Articles | Volume 24, issue 20
https://doi.org/10.5194/acp-24-11727-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-11727-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations
Selena Zhang
CORRESPONDING AUTHOR
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Susan Solomon
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Chris D. Boone
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Ghassan Taha
Goddard Earth Sciences Technology and Research (GESTAR) II, Morgan State University, Baltimore, MD 21251, USA
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Related authors
No articles found.
Kane Stone, Susan Solomon, Pengfei Yu, Daniel M. Murphy, Douglas Kinnison, and Jian Guan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2948, https://doi.org/10.5194/egusphere-2024-2948, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The Australian 2019/2020 wildfires injected a substantial amount of smoke into the upper atmosphere, causing unusual chemical reactions that altered the chemical makeup of the upper atmosphere. This led to ozone depletion in the Southern hemisphere midlatitudes which likely didn't fully recover until 2 years after the initial event due to the persistent chemical effects of the smoke.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, and David A. Plummer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2946, https://doi.org/10.5194/egusphere-2024-2946, 2024
Short summary
Short summary
Observations from ACE-FTS are used to examine global stratospheric water vapour trends for 2004–2021. The satellite measurements are used to quantify trend contributions arising from changes in tropical tropopause temperatures, general circulation patterns, and methane concentrations. While most of the observed trends can be explained by these changes, there remains an unaccounted for and increasing source of water vapour in the lower mid-stratosphere at midlatitudes, which is discussed.
Laura N. Saunders, Kaley A. Walker, Gabriele P. Stiller, Thomas von Clarmann, Florian Haenel, Hella Garny, Harald Bönisch, Chris D. Boone, Ariana E. Castillo, Andreas Engel, Johannes C. Laube, Marianna Linz, Felix Ploeger, David A. Plummer, Eric A. Ray, and Patrick E. Sheese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2117, https://doi.org/10.5194/egusphere-2024-2117, 2024
Short summary
Short summary
We present a 17-year stratospheric age of air dataset derived from ACE-FTS satellite measurements of sulfur hexafluoride. This is the longest continuous, global, and vertically resolved age of air time series available to date. In this paper, we show that this dataset agrees well with age of air datasets based on measurements from other instruments. We also present trends in the midlatitude lower stratosphere that indicate changes in the global circulation that are predicted by climate models.
Michael D. Himes, Ghassan Taha, Daniel Kahn, Tong Zhu, and Natalya A. Kramarova
EGUsphere, https://doi.org/10.5194/egusphere-2024-1823, https://doi.org/10.5194/egusphere-2024-1823, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The Ozone Mapping and Profiler Suite's Limb Profiler (OMPS LP) provides near-global coverage and information about how aerosols from volcanic eruptions and major wildfires are vertically distributed through the atmosphere. We developed a machine learning method to characterize aerosols using OMPS LP measurements about 60 times faster than the current approach. This near-real-time characterization can be used to ensure aviation flight paths avoid dangerous conditions.
Jiansheng Zou, Kaley A. Walker, Patrick E. Sheese, Chris D. Boone, Ryan M. Stauffer, Anne M. Thompson, and David W. Tarasick
EGUsphere, https://doi.org/10.5194/egusphere-2024-1916, https://doi.org/10.5194/egusphere-2024-1916, 2024
Short summary
Short summary
Ozone measurements from the ACE-FTS satellite instrument have been compared to worldwide balloon-borne ozonesonde profiles using pairs of closely-spaced profiles and monthly averaged profiles. ACE-FTS typically measures more ozone in the stratosphere by up to 10 %. The long-term stability of the ACE-FTS ozone data is good exhibiting small (but not significant) drifts of less than 3 % per decade in the stratosphere. Lower in the profiles, the calculated drifts are larger (up to 10 % per decade).
Felicia Kolonjari, Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, David A. Plummer, Andreas Engel, Stephen A. Montzka, David E. Oram, Tanja Schuck, Gabriele P. Stiller, and Geoffrey C. Toon
Atmos. Meas. Tech., 17, 2429–2449, https://doi.org/10.5194/amt-17-2429-2024, https://doi.org/10.5194/amt-17-2429-2024, 2024
Short summary
Short summary
The Canadian Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) satellite instrument is currently providing the only vertically resolved chlorodifluoromethane (HCFC-22) measurements from space. This study assesses the most current ACE-FTS HCFC-22 data product in the upper troposphere and lower stratosphere, as well as modelled HCFC-22 from a 39-year run of the Canadian Middle Atmosphere Model (CMAM39) in the same region.
Yi Wang, Mark Schoeberl, and Ghassan Taha
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-267, https://doi.org/10.5194/amt-2023-267, 2024
Revised manuscript not accepted
Short summary
Short summary
The OMPS-LP satellite instrument assesses aerosol scattering in the atmospheric limb. Using a dual-wavelength extinction coefficient algorithm, we extract stratospheric aerosol vertical profiles from OMPS-LP data. Our study addresses uncertainties and validates these profiles against in-situ balloon data and SAGE-III/ISS retrievals. Investigating the Raikoke and Hunga Tonga-Hunga Ha'apai eruptions, we analyze the evolution of aerosol size and concentration, confirming our method's reliability.
Jian Guan, Susan Solomon, Sasha Madronich, and Douglas Kinnison
Atmos. Chem. Phys., 23, 10413–10422, https://doi.org/10.5194/acp-23-10413-2023, https://doi.org/10.5194/acp-23-10413-2023, 2023
Short summary
Short summary
This paper provides a novel method to obtain a global and accurate photodissociation coefficient for NO2 (J(NO2)) based on satellite data, and the results are shown to be consistent with model results. The J(NO2) value decreases as the solar zenith angle increases and has a weak altitude dependence. A key finding is that the satellite-derived J(NO2) increases in the polar regions, in good agreement with model predictions, due to the effects of ice and snow on surface albedo.
Michael Weimer, Douglas E. Kinnison, Catherine Wilka, and Susan Solomon
Atmos. Chem. Phys., 23, 6849–6861, https://doi.org/10.5194/acp-23-6849-2023, https://doi.org/10.5194/acp-23-6849-2023, 2023
Short summary
Short summary
We investigate the influence of the number density of nitric acid trihydrate (NAT) particles on associated trace gases in the lower stratosphere using data from a satellite, ozonesondes and simulations by a community chemistry climate model. By comparing probability density functions between observations and the model, we find that the standard NAT number density should be reduced for future simulations with the model.
Yi Wang, Mark Schoeberl, Ghassan Taha, Daniel Zawada, and Adam Bourassa
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-36, https://doi.org/10.5194/amt-2023-36, 2023
Revised manuscript not accepted
Short summary
Short summary
The OMPS-LP satellite instrument measures aerosol scattering properties across the atmospheric limb. Adopting an algorithm that uses extinction at two wavelengths, we retrieve vertical profiles of particle size and concentration. We demonstrate that these profiles are consistent with in-situ balloon and SAGE-III/ISS satellite measurements. We also show how aerosol size and concentration evolve during Reikoke and Hunga Tonga-Hunga Ha'apai eruptions.
Sarah A. Strode, Ghassan Taha, Luke D. Oman, Robert Damadeo, David Flittner, Mark Schoeberl, Christopher E. Sioris, and Ryan Stauffer
Atmos. Meas. Tech., 15, 6145–6161, https://doi.org/10.5194/amt-15-6145-2022, https://doi.org/10.5194/amt-15-6145-2022, 2022
Short summary
Short summary
We use a global atmospheric chemistry model simulation to generate scaling factors that account for the daily cycle of NO2 and ozone. These factors facilitate comparisons between sunrise and sunset observations from SAGE III/ISS and observations from other instruments. We provide the scaling factors as monthly zonal means for different latitudes and altitudes. We find that applying these factors yields more consistent comparisons between observations from SAGE III/ISS and other instruments.
Megan Jeramaz Lickley, John S. Daniel, Eric L. Fleming, Stefan Reimann, and Susan Solomon
Atmos. Chem. Phys., 22, 11125–11136, https://doi.org/10.5194/acp-22-11125-2022, https://doi.org/10.5194/acp-22-11125-2022, 2022
Short summary
Short summary
Halocarbons contained in equipment continue to be emitted after production has ceased. These
banksmust be carefully accounted for in evaluating compliance with the Montreal Protocol. We extend a Bayesian model to the suite of regulated chemicals subject to banking. We find that banks are substantially larger than previous estimates, and we identify banks by chemical and equipment type whose future emissions will contribute to global warming and delay ozone-hole recovery if left unrecovered.
Catherine Wespes, Gaetane Ronsmans, Lieven Clarisse, Susan Solomon, Daniel Hurtmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 22, 10993–11007, https://doi.org/10.5194/acp-22-10993-2022, https://doi.org/10.5194/acp-22-10993-2022, 2022
Short summary
Short summary
The first 10-year data record (2008–2017) of HNO3 total columns measured by the IASI-A/MetOp infrared sounder is exploited to monitor the relationship between the temperature decrease and the HNO3 loss observed each year in the Antarctic stratosphere during the polar night. We verify the recurrence of specific regimes in the cycle of IASI HNO3 and identify the day and the 50 hPa temperature (
drop temperature) corresponding to the onset of denitrification in Antarctic winter for each year.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Adam E. Bourassa, Doug A. Degenstein, Lucien Froidevaux, C. Thomas McElroy, Donal Murtagh, James M. Russell III, and Jiansheng Zou
Atmos. Meas. Tech., 15, 1233–1249, https://doi.org/10.5194/amt-15-1233-2022, https://doi.org/10.5194/amt-15-1233-2022, 2022
Short summary
Short summary
This study analyzes the quality of two versions (v3.6 and v4.1) of ozone concentration measurements from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), by comparing with data from five satellite instruments between 2004 and 2020. It was found that although the v3.6 data exhibit a better agreement than v4.1 with respect to the other instruments, v4.1 exhibits much better stability over time than v3.6. The stability of v4.1 makes it suitable for ozone trend studies.
Nick Gorkavyi, Nickolay Krotkov, Can Li, Leslie Lait, Peter Colarco, Simon Carn, Matthew DeLand, Paul Newman, Mark Schoeberl, Ghassan Taha, Omar Torres, Alexander Vasilkov, and Joanna Joiner
Atmos. Meas. Tech., 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021, https://doi.org/10.5194/amt-14-7545-2021, 2021
Short summary
Short summary
The 21 June 2019 eruption of the Raikoke volcano produced significant amounts of volcanic aerosols (sulfate and ash) and sulfur dioxide (SO2) gas that penetrated into the lower stratosphere. We showed that the amount of SO2 decreases with a characteristic period of 8–18 d and the peak of sulfate aerosol lags the initial peak of SO2 by 1.5 months. We also examined the dynamics of an unusual stratospheric coherent circular cloud of SO2 and aerosol observed from 18 July to 22 September 2019.
Catherine Wilka, Susan Solomon, Doug Kinnison, and David Tarasick
Atmos. Chem. Phys., 21, 15771–15781, https://doi.org/10.5194/acp-21-15771-2021, https://doi.org/10.5194/acp-21-15771-2021, 2021
Short summary
Short summary
We use satellite and balloon measurements to evaluate modeled ozone loss seen in the unusually cold Arctic of 2020 in the real world and compare it to simulations of a world avoided. We show that extensive denitrification in 2020 provides an important test case for stratospheric model process representations. If the Montreal Protocol had not banned ozone-depleting substances, an Arctic ozone hole would have emerged for the first time in spring 2020 that is comparable to those in the Antarctic.
Sampa Das, Peter R. Colarco, Luke D. Oman, Ghassan Taha, and Omar Torres
Atmos. Chem. Phys., 21, 12069–12090, https://doi.org/10.5194/acp-21-12069-2021, https://doi.org/10.5194/acp-21-12069-2021, 2021
Short summary
Short summary
Interactions of extreme fires with weather systems can produce towering smoke plumes that inject aerosols at very high altitudes (> 10 km). Three such major injections, largest at the time in terms of emitted aerosol mass, took place over British Columbia, Canada, in August 2017. We model the transport and impacts of injected aerosols on the radiation balance of the atmosphere. Our model results match the satellite-observed plume transport and residence time at these high altitudes very closely.
Lily N. Zhang, Susan Solomon, Kane A. Stone, Jonathan D. Shanklin, Joshua D. Eveson, Steve Colwell, John P. Burrows, Mark Weber, Pieternel F. Levelt, Natalya A. Kramarova, and David P. Haffner
Atmos. Chem. Phys., 21, 9829–9838, https://doi.org/10.5194/acp-21-9829-2021, https://doi.org/10.5194/acp-21-9829-2021, 2021
Short summary
Short summary
In the 1980s, measurements at the British Antarctic Survey station in Halley, Antarctica, led to the discovery of the ozone hole. The Halley total ozone record continues to be uniquely valuable for studies of long-term changes in Antarctic ozone. Environmental conditions in 2017 forced a temporary cessation of operations, leading to a gap in the historic record. We develop and test a method for filling in the Halley record using satellite data and find evidence to further support ozone recovery.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Doug A. Degenstein, Felicia Kolonjari, David Plummer, Douglas E. Kinnison, Patrick Jöckel, and Thomas von Clarmann
Atmos. Meas. Tech., 14, 1425–1438, https://doi.org/10.5194/amt-14-1425-2021, https://doi.org/10.5194/amt-14-1425-2021, 2021
Short summary
Short summary
Output from climate chemistry models (CMAM, EMAC, and WACCM) is used to estimate the expected geophysical variability of ozone concentrations between coincident satellite instrument measurement times and geolocations. We use the Canadian ACE-FTS and OSIRIS instruments as a case study. Ensemble mean estimates are used to optimize coincidence criteria between the two instruments, allowing for the use of more coincident profiles while providing an estimate of the geophysical variation.
Ghassan Taha, Robert Loughman, Tong Zhu, Larry Thomason, Jayanta Kar, Landon Rieger, and Adam Bourassa
Atmos. Meas. Tech., 14, 1015–1036, https://doi.org/10.5194/amt-14-1015-2021, https://doi.org/10.5194/amt-14-1015-2021, 2021
Short summary
Short summary
This work describes the newly released OMPS LP aerosol extinction profile multi-wavelength Version 2.0 algorithm and dataset. It is shown that the V2.0 aerosols exhibit significant improvements in OMPS LP retrieval performance in the Southern Hemisphere and at lower altitudes. The new product is compared to the SAGE III/ISS, OSIRIS and CALIPSO missions and shown to be of good quality and suitable for scientific studies.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Ghassan Taha, Mariam Tidiga, Maxim Eremenko, Adriana Bossolasco, Fabrice Jégou, Jean-Baptiste Renard, and Bernard Legras
Atmos. Chem. Phys., 21, 535–560, https://doi.org/10.5194/acp-21-535-2021, https://doi.org/10.5194/acp-21-535-2021, 2021
Short summary
Short summary
The year 2019 was particularly rich for the stratospheric aerosol layer due to two volcanic eruptions (at Raikoke and Ulawun) and wildfire events. With satellite observations and models, we describe the exceptionally complex situation following the Raikoke eruption. The respective plume overwhelmed the Northern Hemisphere stratosphere in terms of aerosol load and resulted in the highest climate impact throughout the past decade.
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020, https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Short summary
The scope of the paper is the evaluation of stratospheric aerosols derived from the OMPS/LP instrument via comparison with independent datasets from the SAGE III/ISS instrument. Results show very good agreement for extinction profiles between an altitude of 19 and 27 km, to within ±25 %, and show systematic differences (LP-SAGE III/ISS) above 28 km and below 19 km (greater than ±25 %).
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Silvia Bucci, Sergey Khaykin, Fabrice Jégou, Ghassan Taha, Larry W. Thomason, Brice Barret, Eric Le Flochmoen, Marc von Hobe, Adriana Bossolasco, Nelson Bègue, and Bernard Legras
Atmos. Chem. Phys., 19, 13547–13567, https://doi.org/10.5194/acp-19-13547-2019, https://doi.org/10.5194/acp-19-13547-2019, 2019
Short summary
Short summary
With satellite measurements and transport models, we show that a plume resulting from strong Canadian fires in July/August 2017 was not only distributed throughout the northern/higher latitudes, but also reached the faraway tropics, aided by the circulation of Asian monsoon anticyclone. The regional climate impact in the wider Asian monsoon area in September exceeds the impact of the Asian tropopause aerosol layer by a factor of ~ 3 and compares to that of an advected moderate volcanic eruption.
Felicia Kolonjari, David A. Plummer, Kaley A. Walker, Chris D. Boone, James W. Elkins, Michaela I. Hegglin, Gloria L. Manney, Fred L. Moore, Diane Pendlebury, Eric A. Ray, Karen H. Rosenlof, and Gabriele P. Stiller
Atmos. Chem. Phys., 18, 6801–6828, https://doi.org/10.5194/acp-18-6801-2018, https://doi.org/10.5194/acp-18-6801-2018, 2018
Short summary
Short summary
We used satellite observations and model simulations of CFC-11, CFC-12, and N2O to investigate stratospheric transport, which is important for predicting the recovery of the ozone layer and future climate. We found that sampling can impact results and that the model consistently overestimates concentrations of these gases in the lower stratosphere, consistent with a too rapid Brewer–Dobson circulation. An issue with mixing in the tropical lower stratosphere in June–July–August was also found.
Robert Loughman, Pawan K. Bhartia, Zhong Chen, Philippe Xu, Ernest Nyaku, and Ghassan Taha
Atmos. Meas. Tech., 11, 2633–2651, https://doi.org/10.5194/amt-11-2633-2018, https://doi.org/10.5194/amt-11-2633-2018, 2018
Short summary
Short summary
The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 algorithm retrieves aerosol extinction profiles at 675 nm by iteration, based on comparisons between the measured and calculated radiance profiles (assuming an aerosol size distribution). The most significant error source is uncertainty about the aerosol phase function. Horizontal variations in aerosol extinction may also limit the quality of the retrieved aerosol extinction profiles.
Hugh C. Pumphrey, Norbert Glatthor, Peter F. Bernath, Christopher D. Boone, James W. Hannigan, Ivan Ortega, Nathaniel J. Livesey, and William G. Read
Atmos. Chem. Phys., 18, 691–703, https://doi.org/10.5194/acp-18-691-2018, https://doi.org/10.5194/acp-18-691-2018, 2018
Short summary
Short summary
The Microwave Limb Sounder (MLS) is a satellite instrument that has been measuring the amount of various gases in the atmosphere since 2004. In late 2015 and 2016 it observed unusual amounts of hydrogen cyanide (HCN), a gas produced when vegetation is burned. We compare the MLS observations to similar observations from other instruments. The excess HCN is shown to come from fires in Indonesia. There are more fires than usual in 2015–16 due to a drought caused by an El Niño event.
Justin Bandoro, Susan Solomon, Benjamin D. Santer, Douglas E. Kinnison, and Michael J. Mills
Atmos. Chem. Phys., 18, 143–166, https://doi.org/10.5194/acp-18-143-2018, https://doi.org/10.5194/acp-18-143-2018, 2018
Short summary
Short summary
We studied the attribution of stratospheric ozone changes and identified similarities between observations and human fingerprints from both emissions of ozone-depleting substances (ODSs) and greenhouse gases (GHGs). We developed an improvement on the traditional pattern correlation method that accounts for nonlinearities in the climate forcing time evolution. Use of the latter resulted in increased S / N ratios for the ODS fingerprint. The GHG fingerprint was not identifiable.
Kevin S. Olsen, Kimberly Strong, Kaley A. Walker, Chris D. Boone, Piera Raspollini, Johannes Plieninger, Whitney Bader, Stephanie Conway, Michel Grutter, James W. Hannigan, Frank Hase, Nicholas Jones, Martine de Mazière, Justus Notholt, Matthias Schneider, Dan Smale, Ralf Sussmann, and Naoko Saitoh
Atmos. Meas. Tech., 10, 3697–3718, https://doi.org/10.5194/amt-10-3697-2017, https://doi.org/10.5194/amt-10-3697-2017, 2017
Short summary
Short summary
The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS has a thermal infrared channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios in the troposphere. We compare the retrieved vertical profiles of CH4 from TANSO-FTS with those from two other spaceborne FTSs and with ground-based FTS observatories to assess their quality.
Debora Griffin, Kaley A. Walker, Stephanie Conway, Felicia Kolonjari, Kimberly Strong, Rebecca Batchelor, Chris D. Boone, Lin Dan, James R. Drummond, Pierre F. Fogal, Dejian Fu, Rodica Lindenmaier, Gloria L. Manney, and Dan Weaver
Atmos. Meas. Tech., 10, 3273–3294, https://doi.org/10.5194/amt-10-3273-2017, https://doi.org/10.5194/amt-10-3273-2017, 2017
Short summary
Short summary
Measurements in the high Arctic from two ground-based and one space-borne infrared Fourier transform spectrometer agree well over an 8-year time period (2006–2013). These comparisons show no notable degradation, indicating the consistency of these data sets and suggesting that the space-borne measurements have been stable. Increasing ozone, as well as increases of some other atmospheric gases, has been found over this same time period.
Massimo Valeri, Flavio Barbara, Chris Boone, Simone Ceccherini, Marco Gai, Guido Maucher, Piera Raspollini, Marco Ridolfi, Luca Sgheri, Gerald Wetzel, and Nicola Zoppetti
Atmos. Chem. Phys., 17, 10143–10162, https://doi.org/10.5194/acp-17-10143-2017, https://doi.org/10.5194/acp-17-10143-2017, 2017
Short summary
Short summary
Atmospheric emissions of CCl4 are regulated by the Montreal Protocol due to its role as a strong ozone-depleting substance. The molecule is the subject of recent increased interest as a consequence of the discrepancy between atmospheric observations and reported production and consumption. We use MIPAS/ENVISAT data (2002–2012) to estimate CCl4 trends and lifetime. At 50 hPa we find a decline of about 30–35 % per decade. In the lower stratosphere our lifetime estimate is 47 (39–61) years.
Ellen Eckert, Thomas von Clarmann, Alexandra Laeng, Gabriele P. Stiller, Bernd Funke, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Arne Babenhauserheide, Gerald Wetzel, Christopher Boone, Andreas Engel, Jeremy J. Harrison, Patrick E. Sheese, Kaley A. Walker, and Peter F. Bernath
Atmos. Meas. Tech., 10, 2727–2743, https://doi.org/10.5194/amt-10-2727-2017, https://doi.org/10.5194/amt-10-2727-2017, 2017
Short summary
Short summary
We retrieved vertical profiles of CCl4 from MIPAS Envisat IMK/IAA data. A detailed description of all characteristics is included in the paper as well as comparisons with historical measurements and comparisons with collocated measurements of instruments covering the same time span as MIPAS Envisat. A particular focus also lies on the usage of a new CCl4 spectroscopic dataset introduced recently, which leads to more realistic CCl4 volume mixing ratios.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Leslie Moy, Pawan K. Bhartia, Glen Jaross, Robert Loughman, Natalya Kramarova, Zhong Chen, Ghassan Taha, Grace Chen, and Philippe Xu
Atmos. Meas. Tech., 10, 167–178, https://doi.org/10.5194/amt-10-167-2017, https://doi.org/10.5194/amt-10-167-2017, 2017
Short summary
Short summary
UV backscatter limb sounding sensors have difficulty determining altitude registration to the accuracy needed for long-term ozone monitoring. We describe two methods to achieve this by comparing radiance measurements to models. Wavelengths and altitudes chosen minimize errors from aerosol interference, calibration errors, and ozone assumptions. The techniques are inexpensive, more comprehensive than external sources of attitude information, and track drifts in our altitude to better than 100 m.
Martyn P. Chipperfield, Qing Liang, Matthew Rigby, Ryan Hossaini, Stephen A. Montzka, Sandip Dhomse, Wuhu Feng, Ronald G. Prinn, Ray F. Weiss, Christina M. Harth, Peter K. Salameh, Jens Mühle, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Paul B. Krummel, Paul J. Fraser, L. Paul Steele, James D. Happell, Robert C. Rhew, James Butler, Shari A. Yvon-Lewis, Bradley Hall, David Nance, Fred Moore, Ben R. Miller, James W. Elkins, Jeremy J. Harrison, Chris D. Boone, Elliot L. Atlas, and Emmanuel Mahieu
Atmos. Chem. Phys., 16, 15741–15754, https://doi.org/10.5194/acp-16-15741-2016, https://doi.org/10.5194/acp-16-15741-2016, 2016
Short summary
Short summary
Carbon tetrachloride (CCl4) is a compound which, when released into the atmosphere, can cause depletion of the stratospheric ozone layer. Its emissions are controlled under the Montreal Protocol, and its atmospheric abundance is slowly decreasing. However, this decrease is not as fast as expected based on estimates of its emissions and its atmospheric lifetime. We have used an atmospheric model to look at the uncertainties in the CCl4 lifetime and to examine the impact on its atmospheric decay.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. McLinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen, Gloria L. Manney, C. Thomas McElroy, Donal Murtagh, Cora E. Randall, Piera Raspollini, Alexei Rozanov, James M. Russell III, Makoto Suzuki, Masato Shiotani, Joachim Urban, Thomas von Clarmann, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 5781–5810, https://doi.org/10.5194/amt-9-5781-2016, https://doi.org/10.5194/amt-9-5781-2016, 2016
Short summary
Short summary
This study validates version 3.5 of the ACE-FTS NOy species data sets by comparing diurnally scaled ACE-FTS data to correlative data from 11 other satellite limb sounders. For all five species examined (NO, NO2, HNO3, N2O5, and ClONO2), there is good agreement between ACE-FTS and the other data sets in various regions of the atmosphere. In these validated regions, these NOy data products can be used for further investigation into the composition, dynamics, and climate of the stratosphere.
Jeremy J. Harrison, Martyn P. Chipperfield, Christopher D. Boone, Sandip S. Dhomse, Peter F. Bernath, Lucien Froidevaux, John Anderson, and James Russell III
Atmos. Chem. Phys., 16, 10501–10519, https://doi.org/10.5194/acp-16-10501-2016, https://doi.org/10.5194/acp-16-10501-2016, 2016
Short summary
Short summary
HF, the dominant stratospheric fluorine reservoir, results from the atmospheric degradation of anthropogenic species such as CFCs, HCFCs, and HFCs. All are strong greenhouse gases, and CFCs and HCFCs deplete stratospheric ozone.
We report the comparison of HF global distributions and trends measured by the ACE-FTS and HALOE satellite instruments with the output of SLIMCAT, a chemical transport model. The global HF trends reveal a slowing down in the rate of increase of HF since the 1990s.
Daan Hubert, Jean-Christopher Lambert, Tijl Verhoelst, José Granville, Arno Keppens, Jean-Luc Baray, Adam E. Bourassa, Ugo Cortesi, Doug A. Degenstein, Lucien Froidevaux, Sophie Godin-Beekmann, Karl W. Hoppel, Bryan J. Johnson, Erkki Kyrölä, Thierry Leblanc, Günter Lichtenberg, Marion Marchand, C. Thomas McElroy, Donal Murtagh, Hideaki Nakane, Thierry Portafaix, Richard Querel, James M. Russell III, Jacobo Salvador, Herman G. J. Smit, Kerstin Stebel, Wolfgang Steinbrecht, Kevin B. Strawbridge, René Stübi, Daan P. J. Swart, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Joachim Urban, Joanna A. E. van Gijsel, Roeland Van Malderen, Peter von der Gathen, Kaley A. Walker, Elian Wolfram, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 2497–2534, https://doi.org/10.5194/amt-9-2497-2016, https://doi.org/10.5194/amt-9-2497-2016, 2016
Short summary
Short summary
A more detailed understanding of satellite O3 profile data records is vital for further progress in O3 research. To this end, we made a comprehensive assessment of 14 limb/occultation profilers using ground-based reference data. The mutual consistency of satellite O3 in terms of bias, short-term variability and decadal stability is generally good over most of the stratosphere. However, we identified some exceptions that impact the quality of recently merged data sets and ozone trend assessments.
Gerrit Holl, Kaley A. Walker, Stephanie Conway, Naoko Saitoh, Chris D. Boone, Kimberly Strong, and James R. Drummond
Atmos. Meas. Tech., 9, 1961–1980, https://doi.org/10.5194/amt-9-1961-2016, https://doi.org/10.5194/amt-9-1961-2016, 2016
Short summary
Short summary
Methane is a powerful greenhouse gas, and we need to measure it globally with satellite instruments. We compare measurements from two satellites with measurements from the ground in Eureka, Nunavut, Canada to assess their different strengths and weaknesses. The differences between measurements are discussed and assessed considering the details of each measurement technique and processing. Recommendations are provided for utilization of these data sets for monitoring methane in the high Arctic.
Eric M. Buzan, Chris A. Beale, Chris D. Boone, and Peter F. Bernath
Atmos. Meas. Tech., 9, 1095–1111, https://doi.org/10.5194/amt-9-1095-2016, https://doi.org/10.5194/amt-9-1095-2016, 2016
Short summary
Short summary
This paper presents the first global data set of atmospheric concentrations of the isotopologues of methane as measured by ACE-FTS. Both CH3D and 13CH4 show enrichment at higher altitudes and some seasonal variation at the poles. After applying a constant correction factor to the CH3D data set, good agreement with existing balloon measurements is achieved. However, 13CH4 still shows a large amount of error. Improved lab measurements of CH4 would help reduce errors in the ACE-FTS data.
Kevin S. Olsen, Geoffrey C. Toon, Chris D. Boone, and Kimberly Strong
Atmos. Meas. Tech., 9, 1063–1082, https://doi.org/10.5194/amt-9-1063-2016, https://doi.org/10.5194/amt-9-1063-2016, 2016
Short summary
Short summary
A new version of the Atmospheric Chemistry Experiment Fourier transform spectrometer was intended to be sent to Mars to perform a detailed study of the composition of the Martian atmosphere. Of critical importance for such a mission is a method to accurately determine the temperature and pressure of the atmosphere. This paper presents a new algorithm for measuring temperature and pressure from high-resolution infrared spectra of CO2 absorption and applies it to terrestrial spectra.
Christopher E. Sioris, Jason Zou, David A. Plummer, Chris D. Boone, C. Thomas McElroy, Patrick E. Sheese, Omid Moeini, and Peter F. Bernath
Atmos. Chem. Phys., 16, 3265–3278, https://doi.org/10.5194/acp-16-3265-2016, https://doi.org/10.5194/acp-16-3265-2016, 2016
Short summary
Short summary
The AM (annular mode) is the most important internal mode of climatic variability at high latitudes. Upper tropospheric water vapour (UTWV) at high latitudes increases by up to ~ 50 % during the negative phase of the AMs. The response of water vapour to the AMs vanishes above the tropopause. The ultimate goal of the study was to improve UTWV trend uncertainties by explaining shorter-term variability, and this was achieved by accounting for the AM-related response in a multiple linear regression.
Christopher E. Sioris, Jason Zou, C. Thomas McElroy, Chris D. Boone, Patrick E. Sheese, and Peter F. Bernath
Atmos. Chem. Phys., 16, 2207–2219, https://doi.org/10.5194/acp-16-2207-2016, https://doi.org/10.5194/acp-16-2207-2016, 2016
Short summary
Short summary
This paper shows that volcanic eruptions occurring at higher latitudes in windy environments can lead to significant perturbations to upper tropospheric (UT) humidity mostly due to entrainment of lower tropospheric moisture by wind-blown plumes.
This research was performed for the purpose of determining long-term trends in high-latitude UT water vapour. The steps involve building a monthly climatology and using it to deseasonalize the time series. Large observed anomalies are then studied.
M. Höpfner, C. D. Boone, B. Funke, N. Glatthor, U. Grabowski, A. Günther, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, H. C. Pumphrey, W. G. Read, A. Roiger, G. Stiller, H. Schlager, T. von Clarmann, and K. Wissmüller
Atmos. Chem. Phys., 15, 7017–7037, https://doi.org/10.5194/acp-15-7017-2015, https://doi.org/10.5194/acp-15-7017-2015, 2015
G. E. Nedoluha, D. E. Siskind, A. Lambert, and C. Boone
Atmos. Chem. Phys., 15, 4215–4224, https://doi.org/10.5194/acp-15-4215-2015, https://doi.org/10.5194/acp-15-4215-2015, 2015
Short summary
Short summary
While global stratospheric O3 has begun to recover, there are localized regions where O3 has decreased since 1991. O3 in the mid-stratosphere is very sensitive to nitrogen chemistry, with increased NOy resulting in decreased O3. We show how the observed O3 changes in the tropical mid-stratosphere can be caused by long-term variations in dynamics. These variations result in a decrease in N2O, an increase in NOy, and a resulting decrease in O3.
P. E. Sheese, C. D. Boone, and K. A. Walker
Atmos. Meas. Tech., 8, 741–750, https://doi.org/10.5194/amt-8-741-2015, https://doi.org/10.5194/amt-8-741-2015, 2015
W. Bader, T. Stavrakou, J.-F. Muller, S. Reimann, C. D. Boone, J. J. Harrison, O. Flock, B. Bovy, B. Franco, B. Lejeune, C. Servais, and E. Mahieu
Atmos. Meas. Tech., 7, 3861–3872, https://doi.org/10.5194/amt-7-3861-2014, https://doi.org/10.5194/amt-7-3861-2014, 2014
M. García-Comas, B. Funke, A. Gardini, M. López-Puertas, A. Jurado-Navarro, T. von Clarmann, G. Stiller, M. Kiefer, C. D. Boone, T. Leblanc, B. T. Marshall, M. J. Schwartz, and P. E. Sheese
Atmos. Meas. Tech., 7, 3633–3651, https://doi.org/10.5194/amt-7-3633-2014, https://doi.org/10.5194/amt-7-3633-2014, 2014
Short summary
Short summary
We present the new vM21 MIPAS temperatures from 20 to 102km for all of its 2005-2012 MA, UA and NLC measurements. The main upgrades are the update of ESA L1b spectra, spectroscopic database and O and CO2 climatologies, and improvement in Tk-gradient and offset regularizations and apodization accuracy. The vM21 Tk's correct the main systematic errors of previous versions and lead to remarkable improvement in their comparisons with ACE-FTS, MLS, OSIRIS, SABER and SOFIE and the MLO and TMF lidars.
K. M. Saad, D. Wunch, G. C. Toon, P. Bernath, C. Boone, B. Connor, N. M. Deutscher, D. W. T. Griffith, R. Kivi, J. Notholt, C. Roehl, M. Schneider, V. Sherlock, and P. O. Wennberg
Atmos. Meas. Tech., 7, 2907–2918, https://doi.org/10.5194/amt-7-2907-2014, https://doi.org/10.5194/amt-7-2907-2014, 2014
C. E. Sioris, C. D. Boone, R. Nassar, K. J. Sutton, I. E. Gordon, K. A. Walker, and P. F. Bernath
Atmos. Meas. Tech., 7, 2243–2262, https://doi.org/10.5194/amt-7-2243-2014, https://doi.org/10.5194/amt-7-2243-2014, 2014
E. Mahieu, R. Zander, G. C. Toon, M. K. Vollmer, S. Reimann, J. Mühle, W. Bader, B. Bovy, B. Lejeune, C. Servais, P. Demoulin, G. Roland, P. F. Bernath, C. D. Boone, K. A. Walker, and P. Duchatelet
Atmos. Meas. Tech., 7, 333–344, https://doi.org/10.5194/amt-7-333-2014, https://doi.org/10.5194/amt-7-333-2014, 2014
A. T. Brown, M. P. Chipperfield, N. A. D. Richards, C. Boone, and P. F. Bernath
Atmos. Chem. Phys., 14, 267–282, https://doi.org/10.5194/acp-14-267-2014, https://doi.org/10.5194/acp-14-267-2014, 2014
T. Sugita, Y. Kasai, Y. Terao, S. Hayashida, G. L. Manney, W. H. Daffer, H. Sagawa, M. Suzuki, M. Shiotani, K. A. Walker, C. D. Boone, and P. F. Bernath
Atmos. Meas. Tech., 6, 3099–3113, https://doi.org/10.5194/amt-6-3099-2013, https://doi.org/10.5194/amt-6-3099-2013, 2013
Y. Kasai, H. Sagawa, D. Kreyling, E. Dupuy, P. Baron, J. Mendrok, K. Suzuki, T. O. Sato, T. Nishibori, S. Mizobuchi, K. Kikuchi, T. Manabe, H. Ozeki, T. Sugita, M. Fujiwara, Y. Irimajiri, K. A. Walker, P. F. Bernath, C. Boone, G. Stiller, T. von Clarmann, J. Orphal, J. Urban, D. Murtagh, E. J. Llewellyn, D. Degenstein, A. E. Bourassa, N. D. Lloyd, L. Froidevaux, M. Birk, G. Wagner, F. Schreier, J. Xu, P. Vogt, T. Trautmann, and M. Yasui
Atmos. Meas. Tech., 6, 2311–2338, https://doi.org/10.5194/amt-6-2311-2013, https://doi.org/10.5194/amt-6-2311-2013, 2013
A. T. Brown, C. M. Volk, M. R. Schoeberl, C. D. Boone, and P. F. Bernath
Atmos. Chem. Phys., 13, 6921–6950, https://doi.org/10.5194/acp-13-6921-2013, https://doi.org/10.5194/acp-13-6921-2013, 2013
K. A. Tereszchuk, D. P. Moore, J. J. Harrison, C. D. Boone, M. Park, J. J. Remedios, W. J. Randel, and P. F. Bernath
Atmos. Chem. Phys., 13, 5601–5613, https://doi.org/10.5194/acp-13-5601-2013, https://doi.org/10.5194/acp-13-5601-2013, 2013
Cited articles
Basha, G., Ratnam, M. V., and Kishore, P.: Asian summer monsoon anticyclone: trends and variability, Atmos. Chem. Phys., 20, 6789–6801, https://doi.org/10.5194/acp-20-6789-2020, 2020.
Bernath, P. F.: Atmospheric Chemistry Experiment (ACE): Mission Overview, Fourier Transform Spectroscopy/ Hyperspectral Imaging and Sounding of the Environment, Optica Publishing Group, https://doi.org/10.1364/FTS.2005.JMA3, 2005.
Bernath, P. F.: The Atmospheric Chemistry Experiment (ACE), J. Quant. Spectrosc. Ra., 186, 3–16, https://doi.org/10.1016/j.jqsrt.2016.04.006, 2017.
Bernath, P.: Vibrational Spectroscopy, in: Spectra of Atoms and Molecules, 4th edn., Oxford University Press, Oxford, p. 260, ISBN 0190095407, 2020.
Bernath, P., Boone, C., and Crouse, J.: Wildfire Smoke Destroys Stratospheric Ozone, Science, 375, 1292–1295, https://doi.org/10.1126/science.abm5611, 2022.
Boone, C. D., Bernath, P. F., and Fromm, M. D.: Pyrocumulonimbus Stratospheric Plume Injections Measured by the ACE-FTS, Geophys. Res. Lett., 47, e2020GL088442, https://doi.org/10.1029/2020GL088442, 2020.
Boone, C. D., Bernath, P. F., and Lecours, M.: Version 5 Retrievals for ACE-FTS and ACE-Imagers, J. Quant. Spectrosc. Ra., 310, 108749, https://doi.org/10.1016/j.jqsrt.2023.108749, 2023 (data available at: https://databace.scisat.ca/level2/ace_v5.2/, last access: 25 August 2024).
Boer, M. M., de Dios, R., and Bradstock, R. A.: Unprecedented burn area of Australian mega forest fires, Nat. Clim. Change, 10, 170–172, https://doi.org/10.1038/s41558-020-0716-1, 2020.
Buijs, H. L., Soucy, M.-A., and Lachance, R. L.: ACE-FTS Hardware and Level 1 Processing, in: The Atmospheric Chemistry Experiment ACE at 10: A Solar Occultation Anthology, edited by: Bernath, P. F., A. Deepak Publishing, Virginia, 53–80, ISBN 0937194549, 2013.
Canadian Interagency Forest Fire Centre: Canada Report 2023 Fire Season, https://www.ciffc.ca/publications/canada-reports, last access: 17 October 2024.
Canadian Interagency Forest Fire Centre Inc.: Wildfire Graphs, https://ciffc.net/statistics/, last access: 10 January 2024.
Chen, Z., DeLand, M., and Bhartia, P. K.: A new algorithm for detecting cloud height using OMPS/LP measurements, Atmos. Meas. Tech., 9, 1239–1246, https://doi.org/10.5194/amt-9-1239-2016, 2016.
Christian, K., Wang, J., Ge, C., Peterson, D., Hyer, E., Yorks, J., and McGill, M.: Radiative Forcing and Stratospheric Warming of Pyrocumulonimbus Smoke Aerosols: First Modeling Results With Multisensor (EPIC, CALIPSO, and CATS) Views from Space, Geophys. Res. Lett., 46, 10061–10071, https://doi.org/10.1029/2019GL082360, 2019.
D'Angelo, G., Guimond, S., Reisner, J., Peterson, D. A., and Dubey, M.: Contrasting Stratospheric Smoke Mass and Lifetime From 2017 Canadian and 2019/2020 Australian Megafires: Global Simulations and Satellite Observations, J. Geophys. Res.-Atmos., 127, e2021JD036249, https://doi.org/10.1029/2021JD036249, 2022.
Davey, S. M. and Sarre, A.: Editorial: the 2019/20 Black Summer bushfires, Aust. For., 83, 47–51, https://doi.org/10.1080/00049158.2020.1769899, 2020.
De Laat, A. T. J., Stein Zweers, D. C., Boers, R., and Tuinder, O. N. E.: A solar escalator: Observational evidence of the self-lifting of smoke and aerosols by absorption of solar radiation in the February 2009 Australian Black Saturday plume, J. Geophys. Res.-Atmos., 117, D04204, https://doi.org/10.1029/2011JD017016, 2012.
Di Virgilio, G., Evans, J. P., Blake, S. A., Armstrong, M., Dowdy, A. J., Sharples, J., and McRae, R.: Climate Change Increases the Potential for Extreme Wildfires, Geophys. Res. Lett., 46, 8517–8526, https://doi.org/10.1029/2019GL083699, 2019.
Doeringer, D., Eldering, A., Boone, C. D., González Abad, G., and Bernath, P. F.: Observation of sulfate aerosols and SO2 from the Sarychev volcanic eruption using data from the Atmospheric Chemistry Experiment (ACE), J. Geophys. Res.-Atmos., 117, D03203, https://doi.org/10.1029/2011JD016556, 2012.
EOS MLS Science Team: MLS/Aura Near-Real-Time L2 Carbon Monoxide (CO) Mixing Ratio V005, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://disc.gsfc.nasa.gov/datacollection/ML2CO_NRT_005.html (last access: 25 August 2024), 2022.
Fromm, M., Lindsey, D. T., Servranckx, R., Yue, G., Trickl, T., Sica, R., Doucet, P., and Godin-Beekmann, S.: The Untold Story of Pyrocumulonimbus, B. Am. Meteorol. Soc., 91, 1193–1210, https://doi.org/10.1175/2010BAMS3004.1, 2010.
Fromm, M., Peterson, D., and Di Girolamo, L.: The Primary Convective Pathway for Observed Wildfire Emissions in the Upper Troposphere and Lower Stratosphere: A Targeted Reinterpretation, J. Geophys. Res., 124, 13254–13272, https://doi.org/10.1029/2019JD031006, 2019.
Fromm, M., Servranckx, R., Stocks, B. J., and Peterson, D. A.: Understanding the Critical Elements of the Pyrocumulonimbus Storm Sparked by High-Intensity Wildland Fire, Commun. Earth Environ., 3, 243, https://doi.org/10.1038/s43247-022-00566-8, 2022.
Government of British Columbia: https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-history/wildfire-season-summary, last access: 10 January 2024.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Homeyer, C. R., Pan, L. L., Dorsi, S. W., Avallone, L. M., Weinheimer, A. J., O'Brien, A. S., DiGangi, J. P., Zondlo, M. A., Ryerson, T. B., Diskin, G. S., and Campos, T. L.: Convective transport of water vapor into the lower stratosphere observed during double-tropopause events, J. Geophys. Res.-Atmos., 119, 10941–10958, https://doi.org/10.1002/2014JD021485, 2014.
Kablick III, G. P., Allen, D. R., Fromm, M. D., and Nedoluha, G. E.: Australian PyroCb Smoke Generates Synoptic-Scale Stratospheric Anticyclones, Geophys. Res. Lett., 47, e2020GL088101, https://doi.org/10.1029/2020GL088101, 2020.
Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tencé, F., Bekki, S., Bourassa, A., Rieger, L., Zawada, D., Jumelet, J., and Godin-Beekmann, S.: The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35km altitude, Commun. Earth Environ., 1, 22, https://doi.org/10.1038/s43247-020-00022-5, 2020.
Kochanski, A. K., Mallia, D. V., Fearon, M. G., Mandel, J., Souri, A. H., and Brown, T.: Modeling Wildfire Smoke Feedback Mechanisms Using a Coupled Fire-Atmosphere Model With a Radiatively Active Aerosol Scheme, J. Geophys. Res.-Atmos., 124, 9099–9116, https://doi.org/10.1029/2019JD030558, 2019.
Lestrelin, H., Legras, B., Podglajen, A., and Salihoglu, M.: Smoke-charged vortices in the stratosphere generated by wildfires and their behaviour in both hemispheres: comparing Australia 2020 to Canada 2017, Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021, 2021.
Li, Q., Jacob, D. J., Bey, I., Yantosca, R. M., Zhao, Y., Kondo, Y., and Notholt, J.: Atmospheric Hydrogen Cynaide (HCN): Biomass Burning Source, Ocean Sink?, Geophys. Res. Lett., 27, 357–360, https://doi.org/10.1029/1999gl010935, 2000.
Li, Y., Dykema, J., Deshler, T., and Keutsch, F.: Composition Dependence of Stratospheric Aerosol Shortwave Radiative Forcing in Northern Midlatitudes, Geophys. Res. Lett., 48, e2021GL094427, https://doi.org/10.1029/2021GL094427, 2021.
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Santee, M. L., Schwartz, M. J., Lambert, A., Valle, L. F. M., Pumphrey, H. C., Manney, G. L., Fuller, R. A., Jarnot, R. F., Knosp, B. W., and Lay, R. R.: Version 5.0x Level 2 and 3 data quality and description document, Tech. Rep. JPL D-105336 Rev. B, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, https://mls.jpl.nasa.gov/data/v5-0_data_quality_document.pdf (last access: 21 January 2024), 2022.
Loughman, R., Bhartia, P. K., Chen, Z., Xu, P., Nyaku, E., and Taha, G.: The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm: theoretical basis, Atmos. Meas. Tech., 11, 2633–2651, https://doi.org/10.5194/amt-11-2633-2018, 2018.
MODIS Land Rapid Response Team: July 5, 2023 – Fire and Smoke in Russia's Far East, NASA GSFC, https://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2023-07-05 (last access: 27 February 2024), 2023.
Ohneiser, K., Ansmann, A., Witthuhn, J., Deneke, H., Chudnovsky, A., Walter, G., and Senf, F.: Self-lofting of wildfire smoke in the troposphere and stratosphere: simulations and space lidar observations, Atmos. Chem. Phys., 23, 2901–2925, https://doi.org/10.5194/acp-23-2901-2023, 2023.
Pausas, J. G. and Keeley, J. E.: Wildfires and Global Change, Front. Ecol. Environ., 19, 387–395, https://doi.org/10.1002/fee.2359, 2021.
Peevey, T. R., Gille, J. C., Randall, C. E., and Kunz, A.: Investigation of double tropopause spatial and temporal global variability utilizing High Resolution Dynamics Limb Sounder temperature observations, J. Geophys. Res.-Atmos., 117, D01105, https://doi.org/10.1029/2011JD016443, 2012.
Peterson, D. A., Hyer, E. J., Campbell, J. R., Solbrig, J. E., and Fromm, M. D.: A Conceptual Model for Development of Intense Pyrocumulonimbus in Western North America, Mon. Weather Rev., 145, 2235–2255, https://doi.org/10.1175/MWR-D-16-0232.1, 2017.
Peterson, D. A., Campbell, J. R., Hyer, E. J., Fromm, M. D., Kablick III, G. P., Cossuth, J. H., and Deland, M. T.: Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke, npj Clim. Atmos. Sci., 1, 30, https://doi.org/10.1038/s41612-018-0039-3, 2018.
Peterson, D. A., Fromm, M. D., McRae, R. H. D., Campbell, J. R., Hyer, E. J., Taha, G., Camacho, C. P., Kablick III, G. P., Schmidt, C. C., and DeLand, M. T.: Australia's Black Summer pyrocumulonimbus super outbreak reveals potential for increasingly extreme stratospheric smoke events, npj Clim. Atmos. Sci., 4, 38, https://doi.org/10.1038/s41612-021-00192-9, 2021.
Renard, J.-B., Berthet, G., Levasseur-Regourd, A.-C., Beresnev, S., Miffre, A., Rairoux, P., Vignelles, D., and Jégou, F.: Origins and Spatial Distribution of Non-Pure Sulfate Particles (NSPs) in the Stratosphere Detected by the Balloon-Borne Light Optical Aerosols Counter (LOAC), Atmosphere, 11, 1031, https://doi.org/10.3390/atmos11101031, 2020.
Rieger, L. A., Randel, W. J., Bourassa, A. E., and Solomon, S.: Stratospheric Temperature and Ozone Anomalies Associated With the 2020 Australian New Year Fires, Geophys. Res. Lett., 48, e2021GL095898, https://doi.org/10.1029/2021GL095898, 2021.
Roberts, J. M., Stockwell, C. E., Yokelson, R. J., de Gouw, J., Liu, Y., Selimovic, V., Koss, A. R., Sekimoto, K., Coggon, M. M., Yuan, B., Zarzana, K. J., Brown, S. S., Santin, C., Doerr, S. H., and Warneke, C.: The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study, Atmos. Chem. Phys., 20, 8807–8826, https://doi.org/10.5194/acp-20-8807-2020, 2020.
Romps, D. M. and Kuang, Z.: Overshooting convection in tropical cyclones, Geophys. Res. Lett., 36, L09804, https://doi.org/10.1029/2009GL037396, 2009.
Sellitto, P., Belhadji, R., Cuesta, J., Podglajen, A., and Legras, B.: Radiative impacts of the Australian bushfires 2019–2020 – Part 2: Large-scale and in-vortex radiative heating, Atmos. Chem. Phys., 23, 15523–15535, https://doi.org/10.5194/acp-23-15523-2023, 2023.
Sica, R. J., Izawa, M. R. M., Walker, K. A., Boone, C., Petelina, S. V., Argall, P. S., Bernath, P., Burns, G. B., Catoire, V., Collins, R. L., Daffer, W. H., De Clercq, C., Fan, Z. Y., Firanski, B. J., French, W. J. R., Gerard, P., Gerding, M., Granville, J., Innis, J. L., Keckhut, P., Kerzenmacher, T., Klekociuk, A. R., Kyrö, E., Lambert, J. C., Llewellyn, E. J., Manney, G. L., McDermid, I. S., Mizutani, K., Murayama, Y., Piccolo, C., Raspollini, P., Ridolfi, M., Robert, C., Steinbrecht, W., Strawbridge, K. B., Strong, K., Stübi, R., and Thurairajah, B.: Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements, Atmos. Chem. Phys., 8, 35–62, https://doi.org/10.5194/acp-8-35-2008, 2008.
Smith, J. M.: Data Chat: Dr. David Peterson, https://www.earthdata.nasa.gov/learn/data-chats/david-peterson (last access: 3 February 2024), 2023.
Solomon, S., Stone, K., Yu, P., Murphy, D. M., Kinnison, D., Ravishankara, A. R., and Wang, P.: Chlorine activation and enhanced ozone depletion induced by wildfire aerosol, Nature, 615, 259–264, https://doi.org/10.1038/s41586-022-05683-0, 2023.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Taha, G.: OMPS-NPP L2 LP Aerosol Extinction Vertical Profile swath daily 3slit V2, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/CX2B9NW6FI27, 2020.
Taha, G., Loughman, R., Zhu, T., Thomason, L., Kar, J., Rieger, L., and Bourassa, A.: OMPS LP Version 2.0 multi-wavelength aerosol extinction coefficient retrieval algorithm, Atmos. Meas. Tech., 14, 1015–1036, https://doi.org/10.5194/amt-14-1015-2021, 2021.
Taha, G., Loughman, R., Colarco, P. R., Zhu, T., Thomason, L. W., and Jaross, G.: Tracking the 2022 Hunga Tonga-Hunga Ha'apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space-Based Observations, Geophys. Res. Lett., 49, e2022GL100091, https://doi.org/10.1029/2022GL100091, 2022.
Thurston, G., Yu, W., and Luglio, D.: An Evaluation of the Asthma Impact of the June 2023 New York City Wildfire Air Pollution Episode, Am. J. Resp. Crit. Care, 208, 898–900, https://doi.org/10.1164/rccm.202306-1073LE, 2023.
Torres, O., Bhartia, P. K., Taha, G., Jethva, H., Das, S., Colarco, P., Krotkov, N., Omar, A., and Ahn, C.: Stratospheric Injection of Massive Smoke Plume From Canadian Boreal Fires in 2017 as Seen by DSCOVR-EPIC, CALIOP, and OMPS-LP Observations, J. Geophys. Res.-Atmos., 125, e2020JD032579, https://doi.org/10.1029/2020JD032579, 2020.
Vanhellemont, F., Tetard, C., Bourassa, A., Fromm, M., Dodion, J., Fussen, D., Brogniez, C., Degenstein, D., Gilbert, K. L., Turnbull, D. N., Bernath, P., Boone, C., and Walker, K. A.: Aerosol extinction profiles at 525 nm and 1020 nm derived from ACE imager data: comparisons with GOMOS, SAGE II, SAGE III, POAM III, and OSIRIS, Atmos. Chem. Phys., 8, 2027–2037, https://doi.org/10.5194/acp-8-2027-2008, 2008.
Wang, Z., Wang, Z., Zou, Z., Chen, X., Wu, H., Wang, W., Su, H., Li, F., Xu, W., Liu, Z., and Zhu, J.: Severe Global Environmental Issues Caused by Canada's Record-Breaking Wildfires in 2023, Adv. Atmos. Sci., 41, 565–571, https://doi.org/10.1007/s00376-023-3241-0, 2023.
Waters, J., Froidevaux, L., Harwood, R., Jarnot, R., Pickett, H., Read, W., Siegel, P., Cofield, R., Filipiak, M., Flower, D., Holden, J., Lau, G., Livesey, N., Manney, G., Pumphrey, H., Santee, M., Wu, D., Cuddy, D., Lay, R., Loo, M., Perun, V., Schwartz, M., Stek, P., Thurstans, R., Boyles, M., Chandra, K., Chavez, M., Chen, G.-S., Chudasama, B., Dodge, R., Fuller, R., Girard, M., Jiang, J., Jiang, Y., Knosp, B., LaBelle, R., Lam, J., Lee, K., Miller, D., Oswald, J., Patel, N., Pukala, D., Quintero, O., Scaff, D., Van Snyder, W., Tope, M., Wagner, P., and Walch, M.: The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite, IEEE T. Geosci. Remote, 44, 1075–1092, https://doi.org/10.1109/TGRS.2006.873771, 2006.
Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-Morales, J., Bishop, D. A., Balch, J. K., and Lettenmaier, D. P.: Observed Impacts of Anthropogenic Climate Change on Wildfire in California, Earths Future, 7, 892–910, https://doi.org/10.1029/2019EF001210, 2019.
World Meteorological Organization (WMO): Meteorology – A three-dimensional science: Second session of the commission for aerology, WMO Bull., 4, 134–138, 1957.
Xiao, Y., Jacob, D. J., Wang, J. S., Logan, J. A., Palmer, P. I., Suntharalingam, P., Yantosca, R. M., Sachse, G. W., Blake, D. R., and Streets, D. G.: Constraints on Asian and European sources of methane from CH4-C2H6-CO correlations in Asian outflow, J. Geophys. Res.-Atmos., 109, D15S16, https://doi.org/10.1029/2003JD004475, 2004.
Yu, P., Toon, O. B., Bardeen, C. G., Zhu, Y., Rosenlof, K. H., Portmann, R. W., Thornberry, T. D., Gao, R-S., Davis, S. M., Wolf, E. T., de Gouw, J., Peterson, D. A., Fromm, M. D., and Robock, A.: Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume, Science, 365, 587–590, https://doi.org/10.1126/science.aax1748, 2019.
Zhong, M. and Jang, M.: Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight, Atmos. Chem. Phys., 14, 1517–1525, https://doi.org/10.5194/acp-14-1517-2014, 2014.
Short summary
This paper investigates the vertical impacts of the anomalous 2023 Canadian wildfire season using multiple satellite instruments. Our results highlight that despite a record-breaking area burned, only a small amount of smoke managed to enter the stratosphere. This shows that the conditions for deep convection were rarely met in the 2023 wildfire season, suggesting that even a massive area burned is not necessarily an indicator of stratospheric perturbations.
This paper investigates the vertical impacts of the anomalous 2023 Canadian wildfire season...
Altmetrics
Final-revised paper
Preprint