Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9323-2023
https://doi.org/10.5194/acp-23-9323-2023
Research article
 | 
24 Aug 2023
Research article |  | 24 Aug 2023

Modeling atmosphere–land interactions at a rainforest site – a case study using Amazon Tall Tower Observatory (ATTO) measurements and reanalysis data

Amelie U. Schmitt, Felix Ament, Alessandro C. de Araújo, Marta Sá, and Paulo Teixeira

Related authors

Attributing near-surface atmospheric trends in the Fram Strait region to regional sea ice conditions
Amelie U. Schmitt and Christof Lüpkes
The Cryosphere, 17, 3115–3136, https://doi.org/10.5194/tc-17-3115-2023,https://doi.org/10.5194/tc-17-3115-2023, 2023
Short summary
Observations of marine cold-air outbreaks: a comprehensive data set of airborne and dropsonde measurements from the Springtime Atmospheric Boundary Layer Experiment (STABLE)
Janosch Michaelis, Amelie U. Schmitt, Christof Lüpkes, Jörg Hartmann, Gerit Birnbaum, and Timo Vihma
Earth Syst. Sci. Data, 14, 1621–1637, https://doi.org/10.5194/essd-14-1621-2022,https://doi.org/10.5194/essd-14-1621-2022, 2022
Short summary
A lead-width distribution for Antarctic sea ice: a case study for the Weddell Sea with high-resolution Sentinel-2 images
Marek Muchow, Amelie U. Schmitt, and Lars Kaleschke
The Cryosphere, 15, 4527–4537, https://doi.org/10.5194/tc-15-4527-2021,https://doi.org/10.5194/tc-15-4527-2021, 2021
Short summary
Brief Communication: Trends in sea ice extent north of Svalbard and its impact on cold air outbreaks as observed in spring 2013
A. Tetzlaff, C. Lüpkes, G. Birnbaum, J. Hartmann, T. Nygård, and T. Vihma
The Cryosphere, 8, 1757–1762, https://doi.org/10.5194/tc-8-1757-2014,https://doi.org/10.5194/tc-8-1757-2014, 2014
The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean under clear skies in spring
A. Tetzlaff, L. Kaleschke, C. Lüpkes, F. Ament, and T. Vihma
The Cryosphere, 7, 153–166, https://doi.org/10.5194/tc-7-153-2013,https://doi.org/10.5194/tc-7-153-2013, 2013

Related subject area

Subject: Climate and Earth System | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Future reduction of cold extremes over East Asia due to thermodynamic and dynamic warming
Donghuan Li, Tianjun Zhou, Youcun Qi, Liwei Zou, Chao Li, Wenxia Zhang, and Xiaolong Chen
Atmos. Chem. Phys., 24, 7347–7358, https://doi.org/10.5194/acp-24-7347-2024,https://doi.org/10.5194/acp-24-7347-2024, 2024
Short summary
General circulation models simulate negative liquid water path–droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024,https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary
Global scenarios of anthropogenic mercury emissions
Flora Maria Brocza, Peter Rafaj, Robert Sander, Fabian Wagner, and Jenny Marie Jones
Atmos. Chem. Phys., 24, 7385–7404, https://doi.org/10.5194/acp-24-7385-2024,https://doi.org/10.5194/acp-24-7385-2024, 2024
Short summary
Impact of Asian aerosols on the summer monsoon strongly modulated by regional precipitation biases
Zhen Liu, Massimo A. Bollasina, and Laura J. Wilcox
Atmos. Chem. Phys., 24, 7227–7252, https://doi.org/10.5194/acp-24-7227-2024,https://doi.org/10.5194/acp-24-7227-2024, 2024
Short summary
Opinion: Optimizing climate models with process knowledge, resolution, and artificial intelligence
Tapio Schneider, L. Ruby Leung, and Robert C. J. Wills
Atmos. Chem. Phys., 24, 7041–7062, https://doi.org/10.5194/acp-24-7041-2024,https://doi.org/10.5194/acp-24-7041-2024, 2024
Short summary

Cited articles

Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., Kesselmeier, J., Könemann, T., Krüger, M. L., Lavric, J. V., Manzi, A. O., Lopes, A. P., Martins, D. L., Mikhailov, E. F., Moran-Zuloaga, D., Nelson, B. W., Nölscher, A. C., Santos Nogueira, D., Piedade, M. T. F., Pöhlker, C., Pöschl, U., Quesada, C. A., Rizzo, L. V., Ro, C.-U., Ruckteschler, N., Sá, L. D. A., de Oliveira Sá, M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Schöngart, J., Sörgel, M., de Souza, C. M., de Souza, R. A. F., Su, H., Targhetta, N., Tóta, J., Trebs, I., Trumbore, S., van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J., Winderlich, J., Wittmann, F., Wolff, S., and Yáñez Serrano, A. M.: The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols, Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, 2015. a, b
Anwar, S. A., Reboita, M. S., and Llopart, M.: On the sensitivity of the Amazon surface climate to two land-surface hydrology schemes using a high-resolution regional climate model (RegCM4), Int. J. Climatol., 42, 2311–2327, https://doi.org/10.1002/joc.7367, 2022. a
Araújo, A., Sörgel, M. and Manzi, A.: Micrometeorologic dataset – Eddy Covariance System 2014–2018, Max Planck Institute for Biogeochemistry [data set], https://www.attodata.org/, 2021a. 
Araújo, A., Sörgel, M., and Manzi, A.: Micrometeorologic dataset – Weather Station (AWS) 2014–2018, Max Planck Institute for Biogeochemistry [data set], https://www.attodata.org, 2021b. 
Ardilouze, C., Batté, L., Bunzel, F., Decremer, D., Déqué, M., Doblas-Reyes, F. J., Douville, H., Fereday, D., Guemas, V., MacLachlan, C., Müller, W., and Prodhomme, C.: Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability, Clim. Dynam., 49, 3959–3974, https://doi.org/10.1007/s00382-017-3555-7, 2017. a
Download
Short summary
Tall vegetation in forests affects the exchange of heat and moisture between the atmosphere and the land surface. We compared measurements from the Amazon Tall Tower Observatory to results from a land surface model to identify model shortcomings. Our results suggest that soil temperatures in the model could be improved by incorporating a separate canopy layer which represents the heat storage within the forest.
Altmetrics
Final-revised paper
Preprint