrainment processes. In addition, strong neg-
ative CLF sensitivity and spatial patterns for SHF are
also found, suggesting that the effect of cold air ad-
vection might surpass the SHF enhancement of closed-
to-open-cell and cumulus transitions. Dynamic drivers
(meridional and zonal winds) indicate that midlati-
tude synoptic-scale disturbances and vertical wind shear
seemingly make considerable contributions to marine
low cloud amounts.

3. In general, thermodynamical parameters exert a more
important influence on the Nd–CLF relationship than
dynamical parameters. EIS, RH850, SST, and temper-
atures at 700 and 850 hPa have the strongest effect on
the Nd–CLF sensitivity. In the midlatitudes, higher EIS
is found to amplify the positive Nd–CLF sensitivity,
which may be related to a reduced entrainment feed-
back in these conditions, whereas higher SST is found
to amplify the Nd–CLF sensitivity in stratocumulus-to-
cumulus transition regions, which is potentially because

the transition induced by higher SSTs may be delayed
by increased Nd. These findings have potential impli-
cations for possible future changes in the sensitivity of
CLF to aerosols.

4. For the dynamical and thermodynamical factors shown
here, both CLF sensitivities and interactive effects (de-
pendence of Nd–CLF relationship on meteorology) ex-
hibit distinct regional patterns. These coherent spatial
patterns indicate that the proposed explainable machine
learning framework not only is capable of skilfully pre-
dicting CLF for marine low clouds but also has the po-
tential to capture regional characteristics of the relation
between CLF and Nd as well as meteorological influ-
ences.

In the future, the observation-based sensitivities and in-
teractive effects quantified by the ML framework here will
be compared to those in ESMs, which have the potential
to evaluate ESM parameterizations related to ACI and even
help gain insights into how the models could be tuned in
this respect. In addition, incorporating causal approaches for
SHAP, such as those proposed by Heskes et al. (2020) and
Frye et al. (2021), would help to test to which extent the ob-
served statistical relationships and interaction effects repre-
sent physical processes.

Code availability. Code is available from the corresponding au-
thor upon reasonable request.

Data availability. All data sets used in this study
are publicly available. The MODIS data set
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al., 2015) was acquired from the Level-1 and Atmosphere
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Archive Center (DAAC) (NASA: MODIS Data Collection,
https://ladsweb.modaps.eosdis.nasa.gov/search/, last access:
17 November 2024); the hourly reanalysis data at single levels
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