Articles | Volume 24, issue 20
https://doi.org/10.5194/acp-24-11619-2024
https://doi.org/10.5194/acp-24-11619-2024
Research article
 | 
17 Oct 2024
Research article |  | 17 Oct 2024

The interplay between aqueous replacement reaction and the phase state of internally mixed organic/ammonium aerosols

Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, and Yunhong Zhang

Related authors

Mechanistic insights into nitric acid-enhanced iodic acid particle nucleation in the upper troposphere and lower stratosphere
Jing Li, An Ning, Ling Liu, Fengyang Bai, Qishen Huang, Pai Liu, Xiucong Deng, Yunhong Zhang, and Xiuhui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1194,https://doi.org/10.5194/egusphere-2025-1194, 2025
Short summary
A comprehensive study on hygroscopic behaviour and nitrate depletion of NaNO3 and dicarboxylic acid mixtures: implications for nitrate depletion in tropospheric aerosols
Shuaishuai Ma, Qiong Li, and Yunhong Zhang
Atmos. Chem. Phys., 22, 10955–10970, https://doi.org/10.5194/acp-22-10955-2022,https://doi.org/10.5194/acp-22-10955-2022, 2022
Short summary
Observations on hygroscopic growth and phase transitions of mixed 1, 2, 6-hexanetriol ∕ (NH4)2SO4 particles: investigation of the liquid–liquid phase separation (LLPS) dynamic process and mechanism and secondary LLPS during the dehumidification
Shuaishuai Ma, Zhe Chen, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 21, 9705–9717, https://doi.org/10.5194/acp-21-9705-2021,https://doi.org/10.5194/acp-21-9705-2021, 2021
Short summary

Cited articles

Bouzidi, H., Zuend, A., Ondráèek, J., Schwarz, J., and Ždímal, V.: Hygroscopic behavior of inorganic–organic aerosol systems including ammonium sulfate, dicarboxylic acids, and oligomer, Atmos. Environ., 229, 117481, https://doi.org/10.1016/j.atmosenv.2020.117481, 2020. 
Chen, Z., Liu, P., Liu, Y., and Zhang, Y.: Strong Acids or Bases Displaced by Weak Acids or Bases in Aerosols: Reactions Driven by the Continuous Partitioning of Volatile Products into the Gas Phase, Accounts Chem. Res., 54, 3667–3678, https://doi.org/10.1021/acs.accounts.1c00318, 2021. 
Chen, Z., Liu, P., Su, H., and Zhang, Y.: Displacement of Strong Acids or Bases by Weak Acids or Bases in Aerosols: Thermodynamics and Kinetics, Environ. Sci. Technol., 56, 12937–12944, https://doi.org/10.1021/acs.est.2c03719, 2022. 
Díaz-Marín, C. D., Zhang, L., Lu, Z., Alshrah, M., Grossman, J. C., and Wang, E. N.: Kinetics of Sorption in Hygroscopic Hydrogels, Nano Lett., 22, 1100–1107, https://doi.org/10.1021/acs.nanolett.1c04216, 2022. 
Du, C., Yang, H., Wang, N., Pang, S., and Zhang, Y.: pH effect on the release of NH3 from the internally mixed sodium succinate and ammonium sulfate aerosols, Atmos. Environ., 220, 11710, https://doi.org/10.1016/j.atmosenv.2019.117101, 2020. 
Download
Short summary
Atmospheric secondary aerosols, composed of organic and inorganic components, undergo complex reactions that impact their phase state. Using molecular spectroscopy, we showed that ammonium-promoted aqueous replacement reaction, unique to these aerosols, is closely linked to phase behavior. The interplay between reactions and aerosol phase state can cause atypical phase transition and irreversible changes in aerosol composition during hygroscopic cycles, further impacting atmospheric processes.
Share
Altmetrics
Final-revised paper
Preprint