Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-9787-2023
https://doi.org/10.5194/acp-23-9787-2023
Research article
 | 
04 Sep 2023
Research article |  | 04 Sep 2023

Investigation of meteorological conditions and BrO during ozone depletion events in Ny-Ålesund between 2010 and 2021

Bianca Zilker, Andreas Richter, Anne-Marlene Blechschmidt, Peter von der Gathen, Ilias Bougoudis, Sora Seo, Tim Bösch, and John Philip Burrows

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-522', Anonymous Referee #1, 17 Apr 2023
  • RC2: 'Comment on egusphere-2023-522', Anonymous Referee #2, 19 Apr 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Bianca Zilker on behalf of the Authors (05 Jul 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to technical corrections (11 Jul 2023) by Farahnaz Khosrawi
AR by Bianca Zilker on behalf of the Authors (14 Jul 2023)  Manuscript 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
During Arctic spring, near-surface ozone is depleted by bromine released from salty sea ice and/or snow-covered areas under certain meteorological conditions. To study this ozone depletion and the prevailing meteorological conditions, two ozone data sets from Ny-Ålesund, Svalbard, have been evaluated. We found that during ozone depletion events lower pressure over the Barents Sea and higher pressure in the Icelandic Low area led to a transport of cold polar air from the north to Ny-Ålesund.
Altmetrics
Final-revised paper
Preprint