Articles | Volume 24, issue 21
https://doi.org/10.5194/acp-24-12203-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-12203-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Precipitation in the mountains of Central Asia: isotopic composition and source regions
Zarina Saidaliyeva
CORRESPONDING AUTHOR
Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
Maria Shahgedanova
Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
Vadim Yapiyev
Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
School of Mining and Geosciences, Nazarbayev University, Astana, 010000, Kazakhstan
Andrew John Wade
Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
Fakhriddin Akbarov
Centre of Glacial Geology, Institute of Geology and Geophysics, Tashkent, 100164, Uzbekistan
Mukhammed Esenaman uulu
Central Asian Institute for Applied Geosciences, Bishkek, 720027, Kyrgyzstan
Olga Kalashnikova
Central Asian Institute for Applied Geosciences, Bishkek, 720027, Kyrgyzstan
Vassiliy Kapitsa
Central Asian Regional Glaciological Centre under the auspices of UNESCO, Almaty, 050010, Kazakhstan
Nikolay Kasatkin
Central Asian Regional Glaciological Centre under the auspices of UNESCO, Almaty, 050010, Kazakhstan
Ilkhomiddin Rakhimov
Institute of Water Problems, Hydropower and Ecology, Dushanbe, 734025, Tajikistan
Rysbek Satylkanov
Tien Shan High Mountain Research Center, Bishkek, 720033, Kyrgyzstan
Daniiar Sayakbaev
Tien Shan High Mountain Research Center, Bishkek, 720033, Kyrgyzstan
Eleonora Semakova
Ulugh Beg Astronomical Institute, Academy of Sciences of Uzbekistan, Tashkent, 100052, Uzbekistan
Igor Severskiy
Central Asian Regional Glaciological Centre under the auspices of UNESCO, Almaty, 050010, Kazakhstan
Maxim Petrov
Centre of Glacial Geology, Institute of Geology and Geophysics, Tashkent, 100164, Uzbekistan
Gulomjon Umirzakov
National University of Uzbekistan, Tashkent, 100174, Uzbekistan
Hydrometeorological Research Institute, Tashkent, 100052, Uzbekistan
Ryskul Usubaliev
Central Asian Institute for Applied Geosciences, Bishkek, 720027, Kyrgyzstan
Related authors
No articles found.
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Youping Chen, Magdalena Opała-Owczarek, Feng Chen, Piotr Owczarek, Heli Zhang, Shijie Wang, Mao Hu, Rysbek Satylkanov, Bakytbek Ermenbaev, Bakhtiyorov Zulfiyor, Huaming Shang, and Ruibo Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-329, https://doi.org/10.5194/hess-2022-329, 2022
Preprint withdrawn
Short summary
Short summary
Mountain precipitation is an important force driving the cycles of the cryosphere, biosphere and hydrosphere in arid Central Asia. This driving force has broad coherence in spatiotemporal variation, with periodic cycles and decadal shifts caused by the North Atlantic Oscillation and the El Niño-Southern Oscillation. In the future, the increase of precipitation will delay the impact of the sharp rise in temperature on the melting of glacier mass balance.
Zhihua He, Katy Unger-Shayesteh, Sergiy Vorogushyn, Stephan M. Weise, Doris Duethmann, Olga Kalashnikova, Abror Gafurov, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 3289–3309, https://doi.org/10.5194/hess-24-3289-2020, https://doi.org/10.5194/hess-24-3289-2020, 2020
Short summary
Short summary
Quantifying the seasonal contributions of the runoff components, including groundwater, snowmelt, glacier melt, and rainfall, to streamflow is highly necessary for understanding the dynamics of water resources in glacierized basins given the vulnerability of snow- and glacier-dominated environments to the current climate warming. Our study provides the first comparison of two end-member mixing approaches for hydrograph separation in glacierized basins.
Julia Kalanke, Jens Mingram, Stefan Lauterbach, Ryskul Usubaliev, Rik Tjallingii, and Achim Brauer
Geochronology, 2, 133–154, https://doi.org/10.5194/gchron-2-133-2020, https://doi.org/10.5194/gchron-2-133-2020, 2020
Short summary
Short summary
Our study presents the first seasonally laminated (varved) sediment record covering almost the entire Holocene in high mountainous arid Central Asia. The established floating varve chronology is confirmed by two terrestrial radiocarbon dates, whereby aquatic radiocarbon dates reveal decreasing reservoir ages up core. Changes in seasonal deposition characteristics are attributed to changes in runoff and precipitation and/or to evaporative summer conditions.
Naoki Sakurai, Chiyuki Narama, Mirlan Daiyrov, Muhammed Esenamanov, Zarylbek Usekov, and Hiroshi Inoue
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-62, https://doi.org/10.5194/tc-2020-62, 2020
Revised manuscript not accepted
Short summary
Short summary
To better understand the storage in and drainage through supraglacial lakes and englacial conduits, we investigated the daily water-level variations of supraglacial lakes on the southern Inylchek Glacier in 2017, 2018, and 2019, using daily aerial digital images in 2017–2019 from an unmanned aerial vehicle (UAV). We observed the simultaneous drainage of five lakes, and argued that each lake must have been connected to the same main englacial conduit via a branch englacial conduit.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Heiko Apel, Zharkinay Abdykerimova, Marina Agalhanova, Azamat Baimaganbetov, Nadejda Gavrilenko, Lars Gerlitz, Olga Kalashnikova, Katy Unger-Shayesteh, Sergiy Vorogushyn, and Abror Gafurov
Hydrol. Earth Syst. Sci., 22, 2225–2254, https://doi.org/10.5194/hess-22-2225-2018, https://doi.org/10.5194/hess-22-2225-2018, 2018
Short summary
Short summary
Central Asia crucially depends on water resources supplied by snow melt in the mountains during summer. To support water resources management we propose a generic tool for statistical forecasts of seasonal discharge based on multiple linear regressions. The predictors are observed precipitation and temperature, snow coverage, and discharge. The automatically derived models for 13 different catchments provided very skilful forecasts in April, and acceptable forecasts in January.
Vassiliy Kapitsa, Maria Shahgedanova, Horst Machguth, Igor Severskiy, and Akhmetkal Medeu
Nat. Hazards Earth Syst. Sci., 17, 1837–1856, https://doi.org/10.5194/nhess-17-1837-2017, https://doi.org/10.5194/nhess-17-1837-2017, 2017
Short summary
Short summary
Changes in lake count and area in the region of Djungarskiy Alatau were assessed, showing that both increased by 6 % in 2002–2014 due to glacier melt. A total of 50 lakes were identified as potentially dangerous. GlabTop2 was used to simulate location and size of overdeepenings in the subglacier beds which present sites where lakes can develop in the future. The model predicted 67 % of lakes would form in the area de-glacierized in 2002–2014, correctly proving a useful tool in hazard management.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Zamira Usmanova, Maria Shahgedanova, Igor Severskiy, Gennady Nosenko, and Vassiliy Kapitsa
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-82, https://doi.org/10.5194/tc-2016-82, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Changes in glacierized area in the Tekes River basin were assessed using Landsat and KH-9 imagery from 2013, 1992 and 1976. The Tekes River is a transboundary river distributing water between Kazakhstan and China where strong competition for water exists. Glacier shrinkage has been observed and the observed warming is likely to result in the extension of the melting season and higher proportion of liquid precipitation leading to further and potentially faster glacier recession in the future.
R. A. Skeffington, S. J. Halliday, A. J. Wade, M. J. Bowes, and M. Loewenthal
Hydrol. Earth Syst. Sci., 19, 2491–2504, https://doi.org/10.5194/hess-19-2491-2015, https://doi.org/10.5194/hess-19-2491-2015, 2015
Short summary
Short summary
The EU Water Framework Directive requires rivers to be of good chemical and ecological quality. Chemical quality is assessed by sampling and analysing the water. Normal sampling regimes might involve taking a sample monthly or weekly. This paper uses high-frequency data from rivers to assess how accurate these regimes are at assessing the true chemical quality. Weekly sampling was more accurate than monthly, but there were still large uncertainties. We suggest ways to improve sampling accuracy.
M. Shahgedanova, G. Nosenko, S. Kutuzov, O. Rototaeva, and T. Khromova
The Cryosphere, 8, 2367–2379, https://doi.org/10.5194/tc-8-2367-2014, https://doi.org/10.5194/tc-8-2367-2014, 2014
Short summary
Short summary
The paper investigates changes in the area of 498 glaciers in the main Caucasus ridge and on Mt. Elbrus (the highest summit in geographical Europe), Russia/Georgia in the late 20th and 21st centuries using ASTER and Landsat imagery with 15 m resolution from 1999-2001 and 2010-2012 and aerial photography from 1987-2001. The glacier area decreased by 4.7±2.1% or 19.2±8.7 km2 from 1999-2001 to 2010/12. The recession rates of glacier terminus more than doubled between 1987-2000/01 and 2000/01–2010.
M. N. Futter, M. A. Erlandsson, D. Butterfield, P. G. Whitehead, S. K. Oni, and A. J. Wade
Hydrol. Earth Syst. Sci., 18, 855–873, https://doi.org/10.5194/hess-18-855-2014, https://doi.org/10.5194/hess-18-855-2014, 2014
S. J. Halliday, R. A. Skeffington, A. J. Wade, C. Neal, B. Reynolds, D. Norris, and J. W. Kirchner
Biogeosciences, 10, 8013–8038, https://doi.org/10.5194/bg-10-8013-2013, https://doi.org/10.5194/bg-10-8013-2013, 2013
S. Kutuzov, M. Shahgedanova, V. Mikhalenko, P. Ginot, I. Lavrentiev, and S. Kemp
The Cryosphere, 7, 1481–1498, https://doi.org/10.5194/tc-7-1481-2013, https://doi.org/10.5194/tc-7-1481-2013, 2013
M. Shahgedanova, S. Kutuzov, K. H. White, and G. Nosenko
Atmos. Chem. Phys., 13, 1797–1808, https://doi.org/10.5194/acp-13-1797-2013, https://doi.org/10.5194/acp-13-1797-2013, 2013
Related subject area
Subject: Climate and Earth System | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Spring tropical cyclones modulate near-surface isotopic compositions of atmospheric water vapour in Kathmandu, Nepal
Niranjan Adhikari, Jing Gao, Aibin Zhao, Tianli Xu, Manli Chen, Xiaowei Niu, and Tandong Yao
Atmos. Chem. Phys., 24, 3279–3296, https://doi.org/10.5194/acp-24-3279-2024, https://doi.org/10.5194/acp-24-3279-2024, 2024
Short summary
Short summary
Atmospheric water vapour isotopes at Kathmandu recorded significantly low δ18Ov and δDv values during cyclones Tauktae and Yaas in 2021, originating in the Arabian Sea and Bay of Bengal, respectively. Such depletion was associated with the intense moisture convergence and strong convection near the sampling site. The lower δ18Ov and higher d-excessv values during cyclone Yaas may be attributed to the occurrence of robust downdrafts during the rainfall.
Cited articles
Aemisegger, F., Pfahl, S., Sodemann, H., Lehner, I., Seneviratne, S. I., and Wernli, H.: Deuterium excess as a proxy for continental moisture recycling and plant transpiration, Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, 2014.
Aggarwal, P. K., Romatschke, U., Araguas-Araguas, L., Belachew, D., Longstaffe, F. J., Berg, P., Schumacher, C., and Funk, A.: Proportions of convective and stratiform precipitation revealed in water isotope ratios, Nat. Geosci., 9, 624–629, https://doi.org/10.1038/ngeo2739, 2016.
Aizen, E. M., Aizen, V. B., Mayewski, P. A., Zhou, H., Rodda, C., Joswiak, D., Takeuchi, N., Fujita, K., Kurbatov, A., and Grigholm, B. O.: Aridity of Central Asia through the Holocene, 2017, GC41G-02, https://ui.adsabs.harvard.edu/abs/2017AGUFMGC41G..02A/abstract (last access: 28 October 2024), 2017.
Aizen, V., Aizen, E., Melack, J., and Martma, T.: Isotopic measurements of precipitation on central Asian glaciers (southeastern Tibet, northern Himalayas, central Tien Shan), J. Geophys. Res.-Atmos., 101, 9185–9196, https://doi.org/10.1029/96JD00061, 1996.
Aizen, V. B., Aizen, E. M., and Melack, J. M.: Snow distribution and melt in central Tien Shan, susamir valley, Arct. Alp. Res., 29, 403–413, https://doi.org/10.2307/1551988, 1997.
Aizen, V. B., Aizen, E. M., Melack, J. M., Kreutz, K. J., and Cecil, L. D. W.: Association between atmospheric circulation patterns and firn-ice core records from the Inilchek glacierized area, central Tien Shan, Asia, J. Geophys. Res.-Atmos., 109, D08304, https://doi.org/10.1029/2003JD003894, 2004.
Aizen, V. B., Mayewski, P. A., Aizen, E. M., Joswiak, D. R., Surazakov, A. B., Kaspari, S., Grigholm, B., Krachler, M., Handley, M., and Finaev, A.: Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores, J. Glaciol., 55, 275–291, https://doi.org/10.3189/002214309788608787, 2009.
Araguás-Araguás, L., Froehlich, K., and Rozanski, K.: Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture, Hydrol. Process., 14, 1341–1355, https://doi.org/10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.3.CO;2-Q, 2000.
Bagheri, R., Bagheri, F., Karami, G. H., and Jafari, H.: Chemo-isotopes (18O & 2H) signatures and HYSPLIT model application: Clues to the atmospheric moisture and air mass origins, Atmos. Environ., 215, 116892, https://doi.org/10.1016/j.atmosenv.2019.116892, 2019.
Bershaw, J.: Controls on deuterium excess across Asia, Geosci., 8, 257, https://doi.org/10.3390/geosciences8070257, 2018.
Bowen, G. J.: Isoscapes: Spatial Pattern in Isotopic Biogeochemistry, Annu. Rev. Earth Pl. Sc., 38, 161–187, https://doi.org/10.1146/annurev-earth-040809-152429, 2010.
Bowen, G. J.: The Online Isotopes in Precipitation Calculator, version OIPC3.1, http://www.waterisotopes.org (last access: 28 August 2024), 2022.
Bowen, G. J. and Revenaugh, J.: Interpolating the isotopic composition of modern meteoric precipitation, Water Resour. Res., 39, 1–13, https://doi.org/10.1029/2003WR002086, 2003.
Bowen, G. J., Kennedy, C. D., Henne, P. D., and Zhang, T.: Footprint of recycled water subsidies downwind of Lake Michigan, Ecosphere, 3, 53, https://doi.org/10.1890/ES12-00062.1, 2012.
Bowen, G. J., Putman, A., Brooks, J. R., Bowling, D. R., Oerter, E. J., and Good, S. P.: Inferring the source of evaporated waters using stable H and O isotopes, Oecologia, 187, 1025–1039, https://doi.org/10.1007/s00442-018-4192-5, 2018.
Bowen, G. J., Cai, Z., Fiorella, R. P., and Putman, A. L.: Isotopes in the Water Cycle: Regional- to Global-Scale Patterns and Applications, Annu. Rev. Earth Pl. Sc., 47, 453–479, https://doi.org/10.1146/annurev-earth-053018-060220, 2019.
Chen, F., Wang, S., Wu, X., Zhang, M., Argiriou, A. A., Zhou, X., and Chen, J.: Local Meteoric Water Lines in a Semi-Arid Setting of Northwest China Using Multiple Methods, Water, 13, 2380, https://doi.org/10.3390/w13172380, 2021.
Chen, L., Zhu, G., Lin, X., Li, R., Lu, S., Jiao, Y., Qiu, D., Meng, G., and Wang, Q.: The Complexity of Moisture Sources Affects the Altitude Effect of Stable Isotopes of Precipitation in Inland Mountainous Regions, Water Resour. Res., 60, e2023WR036084, https://doi.org/10.1029/2023WR036084, 2024.
Consortium: Randolph Glacier Inventory – A dataset of global glacier outlines: Version 6.0: technical report, global land ice measurements from space, Colorado, USA, Digit. Media, https://doi.org/10.5067/f6jmovy5navz, 2017.
Craig, H.: Isotopic Variations in Meteoric Waters, Science, 133, 1702–1703, https://doi.org/10.1126/science.133.3465.1702, 1961.
Craig, H. and Gordon, L.: Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, Spoleto Meeting on Nuclear Geology, Stable Isotopes in Oceanography Studies and Paleo Temperature, 9–130, https://www.scienceopen.com/document?vid=3c68a140-4141-41c0-be2e-90f1e228e8a7 (last access: 28 August 2024), 1965.
Crawford, J., Hughes, C. E., and Lykoudis, S.: Alternative least squares methods for determining the meteoric water line, demonstrated using GNIP data, J. Hydrol., 519, 2331–2340, https://doi.org/10.1016/j.jhydrol.2014.10.033, 2014.
Dansgaard, W.: Stable isotopes in precipitation, Tellus A, 16, 436, https://doi.org/10.3402/tellusa.v16i4.8993, 1964.
de Kok, R. J., Tuinenburg, O. A., Bonekamp, P. N. J., and Immerzeel, W. W.: Irrigation as a Potential Driver for Anomalous Glacier Behavior in High Mountain Asia, Geophys. Res. Lett., 45, 2047–2054, https://doi.org/10.1002/2017GL076158, 2018.
Dorling, S. R., Davies, T. D., and Pierce, C. E.: Cluster analysis: a technique for estimating the synoptic meteorological controls on air and precipitation chemistry–results from Eskdalemuir, South Scotland, Atmos. Environ., 26, 2583–2602, 1992.
Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website, NOAA Air Resour. Lab. Silver Spring, MD, http://ready.arl.noaa.gov/HYSPLIT.php (last access: 28 August 2024), 2013.
Farinotti, D., Longuevergne, L., Moholdt, G., Duethmann, D., Mölg, T., Bolch, T., Vorogushyn, S., and Güntner, A.: Substantial glacier mass loss in the Tien Shan over the past 50 years, Nat. Geosci., 8, 716–722, https://doi.org/10.1038/ngeo2513, 2015.
Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J., and Dehecq, A.: Manifestations and mechanisms of the Karakoram glacier Anomaly, Nat. Geosci., 13, 8–16, https://doi.org/10.1038/s41561-019-0513-5, 2020.
Feng, F., Li, Z., Zhang, M., Jin, S., and Dong, Z.: Deuterium and oxygen 18 in precipitation and atmospheric moisture in the upper Urumqi River Basin, eastern Tianshan Mountains, Environ. Earth Sci., 68, 1199–1209, https://doi.org/10.1007/s12665-012-1820-y, 2013.
Friedman, I., Machta, L., and Soller, R.: Water-vapor exchange between a water droplet and its environment, J. Geophys. Res., 67, 2761–2766, https://doi.org/10.1029/JZ067i007p02761, 1962.
Fröhlich, K., Gibson, J. J., and Aggarwal, P. K.: Deuterium excess in precipitation and its climatological significance, IAEA, Study of Environmental Change Using Isotope Techniques, Science And Technology, April, 54–66, https://inis.iaea.org/search/search.aspx?orig_q=RN:34017972 (last access: 28 August 2024), 2001.
Froehlich, K., Kralik, M., Papesch, W., Rank, D., Scheifinger, H., and Stichler, W.: Deuterium excess in precipitation of Alpine regions – moisture recycling, Isotopes Environ. Health Stud., 44, 61–70, https://doi.org/10.1080/10256010801887208, 2008.
Gat, J. R.: Oxygen and Hydrogen Isotopes in the Hydrologic Cycle, Annu. Rev. Earth Pl. Sc., 24, 225–262, https://doi.org/10.1146/annurev.earth.24.1.225, 1996.
Gat, J. R. and Gonfiantini, R.: Stable Isotope Hydrology Deuterium and Oxygen-18 in the Water Cycle, Technical report, 210, International At. energy agency, 339, https://inis.iaea.org/search/search.aspx?orig_q=RN:13677657 (last access: 28 October 2024), 1981.
He, Z., Unger-shayesteh, K., Vorogushyn, S., Weise, S. M., Kalashnikova, O., Gafurov, A., Duethmann, D., Barandun, M., and Merz, B.: Constraining hydrological model parameters using water isotopic compositions in a glacierized basin, Central Asia, J. Hydrol., 571, 332–348, https://doi.org/10.1016/j.jhydrol.2019.01.048, 2019.
Hoelzle, M., Barandun, M., Bolch, T., Fiddes, J., Gafurov, A., Muccione, V., Saks, T., and Shahgedanova, M.: The status and role of the alpine cryosphere in Central Asia, Aral Sea Basin Water Sustain. Dev. Cent. Asia, 2, 100–121, https://doi.org/10.4324/9780429436475-8, 2019.
Hughes, C. E. and Crawford, J.: A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data, J. Hydrol., 464–465, 344–351, https://doi.org/10.1016/j.jhydrol.2012.07.029, 2012.
IAEA/WMO: Global Network of Isotopes in Precipitation. The GNIP Database, https://nucleus.iaea.org/wiser (last access: 28 August 2024), 2015.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world's water towers, Nature, 577, 364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020.
International Atomic Energy Agency (IAEA): Global Network of Isotopes in Precipitation (GNIP), https://www.iaea.org/services/networks/gnip, last access: 28 October 2024.
Jasechko, S.: Global Isotope Hydrogeology – Review, Rev. Geophys., 57, 835–965, https://doi.org/10.1029/2018RG000627, 2019.
Jiang, J., Zhou, T., Chen, X., and Zhang, L.: Future changes in precipitation over Central Asia based on CMIP6 projections, Environ. Res. Lett., 15, 054009, https://doi.org/10.1088/1748-9326/ab7d03, 2020.
Jin, L., Chen, F., Morrill, C., Otto-Bliesner, B. L., and Rosenbloom, N.: Causes of early Holocene desertification in arid central Asia, Clim. Dynam., 38, 1577–1591, https://doi.org/10.1007/s00382-011-1086-1, 2012.
Jorba, O., Pérez, C., Rocadenbosch, F., and Baldasano, J.: Cluster Analysis of 4-Day Back Trajectories Arriving in the Barcelona Area, Spain, from 1997 to 2002, J. Appl. Meteorol., 43, 887–901, https://doi.org/10.1175/1520-0450(2004)043<0887:CAODBT>2.0.CO;2, 2004.
Juhlke, T. R., Meier, C., Van Geldern, R., Vanselow, K. A., Wernicke, J., Baidulloeva, J., Barth, J. A. C., and Weise, S. M.: Assessing moisture sources of precipitation in the Western Pamir Mountains (Tajikistan, Central Asia) using deuterium excess, Tellus B, 71, 1601987, https://doi.org/10.1080/16000889.2019.1601987, 2019.
Kapitsa, V., Shahgedanova, M., Severskiy, I., Kasatkin, N., White, K., and Usmanova, Z.: Assessment of Changes in Mass Balance of the Tuyuksu Group of Glaciers, Northern Tien Shan, Between 1958 and 2016 Using Ground-Based Observations and Pléiades Satellite Imagery, Front. Earth Sci., 8, 259, https://doi.org/10.3389/feart.2020.00259, 2020.
Kaser, G., Großhauser, M., and Marzeion, B.: Contribution potential of glaciers to water availability in different climate regimes, P. Natl. Acad. Sci. USA, 107, 20223–20227, https://doi.org/10.1073/pnas.1008162107, 2010.
Kostrova, S. S., Meyer, H., Fernandoy, F., Werner, M., and Tarasov, P. E.: Moisture origin and stable isotope characteristics of precipitation in southeast Siberia, Hydrol. Process., 34, 51–67, https://doi.org/10.1002/hyp.13571, 2020.
Kreutz, K. J., Wake, C. P., Aizen, V. B., DeWayne Cecil, L., and Synal, H. A.: Seasonal deuterium excess in a Tien Shan ice core: Influence of moisture transport and recycling in Central Asia, Geophys. Res. Lett., 30, 1922, https://doi.org/10.1029/2003GL017896, 2003.
Kutuzov, S. and Shahgedanova, M.: Glacier retreat and climatic variability in the eastern Terskey-Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century, Global Planet. Change, 69, 59–70, https://doi.org/10.1016/j.gloplacha.2009.07.001, 2009.
Link, A., van der Ent, R., Berger, M., Eisner, S., and Finkbeiner, M.: The fate of land evaporation – a global dataset, Earth Syst. Sci. Data, 12, 1897–1912, https://doi.org/10.5194/essd-12-1897-2020, 2020.
Liu, J., Song, X., Yuan, G., Sun, X., and Yang, L.: Stable isotopic compositions of precipitation in China, Tellus B, 66, 22567, https://doi.org/10.3402/tellusb.v66.22567, 2014.
Lydolph, P. E.: Climates of the Soviet Union, edited by: Paul E. Lydolph and Landsberg, H. E., Elsevier Scientific Publishing Company, 443 pp., ISBN 0444415165, 1977.
Michelsen, N., van Geldern, R., Roßmann, Y., Bauer, I., Schulz, S., Barth, J. A. C., and Schüth, C.: Comparison of precipitation collectors used in isotope hydrology, Chem. Geol., 488, 171–179, https://doi.org/10.1016/j.chemgeo.2018.04.032, 2018.
Minder, J. R., Bartolini, W. M., Spence, C., Hedstrom, N. R., Blanken, P. D., and Lenters, J. D.: Characterizing and constraining uncertainty associated with surface and boundary layer turbulent fluxes in simulations of lake-effect snowfall, Weather Forecast., 35, 467–488, https://doi.org/10.1175/WAF-D-19-0153.1, 2020.
Miralles, D. G., Nieto, R., McDowell, N. G., Dorigo, W. A., Verhoest, N. E. C., Liu, Y. Y., Teuling, A. J., Dolman, A. J., Good, S. P., and Gimeno, L.: Contribution of water-limited ecoregions to their own supply of rainfall, Environ. Res. Lett., 11, 124007, https://doi.org/10.1088/1748-9326/11/12/124007, 2016.
Natali, S., Doveri, M., Giannecchini, R., Baneschi, I., and Zanchetta, G.: Is the deuterium excess in precipitation a reliable tracer of moisture sources and water resources fate in the western Mediterranean? New insights from Apuan Alps (Italy), J. Hydrol., 614, 128497, https://doi.org/10.1016/j.jhydrol.2022.128497, 2022.
Natali, S., Doveri, M., Franceschi, L., Giannecchini, R., Luppichini, M., Menichini, M., and Zanchetta, G.: Moisture sources and climatic effects controlling precipitation stable isotope composition in a western Mediterranean island (Pianosa, Italy), Atmos. Res., 294, 106987, https://doi.org/10.1016/j.atmosres.2023.106987, 2023.
Oza, H., Padhya, V., Ganguly, A., and Deshpande, R. D.: Investigating hydrometeorology of the Western Himalayas: Insights from stable isotopes of water and meteorological parameters, Atmos. Res., 268, 105997, https://doi.org/10.1016/j.atmosres.2021.105997, 2022.
Pang, Z., Kong, Y., Froehlich, K., Huang, T., Yuan, L., Li, Z., and Wang, F.: Processes affecting isotopes in precipitation of an arid region, Tellus B, 63, 352, https://doi.org/10.1111/j.1600-0889.2011.00532.x, 2011.
Pérez, I. A., Artuso, F., Mahmud, M., Kulshrestha, U., Sánchez, M. L., and García, M. Á.: Applications of Air Mass Trajectories, Adv. Meteorol., 2015, 1–20, https://doi.org/10.1155/2015/284213, 2015.
Phillips, D. L. and Gregg, J. W.: Uncertainty in source partitioning using stable isotopes, Oecologia, 127, 171–179, https://doi.org/10.1007/s004420000578, 2001.
Putman, A. L., Fiorella, R. P., Bowen, G. J., and Cai, Z.: A Global Perspective on Local Meteoric Water Lines: Meta-analytic Insight Into Fundamental Controls and Practical Constraints, Water Resour. Res., 55, 6896–6910, https://doi.org/10.1029/2019WR025181, 2019.
Ren, Y., Yu, H., Liu, C., He, Y., Huang, J., Zhang, L., Hu, H., Zhang, Q., Chen, S., Liu, X., Zhang, M., Wei, Y., Yan, Y., Fan, W., and Zhou, J.: Attribution of Dry and Wet Climatic Changes over Central Asia, J. Climate, 35, 1399–1421, https://doi.org/10.1175/JCLI-D-21-0329.1, 2022.
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications and Display sYstem: READY, Environ. Modell. Softw., 95, 210–228, https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Isotopic Patterns in Modern Global Precipitation, in: Climate Change in Continental Isotopic Records, edited by: Swart, P. K., Lohmann, K. C., Mckenzie, J., and Savin, S., Geophysical Monograph by the American Geophysical Union, https://doi.org/10.1029/GM078p0001, 1993.
Severskiy, I., Vilesov, E., Armstrong, R., Kokarev, A., Kogutenko, L., Usmanova, Z., Morozova, V., and Raup, B.: Changes in glaciation of the Balkhash–Alakol basin, central Asia, over recent decades, Ann. Glaciol., 57, 382–394, https://doi.org/10.3189/2016AoG71A575, 2016.
Shahgedanova, M.: In: The Physical Geography of Northern Eurasia: Russia and Neighbouring States, in: Climate at Present and in the Historical Past., Oxford University Press, 70–102, ISBN 0198233841, 2002.
Shahgedanova, M., Afzal, M., Severskiy, I., Usmanova, Z., Saidaliyeva, Z., Kapitsa, V., Kasatkin, N., and Dolgikh, S.: Changes in the mountain river discharge in the northern Tien Shan since the mid-20th Century: Results from the analysis of a homogeneous daily streamflow data set from seven catchments, J. Hydrol., 564, 1133–1152, https://doi.org/10.1016/j.jhydrol.2018.08.001, 2018.
Stein, A. F., Draxler, R. R., Rolph, G. D., StundeR, B. J. B., Cohen, M. D., and Ngan, F.: Noaa's hysplit atmospheric transport and dispersion modeling system, B. Am. Meteorol. Soc., 96, 2059–2078, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Terzer‐Wassmuth, S., Wassenaar, L. I., Welker, J. M., and Araguás‐Araguás, L. J.: Improved High‐Resolution Global and Regionalized Isoscapes of δ18O, δ2H, and d-Excess in Precipitation, Hydrol. Process., 35, e14254, https://doi.org/10.1002/hyp.14254, 2021.
Tian, L., Yao, T., MacClune, K., White, J. W. C., Schilla, A., Vaughn, B., Vachon, R., and Ichiyanagi, K.: Stable isotopic variations in west China: A consideration of moisture sources, J. Geophys. Res.-Atmos., 112, D10112, https://doi.org/10.1029/2006JD007718, 2007.
Tuinenburg, O. A., Theeuwen, J. J. E., and Staal, A.: High-resolution global atmospheric moisture connections from evaporation to precipitation, Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020, 2020.
van der Ent, R. J. and Tuinenburg, O. A.: The residence time of water in the atmosphere revisited, Hydrol. Earth Syst. Sci., 21, 779–790, https://doi.org/10.5194/hess-21-779-2017, 2017.
Viviroli, D., Kummu, M., Meybeck, M., Kallio, M., and Wada, Y.: Increasing dependence of lowland populations on mountain water resources, Nat. Sustain., 3, 917–928, https://doi.org/10.1038/s41893-020-0559-9, 2020.
Wang, L., Dong, Y., Han, D., and Xu, Z.: Stable isotopic compositions in precipitation over wet island in Central Asia, J. Hydrol., 573, 581–591, https://doi.org/10.1016/j.jhydrol.2019.04.005, 2019.
Wang, S., Zhang, M., Che, Y., Chen, F., and Qiang, F.: Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach, Water Resour. Res., 52, 3246–3257, https://doi.org/10.1002/2015WR018135, 2016a.
Wang, S., Zhang, M., Hughes, C. E., Zhu, X., Dong, L., Ren, Z., and Chen, F.: Factors controlling stable isotope composition of precipitation in arid conditions: an observation network in the Tianshan Mountains, central Asia, Tellus B, 68, 26206, https://doi.org/10.3402/tellusb.v68.26206, 2016b.
Wang, S., Zhang, M., Crawford, J., Hughes, C. E., Du, M., and Liu, X.: The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia, J. Geophys. Res.-Atmos., 122, 2667–2682, https://doi.org/10.1002/2015JD024626, 2017.
Wang, S., Zhang, M., Hughes, C. E., Crawford, J., Wang, G., Chen, F., Du, M., Qiu, X., and Zhou, S.: Meteoric water lines in arid Central Asia using event-based and monthly data, J. Hydrol., 562, 435–445, https://doi.org/10.1016/j.jhydrol.2018.05.034, 2018.
Wang, S., Wang, L., Zhang, M., Shi, Y., Hughes, C. E., Crawford, J., Zhou, J., and Qu, D.: Quantifying moisture recycling of a leeward oasis in arid central Asia using a Bayesian isotopic mixing model, J. Hydrol., 613, 128459, https://doi.org/10.1016/j.jhydrol.2022.128459, 2022.
Wassenaar, L., Terzer-Wassmuth, S., and Douence, C.: Progress and challenges in dual- and triple-isotope (δ18O, δ2H, Δ17O) analyses of environmental waters: An international assessment of laboratory performance, Rapid Commun. Mass Sp., 35, 1–12, https://doi.org/10.1002/rcm.9193, 2021.
Wei, J., Dirmeyer, P. A., Wisser, D., Bosilovich, M. G., and Mocko, D. M.: Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA, J. Hydrometeorol., 14, 275–289, https://doi.org/10.1175/JHM-D-12-079.1, 2013.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, 721–738, https://doi.org/10.1016/B978-0-12-815823-4.00016-X, 1995.
Wu, H., Zhang, X., Xiaoyan, L., Li, G., and Huang, Y.: Seasonal variations of deuterium and oxygen-18 isotopes and their response to moisture source for precipitation events in the subtropical monsoon region, Hydrol. Process., 29, 90–102, https://doi.org/10.1002/hyp.10132, 2015.
Xenarios, S., Schmidt-Vogt, D., Qadir, M., Janusz-Pawletta, B., and Abdullaev, I. (Eds.): The Aral Sea Basin. Water for sustainable development in Central Asia, Routledge, 227 pp., https://doi.org/10.4324/9780429436475, 2019.
Xiao, W., Lee, X., Hu, Y., Liu, S., Wang, W., Wen, X., Werner, M., and Xie, C.: An Experimental Investigation of Kinetic Fractionation of Open-Water Evaporation Over a Large Lake, J. Geophys. Res.-Atmos., 122, 11651–11663, https://doi.org/10.1002/2017JD026774, 2017.
Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Elomaa, E., Gunther, T., Bates, R., Pangburn, T., Hanson, C. L., Emerson, D., Copaciu, V., and Milkovic, J.: Accuracy of tretyakov precipitation gauge: Result of wmo intercomparison, Hydrol. Process., 9, 877–895, https://doi.org/10.1002/hyp.3360090805, 1995.
Yang, X., Acharya, S., and Yao, T.: Vertical Profile of Meteoric and Surface-Water Isotopes in Nepal Himalayas to Everest's Summit, Atmosphere-Basel, 14, 202, https://doi.org/10.3390/atmos14020202, 2023.
Yapiyev, V., Skrzypek, G., Verhoef, A., Macdonald, D., and Sagintayev, Z.: Between boreal Siberia and arid Central Asia – Stable isotope hydrology and water budget of Burabay National Nature Park ecotone (Northern Kazakhstan), J. Hydrol. Reg. Stud., 27, 100644, https://doi.org/10.1016/j.ejrh.2019.100644, 2020.
Yoshimura, K.: Stable water isotopes in climatology, meteorology, and hydrology: A review, J. Meteorol. Soc. Jpn., 93, 513–533, https://doi.org/10.2151/jmsj.2015-036, 2015.
Zhang, M. and Wang, S.: Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid central Asia, Sci. Cold Arid Reg., 10, 27–37, 2018.
Zongxing, L., Qi, F., Song, Y., Wang, Q. J., Yang, J., Yongge, L., Jianguo, L., and Xiaoyan, G.: Stable isotope composition of precipitation in the south and north slopes of Wushaoling Mountain, northwestern China, Atmos. Res., 182, 87–101, https://doi.org/10.1016/j.atmosres.2016.07.023, 2016.
Short summary
Ratios of stable isotopes of oxygen and hydrogen in precipitation are used to trace source regions and pathways of atmospheric moisture. A database of these measurements was developed for the mountains of Central Asia and analysed in the context of atmospheric trajectories. Over 50 % of precipitation was formed from moisture re-evaporated from regional terrestrial sources including the irrigated land in the Aral Sea basin, highlighting its support of the water tower function of the mountains.
Ratios of stable isotopes of oxygen and hydrogen in precipitation are used to trace source...
Altmetrics
Final-revised paper
Preprint