Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9245-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-9245-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal variations in the production of singlet oxygen and organic triplet excited states in aqueous PM2.5 in Hong Kong SAR, South China
Yuting Lyu
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
Yin Hau Lam
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
Yitao Li
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
Nadine Borduas-Dedekind
Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
Related authors
Yuting Lyu, Taekyu Joo, Ruihan Ma, Mark Kristan Espejo Cabello, Tianye Zhou, Shun Yeung, Cheuk Ki Wong, Yifang Gu, Yiming Qin, and Theodora Nah
EGUsphere, https://doi.org/10.5194/egusphere-2025-570, https://doi.org/10.5194/egusphere-2025-570, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated the aqueous nitrate-mediated photooxidation of four green leaf volatiles (GLVs). The aqueous reaction medium conditions, dilute cloud/fog vs. concentrated aqueous aerosol conditions, governed the effects that pH, ionic strength, and sulfate have on the GLV degradation rates and aqSOA mass yields. Most notably, reactions initiated by sulfate photolysis have significant effects in aqueous aerosols, but not in cloud/fog droplets.
Yuting Lyu, Taekyu Joo, Ruihan Ma, Mark Kristan Espejo Cabello, Tianye Zhou, Shun Yeung, Cheuk Ki Wong, Yifang Gu, Yiming Qin, and Theodora Nah
EGUsphere, https://doi.org/10.5194/egusphere-2025-570, https://doi.org/10.5194/egusphere-2025-570, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated the aqueous nitrate-mediated photooxidation of four green leaf volatiles (GLVs). The aqueous reaction medium conditions, dilute cloud/fog vs. concentrated aqueous aerosol conditions, governed the effects that pH, ionic strength, and sulfate have on the GLV degradation rates and aqSOA mass yields. Most notably, reactions initiated by sulfate photolysis have significant effects in aqueous aerosols, but not in cloud/fog droplets.
Michael F. Link, Megan S. Claflin, Christina E. Cecelski, Ayomide A. Akande, Delaney Kilgour, Paul A. Heine, Matthew Coggon, Chelsea E. Stockwell, Andrew Jensen, Jie Yu, Han N. Huynh, Jenna C. Ditto, Carsten Warneke, William Dresser, Keighan Gemmell, Spiro Jorga, Rileigh L. Robertson, Joost de Gouw, Timothy Bertram, Jonathan P. D. Abbatt, Nadine Borduas-Dedekind, and Dustin Poppendieck
Atmos. Meas. Tech., 18, 1013–1038, https://doi.org/10.5194/amt-18-1013-2025, https://doi.org/10.5194/amt-18-1013-2025, 2025
Short summary
Short summary
Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for the measurement of volatile organic compounds (VOCs) both indoors and outdoors. An analytical challenge for PTR-MS measurements is the formation of unintended measurement interferences, product ion distributions (PIDs), that may appear in the data as VOCs of interest. We developed a method for quantifying PID formation and use interlaboratory comparison data to put quantitative constraints on PID formation.
Kathleen A. Thompson, Paul Bieber, Anna J. Miller, Nicole Link, Benjamin J. Murray, and Nadine Borduas-Dedekind
EGUsphere, https://doi.org/10.5194/egusphere-2024-2827, https://doi.org/10.5194/egusphere-2024-2827, 2024
Short summary
Short summary
Lignin and Snomax are surface-active macromolecules that show a relationship between increasing concentrations, decreasing surface tension, and increasing ice-nucleating ability. However, this relationship did not hold for agricultural soil extracts collected in the UK and Canada. Hydrophobic interfaces play an important role in the ice-nucleating activity of organic matter; as the complexity of the sample increases, the hydrophobic interfaces in the bulk compete with the air-water interface.
Nadine Borduas-Dedekind, Karen C. Short, and Samuel P. Carlson
Earth Syst. Sci. Data, 15, 1437–1440, https://doi.org/10.5194/essd-15-1437-2023, https://doi.org/10.5194/essd-15-1437-2023, 2023
Short summary
Short summary
This article describes the use of the open-discussion manuscript review process as an educational exercise for early career scientists.
Yushuo Liu, Chee Kent Lim, Zhiyong Shen, Patrick K. H. Lee, and Theodora Nah
Atmos. Chem. Phys., 23, 1731–1747, https://doi.org/10.5194/acp-23-1731-2023, https://doi.org/10.5194/acp-23-1731-2023, 2023
Short summary
Short summary
We investigated how cloud water pH and solar radiation impact the survival and energetic metabolism of two neutrophilic bacteria species and their biodegradation of organic acids. Experiments were performed using artificial cloud water that mimicked the pH and composition of cloud water in South China. We found that there is a minimum cloud water pH threshold at which neutrophilic bacteria will survive and biodegrade organic compounds in cloud water during the daytime and/or nighttime.
Junwei Yang, Lan Ma, Xiao He, Wing Chi Au, Yanhao Miao, Wen-Xiong Wang, and Theodora Nah
Atmos. Chem. Phys., 23, 1403–1419, https://doi.org/10.5194/acp-23-1403-2023, https://doi.org/10.5194/acp-23-1403-2023, 2023
Short summary
Short summary
Water-soluble metals play key roles in human health and atmospheric processes. We report the seasonal abundance and fractional solubilities of different metals in aerosols collected in urban Hong Kong as well as the key factors that modulated solubilities of the various metals in fine aerosols. Our results highlight the dual roles (i.e., acidifying the aerosol particle and providing a liquid reaction medium) that sulfate plays in the acid dissolution of metals in fine aerosols in Hong Kong.
Brix Raphael Go, Yan Lyu, Yan Ji, Yong Jie Li, Dan Dan Huang, Xue Li, Theodora Nah, Chun Ho Lam, and Chak K. Chan
Atmos. Chem. Phys., 22, 273–293, https://doi.org/10.5194/acp-22-273-2022, https://doi.org/10.5194/acp-22-273-2022, 2022
Short summary
Short summary
Biomass burning (BB) is a global phenomenon that releases large quantities of pollutants such as phenols and aromatic carbonyls into the atmosphere. These compounds can form secondary organic aerosols (SOAs) which play an important role in the Earth’s energy budget. In this work, we demonstrated that the direct irradiation of vanillin (VL) could generate aqueous SOA (aqSOA) such as oligomers. In the presence of nitrate, VL photo-oxidation can also form nitrated compounds.
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech., 14, 3131–3151, https://doi.org/10.5194/amt-14-3131-2021, https://doi.org/10.5194/amt-14-3131-2021, 2021
Short summary
Short summary
To characterize atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), which involves the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with two other DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with three DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000 and add FINC.
Sophie Bogler and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 14509–14522, https://doi.org/10.5194/acp-20-14509-2020, https://doi.org/10.5194/acp-20-14509-2020, 2020
Short summary
Short summary
To study the role of organic matter in ice crystal formation, we investigated the ice nucleation ability of a subcomponent of organic aerosols, the biopolymer lignin, using a droplet-freezing technique. We found that lignin is an ice-active macromolecule with changing abilities based on dilutions. The effects of atmospheric processing and of physicochemical treatments on the ability of lignin solutions to freeze were negligible. Thus, lignin is a recalcitrant ice-nucleating macromolecule.
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Assaf Zipori, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-361, https://doi.org/10.5194/amt-2020-361, 2020
Preprint withdrawn
Short summary
Short summary
For characterizing atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with three DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with four DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000, to which we add FINC.
Yunle Chen, Masayuki Takeuchi, Theodora Nah, Lu Xu, Manjula R. Canagaratna, Harald Stark, Karsten Baumann, Francesco Canonaco, André S. H. Prévôt, L. Gregory Huey, Rodney J. Weber, and Nga L. Ng
Atmos. Chem. Phys., 20, 8421–8440, https://doi.org/10.5194/acp-20-8421-2020, https://doi.org/10.5194/acp-20-8421-2020, 2020
Short summary
Short summary
Two online mass spectrometry instruments, an aerosol mass spectrometer and a chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols, were deployed at Yorkville, GA, for a comprehensive characterization of organic aerosol. We observed notable secondary organic aerosol formation from isoprene and monoterpenes via different pathways during both day and night, and a series of highly oxidized acid-like compounds was found to be closely related to aged SOA.
Killian P. Brennan, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 163–180, https://doi.org/10.5194/acp-20-163-2020, https://doi.org/10.5194/acp-20-163-2020, 2020
Short summary
Short summary
To contribute to our understanding of the liquid water-to-ice ratio in mixed-phase clouds, this study provides a spatial and temporal dataset of ice-nucleating particle (INP) concentrations in meltwater of 88 snow samples across 17 locations in the Swiss Alps. The impact of altitude, terrain, time since last snowfall and depth on freezing temperatures was also investigated. The measured INP concentrations provide an estimate of cloud glaciation temperatures important for cloud lifetime.
Robert O. David, Maria Cascajo-Castresana, Killian P. Brennan, Michael Rösch, Nora Els, Julia Werz, Vera Weichlinger, Lin S. Boynton, Sophie Bogler, Nadine Borduas-Dedekind, Claudia Marcolli, and Zamin A. Kanji
Atmos. Meas. Tech., 12, 6865–6888, https://doi.org/10.5194/amt-12-6865-2019, https://doi.org/10.5194/amt-12-6865-2019, 2019
Short summary
Short summary
Here we present the development and applicability of the DRoplet Ice Nuclei Counter Zurich (DRINCZ). DRINCZ allows for ice nuclei in the immersion mode to be quantified between 0 and -25 °C with an uncertainty of ±0.9 °C. Furthermore, we present a new method for assessing biases in drop-freezing apparatuses and cumulative ice-nucleating-particle concentrations from snow samples collected in the Austrian Alps at the Sonnblick Observatory.
Nadine Borduas-Dedekind, Rachele Ossola, Robert O. David, Lin S. Boynton, Vera Weichlinger, Zamin A. Kanji, and Kristopher McNeill
Atmos. Chem. Phys., 19, 12397–12412, https://doi.org/10.5194/acp-19-12397-2019, https://doi.org/10.5194/acp-19-12397-2019, 2019
Short summary
Short summary
During atmospheric transport, dissolved organic matter (DOM) within aqueous aerosols undergoes photochemistry. We find that photochemical processing of DOM increases its ability to form cloud droplets but decreases its ability to form ice crystals over a simulated 4.6 days in the atmosphere. A photomineralization mechanism involving the loss of organic carbon and the production of organic acids, CO and CO2 explains the observed changes and affects the liquid-water-to-ice ratio in clouds.
Tracey Leah Laban, Pieter Gideon van Zyl, Johan Paul Beukes, Ville Vakkari, Kerneels Jaars, Nadine Borduas-Dedekind, Miroslav Josipovic, Anne Mee Thompson, Markku Kulmala, and Lauri Laakso
Atmos. Chem. Phys., 18, 15491–15514, https://doi.org/10.5194/acp-18-15491-2018, https://doi.org/10.5194/acp-18-15491-2018, 2018
Short summary
Short summary
Surface O3 was measured at four sites in the north-eastern interior of South Africa, which revealed that O3 is a regional problem in continental South Africa, with elevated O3 levels found at rural background and industrial sites. Increased O3 concentrations were associated with high CO levels predominantly related to regional biomass burning, while the O3 production regime was established to be predominantly VOC limited. Increased O3 is associated with strong seasonality of precursor sources.
Theodora Nah, Yi Ji, David J. Tanner, Hongyu Guo, Amy P. Sullivan, Nga Lee Ng, Rodney J. Weber, and L. Gregory Huey
Atmos. Meas. Tech., 11, 5087–5104, https://doi.org/10.5194/amt-11-5087-2018, https://doi.org/10.5194/amt-11-5087-2018, 2018
Short summary
Short summary
The sources and atmospheric chemistry of gas-phase organic acids are currently poorly understood, due in part to the limited range of measurement techniques available. We evaluated the use of SF6− as a sensitive and selective chemical ionization reagent ion for real-time measurements of gas-phase organic acids at a rural site in Yorkville, Georgia. We found that ambient concentrations of organic acids ranged from a few ppt to several ppb, and are dependent on ambient temperature.
Theodora Nah, Hongyu Guo, Amy P. Sullivan, Yunle Chen, David J. Tanner, Athanasios Nenes, Armistead Russell, Nga Lee Ng, L. Gregory Huey, and Rodney J. Weber
Atmos. Chem. Phys., 18, 11471–11491, https://doi.org/10.5194/acp-18-11471-2018, https://doi.org/10.5194/acp-18-11471-2018, 2018
Short summary
Short summary
We present measurements from a field study conducted in an agriculturally intensive region in the southeastern US during the fall of 2016 to investigate how NH3 affects particle acidity and SOA formation via gas–particle partitioning of semi-volatile organic acids. For this study, higher NH3 concentrations relative to what has been measured in the region in previous studies had minor effects on PM1 organic acids and their influence on the overall organic aerosol and PM1 mass concentrations.
Theodora Nah, Renee C. McVay, Jeffrey R. Pierce, John H. Seinfeld, and Nga L. Ng
Atmos. Chem. Phys., 17, 2297–2310, https://doi.org/10.5194/acp-17-2297-2017, https://doi.org/10.5194/acp-17-2297-2017, 2017
Short summary
Short summary
We present a model framework that accounts for coagulation in chamber studies where high seed aerosol surface area concentrations are used. The uncertainties in the calculated SOA mass concentrations and yields between four different particle-wall loss correction methods over the series of α-pinene ozonolysis experiments are also assessed. We show that SOA mass yields calculated by the four methods can deviate significantly in studies where high seed aerosol surface area concentrations are used.
N. Borduas, B. Place, G. R. Wentworth, J. P. D. Abbatt, and J. G. Murphy
Atmos. Chem. Phys., 16, 703–714, https://doi.org/10.5194/acp-16-703-2016, https://doi.org/10.5194/acp-16-703-2016, 2016
Short summary
Short summary
HNCO is a toxic molecule and can cause cardiovascular and cataract problems through protein carbamylation once inhaled. Recently reported ambient measurements of HNCO in North America raise concerns for human exposure. To better understand HNCO's loss processes and behaviour in the atmosphere, we provide thermochemical data on HNCO. The parameters allow for more accurate predictions of its lifetime in the atmosphere and consequently help define exposure of this toxic molecule.
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Non-biogenic sources are an important but overlooked contributor to aerosol isoprene-derived organosulfates during winter in northern China
The critical role of aqueous-phase processes in aromatic-derived nitrogen-containing organic aerosol formation in cities with different energy consumption patterns
Characterization of atmospheric water-soluble brown carbon in the Athabasca oil sands region, Canada
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Burning conditions and transportation pathways determine biomass-burning aerosol properties in the Ascension Island marine boundary layer
Observations of high-time-resolution and size-resolved aerosol chemical composition and microphysics in the central Arctic: implications for climate-relevant particle properties
Measurement report: Brown carbon aerosol in rural Germany – sources, chemistry, and diurnal variations
Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
Seasonal investigation of ultrafine-particle organic composition in an eastern Amazonian rainforest
High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning
Direct measurement of N2O5 heterogeneous uptake coefficients on atmospheric aerosols in southwestern China and evaluation of current parameterizations
Measurement report: Per- and polyfluoroalkyl substances (PFAS) in particulate matter (PM10) from activated sludge aeration
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
A 60-year atmospheric nitrate isotope record from a Southeast Greenland ice core with minimal post-depositional alteration
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Measurement Report: Vertically resolved Atmospheric Properties Observed over the Southern Great Plains with Uncrewed Aerial System – ArcticShark
African dust transported to Barbados in the Wintertime Lacks Indicators of Chemical Aging
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Molecular characterization of organic aerosols in urban and forested areas of Paris using high resolution mass spectrometry
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Measurement report: Wintertime aerosol characterization at an urban traffic site in Helsinki Finland
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Measurement report: Characterization of Aerosol Hygroscopicity over Southeast Asia during the NASA CAMP2Ex Campaign
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Measurement report: In-depth characterization of ship emissions during operations in a Mediterranean port
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Marine Organic Aerosols at Mace Head: Effects from Phytoplankton and Source Region Variability
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Formation of Highly Absorptive Secondary Brown Carbon Through Nighttime Multiphase Chemistry of Biomass Burning Emissions
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Source apportionment and ecotoxicity of particulate pollution events in a Major Southern Hemisphere Megacity: influence of biomass burning and a biofuel impacted fleet
Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2967–2978, https://doi.org/10.5194/acp-25-2967-2025, https://doi.org/10.5194/acp-25-2967-2025, 2025
Short summary
Short summary
Previous measurement–model comparisons of atmospheric isoprene levels showed a significant unidentified source of isoprene in some northern Chinese cities during winter. Here, the first combination of large-scale observations and field combustion experiments provides novel insights into biomass burning emissions as a significant source of isoprene-derived organosulfates during winter in northern cities of China.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2763–2780, https://doi.org/10.5194/acp-25-2763-2025, https://doi.org/10.5194/acp-25-2763-2025, 2025
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of nitrogen-containing organic compounds (NOCs) in PM2.5 during winter were compared among cities with different energy consumption patterns. The aerosol NOC pollution during winter in China is closely associated with the intensity of precursor emissions and the aqueous-phase processes. Our results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter in China.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
Atmos. Chem. Phys., 25, 2423–2442, https://doi.org/10.5194/acp-25-2423-2025, https://doi.org/10.5194/acp-25-2423-2025, 2025
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca oil sands region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (collected during the summer of 2021) identified oil sands operations as a measurable brown carbon source. Industrial aerosol emissions were unlikely to impact regional radiative forcing. These findings show that fluorescence spectroscopy can be used to monitor brown carbon in the AOSR.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 25, 2407–2422, https://doi.org/10.5194/acp-25-2407-2025, https://doi.org/10.5194/acp-25-2407-2025, 2025
Short summary
Short summary
In situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below-cloud-base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Amie Dobracki, Ernie R. Lewis, Arthur J. Sedlacek III, Tyler Tatro, Maria A. Zawadowicz, and Paquita Zuidema
Atmos. Chem. Phys., 25, 2333–2363, https://doi.org/10.5194/acp-25-2333-2025, https://doi.org/10.5194/acp-25-2333-2025, 2025
Short summary
Short summary
Biomass-burning aerosol is commonly present in the marine boundary layer over the southeast Atlantic Ocean between June and October. Our research indicates that burning conditions, aerosol transport pathways, and prolonged oxidation processes (heterogeneous and aqueous phases) determine the chemical, microphysical, and optical properties of the boundary layer aerosol. Notably, we find that the aerosol optical properties can be estimated from the chemical properties alone.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiia Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
Atmos. Chem. Phys., 25, 2207–2241, https://doi.org/10.5194/acp-25-2207-2025, https://doi.org/10.5194/acp-25-2207-2025, 2025
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol–climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Local wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Harald Saathoff, Uzoamaka Ezenobi, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
Atmos. Chem. Phys., 25, 1917–1930, https://doi.org/10.5194/acp-25-1917-2025, https://doi.org/10.5194/acp-25-1917-2025, 2025
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase was determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at a rural location in central Europe.
James Brean, David C. S. Beddows, Eija Asmi, Aki Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Rolf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall'Osto
Atmos. Chem. Phys., 25, 1145–1162, https://doi.org/10.5194/acp-25-1145-2025, https://doi.org/10.5194/acp-25-1145-2025, 2025
Short summary
Short summary
Our results emphasise how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 25, 959–977, https://doi.org/10.5194/acp-25-959-2025, https://doi.org/10.5194/acp-25-959-2025, 2025
Short summary
Short summary
We present measurements of the organic composition of ultrafine particles collected from the eastern Amazon, an understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant for ultrafine-particle growth throughout the year, compounds related to other sources, such as biological-spore emissions and biomass burning, exhibit striking seasonal differences, implying extensive variation in regional ultrafine-particle sources.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Jiayin Li, Tianyu Zhai, Xiaorui Chen, Haichao Wang, Shuyang Xie, Shiyi Chen, Chunmeng Li, Huabin Dong, and Keding Lu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3804, https://doi.org/10.5194/egusphere-2024-3804, 2025
Short summary
Short summary
We directly measured the dinitrogen pentoxide (N2O5) uptake coefficient which critical impact the NOx fate and particulate nitrate formation in a typical highland city, Kunming, in China. We found the performance of current γ(N2O5) parameterizations showed deviations with the varying aerosol liquid water content (ALWC). Such differences would lead to biased estimation on particulate nitrate production potential. Our findings suggest the directions for future studies.
Jishnu Pandamkulangara Kizhakkethil, Zongbo Shi, Anna Bogush, and Ivan Kourtchev
EGUsphere, https://doi.org/10.5194/egusphere-2024-3952, https://doi.org/10.5194/egusphere-2024-3952, 2025
Short summary
Short summary
Pollution with per- and polyfluoroalkyl substances (PFAS) received attention due to their environmental persistence and bioaccumulation. PM10 collected above a scaled-down activated sludge tank treating domestic sewage for a population >10,000 people in the UK were analysed for a range of short-, medium- and long-chain PFAS. Eight PFAS were detected in the PM10. Our results suggest that wastewater treatment processes i.e. activated sludge aeration could aerosolise PFAS into airborne PM.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025, https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka
EGUsphere, https://doi.org/10.5194/egusphere-2024-3937, https://doi.org/10.5194/egusphere-2024-3937, 2024
Short summary
Short summary
Nitrate isotope records in ice cores reveal changes in NOₓ emissions, atmospheric acidity, and oxidation chemistry driven by human activity. However, nitrate in snow can be altered by UV-driven post-depositional processes, making snow accumulation rates critical for preserving these records. This study examines nitrate isotopes in an SE-Dome ice core, where high snow accumulation minimizes these effects, providing a reliable archive of atmospheric nitrogen cycling.
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Fan Mei, Qi Zhang, Damao Zhang, Jerome Fast, Gourihar Kulkarni, Mikhail Pekour, Christopher Niedek, Susanne Glienke, Isarel Silber, Beat Schmid, Jason Tomlinson, Hardeep Mehta, Xena Mansoura, Zezhen Cheng, Gregory Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3089, https://doi.org/10.5194/egusphere-2024-3089, 2024
Short summary
Short summary
This study highlights the unique capability of the ArcticShark UAS in measuring vertically resolved atmospheric properties over the Southern Great Plains. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Haley M. Royer, Michael T. Sheridan, Hope E. Elliott, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Zihua Zhu, Andrew P. Ault, and Cassandra J. Gaston
EGUsphere, https://doi.org/10.5194/egusphere-2024-3288, https://doi.org/10.5194/egusphere-2024-3288, 2024
Short summary
Short summary
Saharan dust transported across the Atlantic to the Caribbean, South America, and North America is hypothesized to undergo chemical processing by inorganic and organic acids that enhances cloud droplet formation, nutrient availability, and reflectivity of. In this study, chemical analysis performed on African dust deposited over Barbados shows that acid tracers are found mostly on sea salt and smoke particles, rather than dust, indicating that dust particles undergo minimal chemical processing.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2024-3015, https://doi.org/10.5194/egusphere-2024-3015, 2024
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analysis of samples collected during ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in the summer 2022 in the Paris greater area. After analysis of the chemical composition by means of total carbon determination and high resolution mass spectrometry, this work highlights the influence of anthropogenic inputs into the chemical composition of both urban and forested areas.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Kimmo Teinilä, Sanna Saarikoski, Henna Lintusaari, Teemu Lepistö, Petteri Marjanen, Minna Aurela, Heidi Hellén, Toni Tykkä, Markus Lampimäki, Janne Lampilahti, Luis Barreira, Timo Mäkelä, Leena Kangas, Juha Hatakka, Sami Harni, Joel Kuula, Jarkko V. Niemi, Harri Portin, Jaakko Yli-Ojanperä, Ville Niemelä, Milja Jäppi, Katrianne Lehtipalo, Joonas Vanhanen, Liisa Pirjola, Hanna E. Manninen, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2235, https://doi.org/10.5194/egusphere-2024-2235, 2024
Short summary
Short summary
Physical and chemical properties of particulate matter and concentrations of trace gases were measured in a street canyon in Helsinki, Finland and an urban background site in January–February 2022 to investigate the effect of wintertime conditions on pollutants. State-of-the-art instruments, a mobile laboratory was used, and the measurement data was further analysed with modelling tools like positive matrix factorization (PMF) and pollution detection algorithm (PDA).
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2604, https://doi.org/10.5194/egusphere-2024-2604, 2024
Short summary
Short summary
Novel aerosol hygroscopicity analysis of CAMP2Ex field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Lise Le Berre, Brice Temime-Roussel, Grazia Maria Lanzafame, Barbara D’Anna, Nicolas Marchand, Stéphane Sauvage, Marvin Dufresne, Liselotte Tinel, Thierry Leonardis, Joel Ferreira de Brito, Alexandre Armengaud, Grégory Gille, Ludovic Lanzi, Romain Bourjot, and Henri Wortham
EGUsphere, https://doi.org/10.5194/egusphere-2024-2903, https://doi.org/10.5194/egusphere-2024-2903, 2024
Short summary
Short summary
A summer campaign in a Mediterranean port examined pollution caused by ships. Two stations in the port measured pollution levels and captured over 350 ship plumes to study their chemical composition. Results showed that pollution levels, like ultra-fine particles, were higher in the port than in the city and offer a strong support to improve emission inventories. These findings may also serve as reference for assessing the benefits of a Sulphur Emission Control Area in the Mediterranean in 2025.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Emmanuel Chevassus, Kirsten N. Fossum, Darius Ceburnis, Lu Lei, Chunshui Lin, Wei Xu, Colin D. O’ Dowd, and Jurgita Ovadnevaite
EGUsphere, https://doi.org/10.5194/egusphere-2024-2890, https://doi.org/10.5194/egusphere-2024-2890, 2024
Short summary
Short summary
This study presents the first source apportionment of OA at Mace Head via high-resolution mass spectrometry. Introducing transfer entropy as a novel method reveals that aged OA originate from open ocean ozonolysis and local peat burning oxidation. Methanesulphonic acid OA and primary marine OA both mirror phytoplankton activity as observed with their chemical makeup, with MSA-OA closely tied to coccolithophore blooms and PMOA linked to diatoms, chlorophytes, and cyanobacteria.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Ye Kuang, Biao Luo, Shan Huang, Junwen Liu, Weiwei Hu, Yuweng Peng, Duohong Chen, Dingli Yue, Wanyun Xu, Bin Yuan, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2654, https://doi.org/10.5194/egusphere-2024-2654, 2024
Short summary
Short summary
This research reveals the potential importance of nighttime NO3 radical chemistry and aerosol water in the rapid formation of secondary brown carbon from biomass burning emissions. The findings enhance our understanding of nighttime biomass burning evolution and its implications for climate and regional air quality, especially regarding interactions with aerosol water and water-rich fogs and clouds.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2024-2212, https://doi.org/10.5194/egusphere-2024-2212, 2024
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources were dominant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Cited articles
Albinet, A., Minero, C., and Vione, D.:
Photochemical generation of reactive species upon irradiation of rainwater: Negligible photoactivity of dissolved organic matter, Sci. Total Environ., 408, 3367–3373, 2010. a
Allen, J. M., Gossett, C. J., and Allen, S. K.:
Photochemical formation of singlet molecular oxygen (1O2) in illuminated aqueous solutions of p-aminobenzoic acid (PABA), J. Photoch. Photobio. B, 32, 33–37, https://doi.org/10.1016/1011-1344(95)07185-7, 1996. a
Anastasio, C. and Jordan, A. L.:
Photoformation of hydroxyl radical and hydrogen peroxide in aerosol particles from Alert, Nunavut: implications for aerosol and snowpack chemistry in the Arctic, Atmos. Environ., 38, 1153–1166, https://doi.org/10.1016/j.atmosenv.2003.11.016, 2004. a, b
Anastasio, C. and Newberg, J. T.:
Sources and sinks of hydroxyl radical in sea-salt particles, J. Geophys. Res.-Atmos., 112, D10306, https://doi.org/10.1029/2006JD008061, 2007. a, b
Appiani, E., Ossola, R., Latch, D. E., Erickson, P. R., and McNeill, K.:
Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: effect of temperature, pH, and salt content, Environ. Sci.-Proc. Imp., 19, 507–516, https://doi.org/10.1039/C6EM00646A, 2017. a, b, c
Arakaki, T. and Faust, B. C.:
Sources, sinks, and mechanisms of hydroxyl radical (⚫OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: The role of the Fe(r) (r = II, III) photochemical cycle, J. Geophys. Res.-Atmos., 103, 3487–3504, https://doi.org/10.1029/97JD02795, 1998. a, b
Arakaki, T., Miyake, T., Shibata, M., and Sakugawa, H.:
Photochemical formation and scavenging of hydroxyl radical in rain and dew waters, Nip. Kag. Kai., 5, 335–340, https://doi.org/10.14934/chikyukagaku.43.15, 1999. a, b
Arakaki, T., Kuroki, Y., Okada, K., Nakama, Y., Ikota, H., Kinjo, M., Higuchi, T., Uehara, M., and Tanahara, A.:
Chemical composition and photochemical formation of hydroxyl radicals in aqueous extracts of aerosol particles collected in Okinawa, Japan, Atmos. Environ., 40, 4764–4774, https://doi.org/10.1016/j.atmosenv.2006.04.035, 2006. a, b
Arakaki, T., Anastasio, C., Kuroki, Y., Nakajima, H., Okada, K., Kotani, Y., Handa, D., Azechi, S., Kimura, T., Tsuhako, A., and Miyagi, Y.: A general scavenging rate constant for reaction of hydroxyl radical with organic carbon in atmospheric waters, Environ. Sci. Technol., 47, 8196–8203, https://doi.org/10.1021/es401927b, 2013. a, b
Bai, Z., Zhang, L., Cheng, Y., Zhang, W., Mao, J., Chen, H., Li, L., Wang, L., and Chen, J.:
Water/Methanol-Insoluble Brown Carbon Can Dominate Aerosol-Enhanced Light Absorption in Port Cities, Environ. Sci. Technol., 54, 14889–14898, https://doi.org/10.1021/acs.est.0c03844, pMID: 32790286, 2020. a
Barrios, B., Mohrhardt, B., Doskey, P. V., and Minakata, D.:
Mechanistic insight into the reactivities of aqueous-phase singlet oxygen with organic compounds, Environ. Sci. Technol., 55, 8054–8067, https://doi.org/10.1021/acs.est.1c01712, 2021. a
Bilal, M., Nichol, J. E., Nazeer, M., Shi, Y., Wang, L. C., Kumar, K. R., Ho, H. C., Mazhar, U., Bleiweiss, M. P., Qiu, Z. F., Khedher, K. M., and Lolli, S.: Characteristics of fine particulate matter (PM2.5) over urban, suburban, and rural areas of Hong Kong, Atmosphere, 10, 496, https://doi.org/10.3390/atmos10090496, 2019. a
Bogler, S., Daellenbach, K. R., Bell, D. M., Prévôt, A. S., El Haddad, I., and Borduas-Dedekind, N.:
Singlet Oxygen Seasonality in Aqueous PM10 is Driven by Biomass Burning and Anthropogenic Secondary Organic Aerosol, Environ. Sci. Technol., 56, 15389–15397, https://doi.org/10.1021/acs.est.2c04554, 2022. a, b, c, d, e, f
Canonica, S. and Laubscher, H.-U.:
Inhibitory effect of dissolved organic matter on triplet-induced oxidation of aquatic contaminants, Photoch. Photobio. Sci., 7, 547–551, https://doi.org/10.1039/b719982a, 2008. a
Canonica, S., Jans, U., Stemmler, K., and Hoigne, J.:
Transformation kinetics of phenols in water: photosensitization by dissolved natural organic material and aromatic ketones, Environ. Sci. Technol., 29, 1822–1831, https://doi.org/10.1021/es00007a020, 1995. a
Canonica, S., Hellrung, B., and Wirz, J.:
Oxidation of phenols by triplet aromatic ketones in aqueous solution, J. Phys. Chem. A, 104, 1226–1232, https://doi.org/10.1021/jp9930550, 2000. a
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., LAM, Y. F., Pereira, G., Ding, A., Huang, X., and Dumka, U. C.:
A review of biomass burning: Emissions and impacts on air quality, health and climate in China, Sci. Total Environ., 579, 1000–1034, https://doi.org/10.1016/j.scitotenv.2016.11.025, 2017. a, b
Chen, Q. C., Mu, Z., Xu, L., Wang, M. M., Wang, J., Shan, M., Fan, X. J., Song, J. Z., Wang, Y. Q., Lin, P. C., and Du, L.: Triplet-state organic matter in atmospheric aerosols: Formation characteristics and potential effects on aerosol aging, Atmos. Environ., 252, 118343, https://doi.org/10.1016/j.atmosenv.2021.118343, 2021. a, b, c
Chen, X. and Yu, J. Z.:
Measurement of organic mass to organic carbon ratio in ambient aerosol samples using a gravimetric technique in combination with chemical analysis, Atmos. Environ., 41, 8857–8864, 2007. a
Chow, W. S., Liao, K., Huang, X. H. H., Leung, K. F., Lau, A. K. H., and Yu, J. Z.:
Measurement report: The 10-year trend of PM2.5 major components and source tracers from 2008 to 2017 in an urban site of Hong Kong, China, Atmos. Chem. Phys., 22, 11557–11577, https://doi.org/10.5194/acp-22-11557-2022, 2022. a, b
Cote, C. D., Schneider, S. R., Lyu, M., Gao, S., Gan, L., Holod, A. J., Chou, T. H., and Styler, S. A.:
Photochemical production of singlet oxygen by urban road dust, Environ. Sci. Technol. Letters, 5, 92–97, https://doi.org/10.1021/acs.estlett.7b00533, 2018. a, b
Cui, L., Wang, X. L., Ho, K. F., Gao, Y., Liu, C., Ho, S. S. H., Li, H. W., Lee, S. C., Wang, X. M., Jiang, B. Q., Huang, Y., Chow, J. C., Watson, J. G., and Chen, L. W.: Decrease of VOC emissions from vehicular emissions in Hong Kong from 2003 to 2015: Results from a tunnel study, Atmos. Environ., 177, 64–74, https://doi.org/10.1016/j.atmosenv.2018.01.020, 2018. a
Davis, C. A., McNeill, K., and Janssen, E. M.-L.:
Non-singlet oxygen kinetic solvent isotope effects in aquatic photochemistry, Environ. Sci. Technol., 52, 9908–9916, https://doi.org/10.1021/acs.est.8b01512, 2018. a, b
De Haan, D. O., Tolbert, M. A., and Jimenez, J. L.:
Atmospheric condensed-phase reactions of glyoxal with methylamine, Geophys. Res. Lett., 36, L11819, https://doi.org/10.1029/2009GL037441, 2009. a
De Haan, D. O., Hawkins, L. N., Kononenko, J. A., Turley, J. J., Corrigan, A. L., Tolbert, M. A., and Jimenez, J. L.:
Formation of Nitrogen-Containing Oligomers by Methylglyoxal and Amines in Simulated Evaporating Cloud Droplets, Environ. Sci. Technol., 45, 984–991, https://doi.org/10.1021/es102933x, pMID: 21171623, 2011. a
Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M., and Weber, R.:
A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties, Atmos. Environ., 89, 235–241, https://doi.org/10.1016/j.atmosenv.2014.02.022, 2014. a
Erickson, P. R., Walpen, N., Guerard, J. J., Eustis, S. N., Arey, J. S., and McNeill, K.:
Controlling factors in the rates of oxidation of anilines and phenols by triplet methylene blue in aqueous solution, J. Phys. Chem. A, 119, 3233–3243, https://doi.org/10.1021/jp511408f, 2015. a
Faust, B. C. and Allen, J. M.:
Aqueous-phase photochemical sources of peroxyl radicals and singlet molecular oxygen in clouds and fog, J. Geophys. Res.-Atmos., 97, 12913–12926, https://doi.org/10.1029/92JD00843, 1992. a
Ghogare, A. A. and Greer, A.:
Using singlet oxygen to synthesize natural products and drugs, Chem. Rev., 116, 9994–10034, 2016. a
Guo, H., Lee, S., Ho, K., Wang, X., and Zou, S.:
Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong, Atmos. Environ., 37, 5307–5317, https://doi.org/10.1016/j.atmosenv.2003.09.011, 2003. a
Haag, W. R. and Hoigne, J.:
Singlet oxygen in surface waters. 3. Photochemical formation and steady-state concentrations in various types of waters, Environ. Sci. Technol., 20, 341–348, 1986. a
Haan, D. O. D., Corrigan, A. L., Smith, K. W., Stroik, D. R., Turley, J. J., Lee, F. E., Tolbert, M. A., Jimenez, J. L., Cordova, K. E., and Ferrell, G. R.:
Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids, Environ. Sci. Technol., 43, 2818–2824, https://doi.org/10.1021/es803534f, pMID: 19475956, 2009. a
He, C., Wang, H., Gong, D., Lv, S., Wu, G., Wang, R., Chen, Y., Ding, Y., Li, Y., and Wang, B.:
Insights into high concentrations of particle-bound imidazoles in the background atmosphere of southern China: Potential sources and influencing factors, Sci. Total Environ., 806, 150804, https://doi.org/10.1016/j.scitotenv.2021.150804, 2022. a
Helin, A., Virkkula, A., Backman, J., Pirjola, L., Sippula, O., Aakko-Saksa, P., Väätäinen, S., Mylläri, F., Järvi- nen, A., Bloss, M., Aurela, M., Jakobi, G., Karjalainen, P., Zimmermann, R., Jokiniemi, J., Saarikoski, S., Tissari, J., Rönkkö, T., Niemi, J. V., and Timonen, H.:
Variation of absorption Ångström exponent in aerosols from different emission sources, J. Geophys. Res.-Atmos., 126, e2020JD034094, https://doi.org/10.1029/2020JD034094, 2021. a
Hems, R. F., Schnitzler, E. G., Liu-Kang, C., Cappa, C. D., and Abbatt, J. P.:
Aging of atmospheric brown carbon aerosol, ACS Earth and Space Chemistry, 5, 722–748, https://doi.org/10.1021/acsearthspacechem.0c00346, 2021. a
Herckes, P., Valsaraj, K. T., and Collett Jr, J. L.:
A review of observations of organic matter in fogs and clouds: Origin, processing and fate, Atmos. Res., 132, 434–449, https://doi.org/10.1016/j.atmosres.2013.06.005, 2013. a
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.:
Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase, Chem. Rev., 115, 4259–4334, https://doi.org/10.1021/cr500447k, 2015. a
Herzberg, L. and Herzberg, G.:
Fine Structure of the Infrared Atmospheric Oxygen Bands, Astrophys. J., 105, 353, https://doi.org/10.1086/144910, 1947. a
Huang, R.-J., Yang, L., Shen, J., Yuan, W., Gong, Y., Guo, J., Cao, W., Duan, J., Ni, H., Zhu, C., Dai, W., Li, Y., Chen, Y., Chen, Q., Wu, Y., Zhang, R., Dusek, U., O'Dowd, C., and Hoffmann, T.:
Water-Insoluble Organics Dominate Brown Carbon in Wintertime Urban Aerosol of China: Chemical Characteristics and Optical Properties, Environ. Sci. Technol., 54, 7836–7847, https://doi.org/10.1021/acs.est.0c01149, pMID: 32479722, 2020. a
Kampf, C. J., Jakob, R., and Hoffmann, T.:
Identification and characterization of aging products in the glyoxal/ammonium sulfate system – implications for light-absorbing material in atmospheric aerosols, Atmos. Chem. Phys., 12, 6323–6333, https://doi.org/10.5194/acp-12-6323-2012, 2012. a
Kaur, R., Labins, J. R., Helbock, S. S., Jiang, W., Bein, K. J., Zhang, Q., and Anastasio, C.:
Photooxidants from brown carbon and other chromophores in illuminated particle extracts, Atmos. Chem. Phys., 19, 6579–6594, https://doi.org/10.5194/acp-19-6579-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.:
Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon, J. Geophys. Res.-Atmos., 109, D21208, https://doi.org/10.1029/2004JD004999, 2004. a
Laskin, A., Laskin, J., and Nizkorodov, S. A.:
Chemistry of atmospheric brown carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015. a, b
Lathioor, E. C. and Leigh, W. J.:
Bimolecular hydrogen abstraction from phenols by aromatic ketone triplets, Photochem. Photobiol., 82, 291–300, https://doi.org/10.1562/2005-06-20-RA-581, 2006. a
Leresche, F., McKay, G., Kurtz, T., von Gunten, U., Canonica, S., and Rosario-Ortiz, F. L.:
Effects of Ozone on the Photochemical and Photophysical Properties of Dissolved Organic Matter, Environ. Sci. Technol., 53, 5622–5632, https://doi.org/10.1021/acs.est.8b06410, pMID: 31022348, 2019. a
Li, J., Chen, Q., and Guan, D.:
Insights into the triplet photochemistry of atmospheric aerosol and subfractions isolated with different polarity, Atmos. Environ., 290, 119375, https://doi.org/10.1016/j.atmosenv.2022.119375, 2022. a
Li, N., Fu, T.-M., Cao, J., Lee, S., Huang, X.-F., He, L.-Y., Ho, K.-F., Fu, J. S., and Lam, Y.-F.:
Sources of secondary organic aerosols in the Pearl River Delta region in fall: Contributions from the aqueous reactive uptake of dicarbonyls, Atmos. Environ., 76, 200–207, https://doi.org/10.1016/j.atmosenv.2012.12.005, 2013. a
Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H., and Chan, C. K.:
Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong, Atmos. Chem. Phys., 15, 37–53, https://doi.org/10.5194/acp-15-37-2015, 2015. a, b
Li, Y. J., Lee, B. Y. L., Yu, J. Z., Ng, N. L., and Chan, C. K.:
Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS), Atmos. Chem. Phys., 13, 8739–8753, https://doi.org/10.5194/acp-13-8739-2013, 2013. a
Li, Z., Xue, L., Yang, X., Zha, Q., Tham, Y. J., Yan, C., Louie, P. K., Luk, C. W., Wang, T., and Wang, W.:
Oxidizing capacity of the rural atmosphere in Hong Kong, Southern China, Sci. Total Environ., 612, 1114–1122, https://doi.org/10.1016/j.scitotenv.2017.08.310, 2018. a
Lian, X. F., Tang, G. G., Dao, X., Hu, X. D., Xiong, X., Zhang, G. H., Wang, Z. H., Cheng, C. L., Wang, X. F., Bi, X. H., Li, L., Li, M., and Zhou, Z.:
Seasonal variations of imidazoles in urban areas of Beijing and Guangzhou, China by single particle mass spectrometry, Sci. Total Environ., 844, 156995, https://doi.org/10.1016/j.scitotenv.2022.156995, 2022. a
Liao, H. and Seinfeld, J. H.:
Global impacts of gas-phase chemistry-aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone, J. Geophys. Res.-Atmos., 110, D18208, https://doi.org/10.1029/2005JD005907, 2005. a
Liao, Z., Ling, Z., Gao, M., Sun, J., Zhao, W., Ma, P., Quan, J., and Fan, S.:
Tropospheric Ozone Variability Over Hong Kong Based on Recent 20 years (2000–2019) Ozonesonde Observation, J. Geophys. Res.-Atmos., 126, e2020JD033054, https://doi.org/10.1029/2020JD033054, 2021. a
Louie, P. K. K., Chow, J. C., Chen, L.-W. A., Watson, J. G., Leung, G., and Sin, D. W. M.: PM2.5 chemical composition in Hong Kong: urban and regional variations, Sci. Total Environ., 338, 267–281, https://doi.org/10.1016/j.scitotenv.2004.07.021, 2005a. a, b
Louie, P. K. K., Watson, J. G., Chow, J. C., Chen, A., Sin, D. W., and Lau, A. K.: Seasonal characteristics and regional transport of PM2.5 in Hong Kong, Atmos. Environ., 39, 1695–1710, https://doi.org/10.1016/j.atmosenv.2004.11.017, 2005b. a, b
Lyu, Y., Lam, Y. H., Li, Y., Borduas-Dedekind, N., and Nah, T.: Efficient production of singlet oxygen and organic triplet excited states in aqueous PM2.5 in Hong Kong, South China, Version 1, Zenodo [data set], https://doi.org/10.5281/zenodo.7827983, 2023. a
Ma, L., Guzman, C., Niedek, C., Tran, T., Zhang, Q., and Anastasio, C.:
Kinetics and mass yields of aqueous secondary organic aerosol from highly substituted phenols reacting with a triplet excited state, Environ. Sci. Technol., 55, 5772–5781, 2021. a
Ma, L., Worland, R., Heinlein, L., Guzman, C., Jiang, W., Niedek, C., Bein, K. J., Zhang, Q., and Anastasio, C.:
Seasonal variations in photooxidant formation and light absorption in aqueous extracts of ambient particles, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-861, 2023a. a, b
Ma, L., Worland, R., Jiang, W., Niedek, C., Guzman, C., Bein, K. J., Zhang, Q., and Anastasio, C.: Predicting photooxidant concentrations in aerosol liquid water based on laboratory extracts of ambient particles, Atmos. Chem. Phys., 23, 8805–8821, https://doi.org/10.5194/acp-23-8805-2023, 2023b. a, b, c, d, e, f, g, h, i, j, k, l, m
Mabato, B. R. G., Lyu, Y., Ji, Y., Li, Y. J., Huang, D. D., Li, X., Nah, T., Lam, C. H., and Chan, C. K.:
Aqueous secondary organic aerosol formation from the direct photosensitized oxidation of vanillin in the absence and presence of ammonium nitrate, Atmos. Chem. Phys., 22, 273–293, https://doi.org/10.5194/acp-22-273-2022, 2022. a
Mabato, B. R. G., Li, Y. J., Huang, D. D., Wang, Y., and Chan, C. K.:
Comparison of aqueous secondary organic aerosol (aqSOA) product distributions from guaiacol oxidation by non-phenolic and phenolic methoxybenzaldehydes as photosensitizers in the absence and presence of ammonium nitrate, Atmos. Chem. Phys., 23, 2859–2875, https://doi.org/10.5194/acp-23-2859-2023, 2023. a
Manfrin, A., Nizkorodov, S. A., Malecha, K. T., Getzinger, G. J., McNeill, K., and Borduas-Dedekind, N.:
Reactive oxygen species production from secondary organic aerosols: the importance of singlet oxygen, Environ. Sci. Technol., 53, 8553–8562, https://doi.org/10.1021/acs.est.9b01609, 2019. a, b, c, d, e, f, g, h
McCabe, A. J. and Arnold, W. A.:
Reactivity of triplet excited states of dissolved natural organic matter in stormflow from mixed-use watersheds, Environ. Sci. Technol., 51, 9718–9728, https://doi.org/10.1021/acs.est.7b01914, 2017. a
McNeill, K. and Canonica, S.:
Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties, Environ. Sci.-Proc. Imp., 18, 1381–1399, https://doi.org/10.1039/C6EM00408C, 2016. a, b, c, d
Nah, T. and Lam, Y. H.:
Influence of urban heat islands on seasonal aerosol acidity and aerosol liquid water content in humid subtropical Hong Kong, South China, Atmos. Environ., 289, 119321, https://doi.org/10.1016/j.atmosenv.2022.119321, 2022. a
Nah, T., Lam, Y. H., Yang, J., and Yang, L.:
Long-term trends and sensitivities of PM2.5 pH and aerosol liquid water to chemical composition changes and meteorological parameters in Hong Kong, South China: Insights from 10-year records from three urban sites, Atmos. Environ., 302, 119725, https://doi.org/10.1016/j.atmosenv.2023.119725, 2023. a
Nguyen, T. K. V., Zhang, Q., Jimenez, J. L., Pike, M., and Carlton, A. G.:
Liquid water: Ubiquitous contributor to aerosol mass, Environ. Sci. Technol. Letters, 3, 257–263, https://doi.org/10.1021/acs.estlett.6b00167, 2016. a
Nolte, T. M. and Peijnenburg, W. J.:
Aqueous-phase photooxygenation of enes, amines, sulfides and polycyclic aromatics by singlet (a1Δg) oxygen: prediction of rate constants using orbital energies, substituent factors and quantitative structure–property relationships, Environ. Chem., 14, 442–450, https://doi.org/10.1071/EN17155, 2018. a
Pathak, R. K., Yao, X., Lau, A. K., and Chan, C. K.:
Acidity and concentrations of ionic species of PM2.5 in Hong Kong, Atmos. Environ., 37, 1113–1124, https://doi.org/10.1016/S1352-2310(02)00958-5, 2003. a, b
Powelson, M. H., Espelien, B. M., Hawkins, L. N., Galloway, M. M., and De Haan, D. O.:
Brown Carbon Formation by Aqueous-Phase Carbonyl Compound Reactions with Amines and Ammonium Sulfate, Environ. Sci. Technol., 48, 985–993, https://doi.org/10.1021/es4038325, pMID: 24351110, 2014. a
Rounds, S. A., Wilde, F. D., and Ritz, G. F.: Dissolved oxygen (ver. 3.0), U.S. Geological Survey Techniques of Water-Resources Investigations, Reston, Virginia, book 9, chap. A6.2, https://doi.org/10.3133/twri09A6.2, 2013. a
Seinfeld, J. H. and Pandis, S. N.:
Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, New York, ISBN: 978-1-118-94740-1, 2016. a
Tanner, P. A. and Law, P.-T.:
Effects of synoptic weather systems upon the air quality in an Asian megacity, Water Air Soil Poll., 136, 105–124, https://doi.org/10.1023/A:1015275404592, 2002. a, b
Tratnyek, P. G. and Hoigne, J.:
Oxidation of substituted phenols in the environment: a QSAR analysis of rate constants for reaction with singlet oxygen, Environ. Sci. Technol., 25, 1596–1604, https://doi.org/10.1021/es00021a011, 1991. a
Tsentalovich, Y. P., Lopez, J., Hore, P., and Sagdeev, R.:
Mechanisms of reactions of flavin mononucleotide triplet with aromatic amino acids, Spectrochim. Acta A, 58, 2043–2050, https://doi.org/10.1016/S1386-1425(01)00652-7, 2002.
a
Walling, C. and Gibian, M. J.:
Hydrogen Abstraction Reactions by the Triplet States of Ketones1, J. Am. Chem. Soc., 87, 3361–3364, https://doi.org/10.1021/ja01093a014, 1965. a
Wang, Q., Zhou, Y., Ma, N., Zhu, Y., Zhao, X., Zhu, S., Tao, J., Hong, J., Wu, W., Cheng, Y., and Su, H.:
Review of Brown Carbon Aerosols in China: Pollution Level, Optical Properties, and Emissions, J. Geophys. Res.-Atmos., 127, e2021JD035473, https://doi.org/10.1029/2021JD035473, 2022. a
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K.:
Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environ. Sci. Technol., 37, 4702–4708, https://doi.org/10.1021/es030360x, 2003. a
Wilkinson, F., Helman, W. P., and Ross, A. B.:
Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution, J. Phys. Chem. Ref. Data, 22, 113–262, 1993. a
Wong, Y. K., Huang, X. H. H., Louie, P. K. K., Yu, A. L. C., Chan, D. H. L., and Yu, J. Z.:
Tracking separate contributions of diesel and gasoline vehicles to roadside PM2.5 through online monitoring of volatile organic compounds and PM2.5 organic and elemental carbon: a 6-year study in Hong Kong, Atmos. Chem. Phys., 20, 9871–9882, https://doi.org/10.5194/acp-20-9871-2020, 2020. a, b
Yang, J., Ma, L., He, X., Au, W. C., Miao, Y., Wang, W.-X., and Nah, T.:
Measurement report: Abundance and fractional solubilities of aerosol metals in urban Hong Kong – insights into factors that control aerosol metal dissolution in an urban site in South China, Atmos. Chem. Phys., 23, 1403–1419, https://doi.org/10.5194/acp-23-1403-2023, 2023. a
Yihui, D. and Chan, J. C.:
The East Asian summer monsoon: an overview, Meteorol. Atmos. Phys., 89, 117–142, https://doi.org/10.1007/s00703-005-0125-z, 2005. a
Yu, L., Smith, J., Laskin, A., Anastasio, C., Laskin, J., and Zhang, Q.:
Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical, Atmos. Chem. Phys., 14, 13801–13816, https://doi.org/10.5194/acp-14-13801-2014, 2014. a
Yuan, J.-F., Huang, X.-F., Cao, L.-M., Cui, J., Zhu, Q., Huang, C.-N., Lan, Z.-J., and He, L.-Y.:
Light absorption of brown carbon aerosol in the PRD region of China, Atmos. Chem. Phys., 16, 1433–1443, https://doi.org/10.5194/acp-16-1433-2016, 2016. a
Zepp, R. G., Schlotzhauer, P. F., and Sink, R. M.:
Photosensitized transformations involving electronic energy transfer in natural waters: role of humic substances, Environ. Sci. Technol., 19, 74–81, https://doi.org/10.1021/es00131a008, 1985. a
Zhang, X., Yuan, Z., Li, W., Lau, A. K., Yu, J. Z., Fung, J. C., Zheng, J., and Alfred, L.:
Eighteen-year trends of local and non-local impacts to ambient PM10 in Hong Kong based on chemical speciation and source apportionment, Atmos. Res., 214, 1–9, https://doi.org/10.1016/j.atmosres.2018.07.004, 2018. a, b
Short summary
We measured singlet oxygen (1O2*) and triplet excited states of organic matter (3C*) in illuminated aqueous extracts of PM2.5 collected in different seasons at different sites in Hong Kong SAR, South China. In contrast to the locations, seasonality had significant effects on 3C* and 1O2* production due to seasonal variations in long-range air mass transport. The steady-state concentrations of 3C* and 1O2* correlated with the concentration and absorbance of water-soluble organic carbon.
We measured singlet oxygen (1O2*) and triplet excited states of organic matter (3C*) in...
Altmetrics
Final-revised paper
Preprint