Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9217-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-9217-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atlantic Multidecadal Oscillation modulates the relationship between El Niño–Southern Oscillation and fire weather in Australia
Guanyu Liu
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
Tong Ying
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
Related authors
Guanyu Liu, Jing Li, Sheng Yue, Lulu Zhang, and Chongzhao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1871, https://doi.org/10.5194/egusphere-2025-1871, 2025
Short summary
Short summary
This study introduces a novel method to retrieve aerosol optical depth (AOD) at night using ground-based microwave radiometers, overcoming the limitation of traditional shortwave-based techniques that cannot operate in darkness. This result enables continuous aerosol monitoring and highlighting microwave radiometry's underutilized potential in atmospheric research.
Yueming Dong, Jing Li, Zhenyu Zhang, Chongzhao Zhang, and Qiurui Li
Earth Syst. Sci. Data, 17, 3873–3892, https://doi.org/10.5194/essd-17-3873-2025, https://doi.org/10.5194/essd-17-3873-2025, 2025
Short summary
Short summary
This study develops two merged global land aerosol single-scattering albedo (SSA) datasets by combining AERONET ground observations and two satellite datasets using an ensemble Kalman filter data synergy method. The merged datasets exhibit significantly improved accuracy compared to the original satellite data. These results can provide more reliable estimates of aerosol scattering and absorption properties, essential for improving climate modeling and assessing aerosol climate effects.
Chong Li, Oleg Dubovik, Jing Li, David Fuertes, Anton Lopatin, Pavel Litvinov, Tatsiana Lapyonok, Lukas Bindreiter, Christian Matar, Yiqi Chu, and Wangshu Tan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2694, https://doi.org/10.5194/egusphere-2025-2694, 2025
Short summary
Short summary
Using observational data from Japan’s geostationary satellite – Himawari-8 , this study improved how we track air pollution (aerosols) across East Asia and the Western Pacific. By applying an advanced aerosol retrieval algorithm called GRASP, we were able to more accurately observe both atmospheric and ground conditions and their dynamics over time. The results closely matched ground-based measurements and showed potential for even better monitoring when combined with ground-based lidar data.
Guanyu Liu, Jing Li, Sheng Yue, Lulu Zhang, and Chongzhao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1871, https://doi.org/10.5194/egusphere-2025-1871, 2025
Short summary
Short summary
This study introduces a novel method to retrieve aerosol optical depth (AOD) at night using ground-based microwave radiometers, overcoming the limitation of traditional shortwave-based techniques that cannot operate in darkness. This result enables continuous aerosol monitoring and highlighting microwave radiometry's underutilized potential in atmospheric research.
Zhenyu Zhang, Jing Li, Huizheng Che, Yueming Dong, Oleg Dubovik, Thomas Eck, Pawan Gupta, Brent Holben, Jhoon Kim, Elena Lind, Trailokya Saud, Sachchida Nand Tripathi, and Tong Ying
Atmos. Chem. Phys., 25, 4617–4637, https://doi.org/10.5194/acp-25-4617-2025, https://doi.org/10.5194/acp-25-4617-2025, 2025
Short summary
Short summary
We used ground-based remote sensing data from the Aerosol Robotic Network to examine long-term trends in aerosol characteristics. We found aerosol loadings generally decreased globally, and aerosols became more scattering. These changes are closely related to variations in aerosol compositions, such as decreased anthropogenic emissions over East Asia, Europe, and North America; increased anthropogenic sources over northern India; and increased dust activity over the Arabian Peninsula.
Hongfei Hao, Kaicun Wang, Guocan Wu, Jianbao Liu, and Jing Li
Earth Syst. Sci. Data, 16, 4051–4076, https://doi.org/10.5194/essd-16-4051-2024, https://doi.org/10.5194/essd-16-4051-2024, 2024
Short summary
Short summary
In this study, daily PM2.5 concentrations are estimated from 1959 to 2022 using a machine learning method at more than 5000 terrestrial sites in the Northern Hemisphere based on hourly atmospheric visibility data, which are extracted from the Meteorological Terminal Aviation Routine Weather Report (METAR).
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024, https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Short summary
In this study, we employed a machine learning technique to derive daily aerosol optical depth from hourly visibility observations collected at more than 5000 airports worldwide from 1959 to 2021 combined with reanalysis meteorological parameters.
Liang Chang, Jing Li, Jingjing Ren, Changrui Xiong, and Lu Zhang
Atmos. Meas. Tech., 17, 2637–2648, https://doi.org/10.5194/amt-17-2637-2024, https://doi.org/10.5194/amt-17-2637-2024, 2024
Short summary
Short summary
We described a modified lidar inversion algorithm to retrieve aerosol extinction and size distribution simultaneously from two-wavelength elastic lidar measurements. Its major advantage is that the lidar ratio of each layer is determined iteratively by a lidar ratio–Ångström exponent lookup table. The algorithm was applied to the Raman lidar and CALIOP measurements. The retrieved results by our method are in good agreement with those achieved by Raman method.
Zhongjing Jiang and Jing Li
Atmos. Chem. Phys., 22, 7273–7285, https://doi.org/10.5194/acp-22-7273-2022, https://doi.org/10.5194/acp-22-7273-2022, 2022
Short summary
Short summary
This study investigates the changes of tropospheric ozone in China associated with EP and CP El Niño, using satellite observations and the GEOS-Chem model. We found that El Niño generally leads to lower tropospheric ozone (LTO) decrease over most parts of China; La Niña acts the opposite. The difference between LTO changes during EP and CP El Niño primarily lies in southern China. Regional transport and chemical processes play the leading and secondary roles in driving the LTO changes.
Liangying Zeng, Yang Yang, Hailong Wang, Jing Wang, Jing Li, Lili Ren, Huimin Li, Yang Zhou, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 21, 10745–10761, https://doi.org/10.5194/acp-21-10745-2021, https://doi.org/10.5194/acp-21-10745-2021, 2021
Short summary
Short summary
Using an aerosol–climate model, the impacts of El Niño with different durations on aerosols in China are examined. The modulation on aerosol concentrations and haze days by short-duration El Niño events is 2–3 times more than that by long-duration El Niño events in China. The frequency of short-duration El Niño has been increasing significantly in recent decades, suggesting that El Niño events have exerted increasingly intense modulation on aerosol pollution in China over the past few decades.
Zhongjing Jiang, Jing Li, Xiao Lu, Cheng Gong, Lin Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 2601–2613, https://doi.org/10.5194/acp-21-2601-2021, https://doi.org/10.5194/acp-21-2601-2021, 2021
Short summary
Short summary
This study demonstrates that the intensity of the western Pacific subtropical high (WPSH), a major synoptic pattern in the northern Pacific during summer, can induce a dipole change in surface ozone pollution over eastern China. Ozone concentration increases in the north and decreases in the south during the strong WPSH phase, and vice versa. The change in chemical processes associated with the WPSH change plays a decisive role, whereas the natural emission of ozone precursors accounts for ~ 30 %.
Cited articles
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J. R., Clarke, H., Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T. H., Wooster, M. J., Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy, B. P., Tapper, N. J., and Boer, M. M.: Connections of climate change and variability to large and extreme forest fires in southeast Australia, Communications Earth & Environment, 2, 8, https://doi.org/10.1038/s43247-020-00065-8, 2021.
An, X., Chen, W., Ma, T., Aru, H., Cai, Q., Li, C., and Sheng, L.: Key role
of Arctic sea-ice in subseasonal reversal of early and late winter PM2.5
concentration anomalies over the North China Plain, Geophys. Res. Lett, 50,
e2022GL101841, https://doi.org/10.1029/2022GL101841, 2023.
Arriagada, N. B., Palmer, A. J., Bowman, D., Morgan, G. G., Jalaludin, B.
B., and Johnston, F. H.: Unprecedented smoke-related health burden
associated with the 2019–20 bushfires in eastern Australia, Med. J. Aust.,
213, 282–283, https://doi.org/10.5694/mja2.50545, 2020.
Bradstock, R. A.: A biogeographic model of fire regimes in Australia:
current and future implications, Glob. Ecol. Biogeogr., 19, 145–158,
https://doi.org/10.1111/j.1466-8238.2009.00512.x, 2010.
Cai, W., Cowan, T., and Raupach, M.: Positive Indian Ocean Dipole events
precondition southeast Australia bushfires, Geophys. Res. Lett., 36, L19710,
https://doi.org/10.1029/2009GL039902, 2009.
Chafik, L., Hakkinen, S., England, M. H., Carton, J. A., Nigam, S.,
Ruiz-Barradas, A., Hannachi, A., and Miller, L.: Global linkages originating
from decadal oceanic variability in the subpolar North Atlantic, Geophys.
Res. Lett., 43, 10909–10919, https://doi.org/10.1002/2016GL071134, 2016.
Chen, Y., Morton, D. C., Andela, N., van der Werf, G. R., Giglio, L., and
Randerson, J. T.: A pan-tropical cascade of fire driven by El Nino/Southern
Oscillation, Nat. Clim. Change, 7, 906-911,
https://doi.org/10.1038/s41558-017-0014-8, 2017.
Chikamoto, Y., Mochizuki, T., Timmermann, A., Kimoto, M., and Watanabe, M.:
Potential tropical Atlantic impacts on Pacific decadal climate trends,
Geophys. Res. Lett., 43, 7143–7151, https://doi.org/10.1002/2016GL069544, 2016.
Chikamoto, Y., Johnson, Z. F., Wang, S. Y. S., McPhaden, M. J., and
Mochizuki, T.: El Nino-Southern Oscillation Evolution Modulated by Atlantic
Forcing, J. Geophys. Res.-Oceans, 125, e2020JC016318,
https://doi.org/10.1029/2020JC016318, 2020.
Clarke, H. and Evans, J. P.: Exploring the future change space for fire
weather in southeast Australia, Theor. Appl., 136, 513–527,
https://doi.org/10.1007/s00704-018-2507-4, 2019.
Clarke, H., Gibson, R., Cirulis, B., Bradstock, R. A., and Penman, T. D.:
Developing and testing models of the drivers of anthropogenic and
lightning-caused wildfire ignitions in south-eastern Australia, J. Environ.
Manage., 235, 34–41, https://doi.org/10.1016/j.jenvman.2019.01.055, 2019.
Clements, C. B., Zhong, S. Y., Bian, X. D., Heilman, W. E., and Byun, D. W.:
First observations of turbulence generated by grass fires, J. Geophys. Res.-Atmos., 113, D22102, https://doi.org/10.1029/2008JD010014, 2008.
Climate Analysis Section: AMO Index Data, NCAR [data set], Boulder, USA, https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo, last access: 17 August 2022a.
Climate Analysis Section: Nino SST Indices (Nino 1+2, 3, 3.4, 4; ONI and TNI), NCAR [data set], Boulder, USA, https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni, last access: 17 August 2022b.
Copernicus Climate Change Service: Fire danger indices historical data from the Copernicus Emergency Management Service, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.0e89c522, 2019.
Copernicus Contractor: Fire danger indices historical data from the
Copernicus Emergency Management Service, Zenodo [data set],
https://doi.org/10.5281/zenodo.5754302, 2021.
Damany-Pearce, L., Johnson, B., Wells, A., Osborne, M., Allan, J., Belcher, C., Jones, A., and Haywood, J.: Australian wildfires cause the largest stratospheric warming since Pinatubo and extends the lifetime of the Antarctic ozone hole, Sci. Rep., 12, 12665, https://doi.org/10.1038/s41598-022-15794-3, 2022.
Dowdy, A. J.: Climatological Variability of Fire Weather in Australia, J.
Appl. Meteorol. Clim., 57, 221–234, https://doi.org/10.1175/JAMC-D-17-0167.1, 2018.
Duc, H. N., Chang, L. T. C., Azzi, M., and Jiang, N. B.: Smoke aerosols
dispersion and transport from the 2013 New South Wales (Australia)
bushfires, Environ. Monit. Assess., 190, 428,
https://doi.org/10.1007/s10661-018-6810-4, 2018.
Earl, N. and Simmonds, I.: Variability, trends, and drivers of regional
fluctuations in Australian fire activity, J. Geophys. Res.-Atmos., 122,
7445–7460, https://doi.org/10.1002/2016JD026312, 2017.
Gan, R., Liu, Q., Huang, G., Hu, K. M., and Li, X. C.: Greenhouse warming and
internal variability increase extreme and central Pacific El Niño
frequency since 1980, Nat. Commun., 14, 394,
https://doi.org/10.1038/s41467-023-36053-7, 2023.
Geng, X., Zhang, W., Jin, F., Stuecker, M. F., and Levine, A. F. Z.: Modulation of the Relationship between ENSO and Its Combination Mode by the Atlantic Multidecadal Oscillation, J. Climate, 33, 4679–4695,
https://doi.org/10.1175/JCLI-D-19-0740.1, 2020.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z., and Zhang, M.: The Community Climate System Model
Version 4, J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavgM_2d_flx_Nx: 2d, Monthly mean, Time-Averaged, Single-Level, Assimilation, Surface Flux Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/0JRLVL8YV2Y4, 2015a.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavgM_2d_slv_Nx: 2d, Monthly mean, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/AP1B0BA5PD2K, 2015b.
Harris, S., Nicholls, N., and Tapper, N.: Forecasting fire activity in
Victoria, Australia, using antecedent climate variables and ENSO indices,
Int. J. Wildland Fire, 23, 173–184, https://doi.org/10.1071/WF13024, 2014.
Hennessy, K. J., Lucas, C., Nicholls, N., Bathols, J., Suppiah, R., and
Ricketts, J. H.: Climate change impacts on fire-weather in south-east
Australia, 88 pp., ISBN: 1-921061-10-3, 2005.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5
monthly averaged data on single levels from 1979 to present, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2019.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Wei, L.,
Peterson, T. C., Smith, T. M., Thorne, P. W., Woodruff, S. D., and
Zhang, H.-M.: Extended Reconstructed Sea Surface Temperature (ERSST), Version 4, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5KD1VVF, 2015.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5T72FNM, 2017.
Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T., and
Flannigan, M. D.: Observed increases in extreme fire weather driven by
atmospheric humidity and temperature, Nat. Clim., 12, 63–70, https://doi.org/10.1038/s41558-021-01224-1, 2021.
Japan Meteorological Agency: Characteristics of Global Sea Surface Temperature Analysis Data (COBE-SST) for Climate Use, Monthly Report on Climate System Separated, Japan Meteorological Agency, 12, 116 pp., https://psl.noaa.gov/data/gridded/data.cobe2.html (last access: 20 November 2022), 2006.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo,
K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996 (data available at: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, last access: 19 November 2021).
Kaplan, A., Cane, M. A., Kushnir, Y., Clement, A. C., Blumenthal, M. B., and
Rajagopalan, B.: Analyses of global sea surface temperature 1856–1991, J.
Geophys. Res.-Oceans, 103, 18567–18589, https://doi.org/10.1029/97JC01736, 1998 (data available at: https://psl.noaa.gov/data/gridded/data.kaplan_sst.html, last access: 20 November 2021).
Keeley, J. E., Brennan, T. J., and Syphard, A. D.: The effects of prolonged
drought on vegetation dieback and megafires in southern California
chaparral, Ecosphere, 13, e4203, https://doi.org/10.1002/ecs2.4203, 2022.
Koo, E., Pagni, P. J., Weise, D. R., and Woycheese, J. P.: Firebrands and
spotting ignition in large-scale fires, Int. J. Wildland Fire, 19,
818–843, https://doi.org/10.1071/WF07119, 2010.
Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J., and Hayhoe,
K.: Global Pyrogeography: the Current and Future Distribution of Wildfire,
PLoS One, 4, e5102, https://doi.org/10.1371/journal.pone.0005102, 2009.
Kriwoken, L. K.: Australian biodiversity and marine protected areas, Ocean
Coast. Manage., 44, 113–132, https://doi.org/10.1016/S0964-5691(96)00047-6, 1996.
Lawson, B. D. and Armitage, O. B.: Weather Guide for the Canadian Forest Fire Danger Rating System, Northern Forestry Center, Canadian Forest Service, 1–84, ISBN: 978-1-100-11565-8, 2008.
Levine, A. F. Z., McPhaden, M. J., and Frierson, D. M. W.: The impact of the
AMO on multidecadal ENSO variability, Geophys. Res. Lett., 44, 3877–3886,
https://doi.org/10.1002/2017GL072524, 2017.
Li, X. C., Holland, D. M., Gerber, E. P., and Yoo, C.: Impacts of the north
and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice, Nature,
505, 538–542, https://doi.org/10.1038/nature12945, 2014.
Li, X. C., Gerber, E. P., Holland, D. M., and Yoo, C.: A Rossby Wave Bridge
from the Tropical Atlantic to West Antarctica, J. Climate, 28, 2256–2273,
https://doi.org/10.1175/JCLI-D-14-00450.1, 2015.
Li, X. C., Xie, S. P., Gille, S. T., and Yoo, C.: Atlantic-induced
pan-tropical climate change over the past three decades, Nat. Clim., 6,
275–279, https://doi.org/10.1038/nclimate2840, 2016.
Li, Y. J., Li, J. P., Jin, F. F., and Zhao, S.: Interhemispheric propagation of stationary Rossby waves in a horizontally nonuniform background flow, J.
Atmos. Sci., 72, 3233–3256, https://doi.org/10.1175/JAS-D-14-0239.1, 2015.
Li, Y. J., Feng, J., Li, J. P., and Hu, A. X.: Equatorial windows and barrier
for Stationary Rossby waves, J. Climate, 32, 6117–6135,
https://doi.org/10.1175/JCLI-D-18-0722.1, 2019.
Lin, Z. D. and Li, Y.: Remote Influence of the Tropical Atlantic on the
Variability and Trend in North West Australia Summer Precipitation, J.
Climate, 25, 2408–2420, https://doi.org/10.1175/JCLI-D-11-00020.1, 2012.
Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y. Q., and Luce, C. H.:
A review of the relationships between drought and forest fire in the United
States, Glob. Chang. Biol., 22, 2353–2369, https://doi.org/10.1111/gcb.13275, 2016.
Liu, D. Y., Zhou, C. R., Keesing, J. K., Serrano, O., Wener, A., Fang, Y., Chen, Y. J., Masque, P., Kinloch, J., Sadekov, A., and Du, Y.: Wildfires enhance phytoplankton production in tropical
oceans, Nat. Commun., 13, 1348, https://doi.org/10.1038/s41467-022-29013-0, 2022.
Liu, G. Y., Li, J., Jiang, Z. J., and Li, X. C.: Impact of Sea Surface
Temperature Variability at Different Ocean Basins on Dust Activities in the
Gobi Desert and North China, Geophys. Res. Lett., 49, e2022GL099821,
https://doi.org/10.1029/2022GL099821, 2022.
Liu, W., Huang, B., Thorne, P. W., Banzon, V. F., Zhang, H., Freeman, E., Lawrimore, J., Peterson, T. C., Smith, T. M., and Woodruff, S. D.: Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4): Part II. Parametric and Structural Uncertainty Estimations, J. Climate, 28, 931–951, https://doi.org/10.1175/JCLI-D-14-00007.1, 2015.
Lv, Z., Yang, J.-C., Lin, X., and Zhang, Y.: Stronger North Atlantic than
Tropical Pacific Effects on North Pacific Decadal Prediction, J. Climate,
35, 5773–5785, https://doi.org/10.1175/JCLI-D-21-0957.1, 2022.
Mariani, M., Fletcher, M. S., Holz, A., and Nyman, P.: ENSO controls
interannual fire activity in southeast Australia, Geophys. Res. Lett.,
43, 10891–10900, https://doi.org/10.1002/2016GL070572, 2016.
Mariani, M., Holz, A., Veblen, T. T., Williamson, G., Fletcher, M. S., and
Bowman, D. M. J. S.: Climate Change Amplifications of Climate-Fire
Teleconnections in the Southern Hemisphere, Geophys. Res. Lett., 45,
5071–5081, https://doi.org/10.1029/2018GL078294, 2018.
McGregor, S., Timmermann, A., Stuecker, M. F., England, M. H., Merrifield,
M., Jin, F. F., and Chikamoto, Y.: Recent Walker circulation strengthening
and Pacific cooling amplified by Atlantic warming, Nat. Clim., 4,
888–892, https://doi.org/10.1038/NCLIMATE2330, 2014.
Miller, A. J., Neilson, D. J., Luther, D. S., Hendershott, M. C., Cornuelle, B. D., Worcester, P. F., Dzieciuch, M. A., Dushaw, B. D., Howe, B. M., Levin, J. C., Arango, H. G., and Haidvogel, D. B.: Barotropic Rossby wave radiation from a model Gulf
Stream, Geophys. Res. Lett., 34, L23613, https://doi.org/10.1029/2007GL031937, 2007.
Nagaraju, C., Ashok, K., Balakrishnan Nair, T. M., Guan, Z., and Cai, W.:
Potential influence of the Atlantic Multi-decadal Oscillation in modulating
the biennial relationship between Indian and Australian summer monsoons,
Int. J. Climatol., 38, 5220–5230, https://doi.org/10.1002/joc.5722, 2018.
Nguyen, H. D., Azzi, M., White, S., Salter, D., Trieu, T., Morgan, G., Rahman, M., Watt, S., Riley, M., Chang, L. T.-C., Barthelemy, X., Fuchs, D., Lieschke, K., and Nguyen, H.: The Summer 2019–2020 Wildfires in East Coast Australia and Their Impacts on Air Quality and Health in New South Wales, Australia, Int. J. Env. Res. Pub. He., 18, 3538, https://doi.org/10.3390/ijerph18073538, 2021.
Nolan, R. H., Boer, M. M., Collins, L., de Dios, V. R., Clarke, H., Jenkins,
M., Kenny, B., and Bradstock, R. A.: Causes and consequences of eastern
Australia's 2019–20 season of mega-fires, Glob. Chang. Biol., 26,
1039–1041, https://doi.org/10.1111/gcb.15125, 2020.
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V.: Inter-decadal
modulation of the impact of ENSO on Australia, Clim. Dynam., 15, 319–324,
https://doi.org/10.1007/s003820050284, 1999.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res.-Atmos, 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003 (data available at: https://www.metoffice.gov.uk/hadobs/hadisst/, last access: 20 November 2021).
Ren, H. C., Zuo J. Q., and Li, W. J.: The impact of tropical Atlantic SST
variability on the tropical atmosphere during boreal summer, J. Climate,
34, 6705–6723, https://doi.org/10.1175/JCLI-D-20-0259.1, 2021.
Ren, X. Y., Zhang, L., Cai, W. J., Li, X. C., Wang, C. Y., Jin, Y. S., and
Wu, L. X.: Influence of tropical Atlantic meridional dipole of sea surface
temperature anomalies on Antarctic autumn sea ice, Environ. Res. Lett.,
17, 094046, https://doi.org/10.1088/1748-9326/ac8f5b, 2022.
Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C., and Hendon, H.
H.: On the Remote Drivers of Precipitation Variability in Australia, Mon.
Weather Rev., 137, 3233–3253, https://doi.org/10.1175/2009MWR2861.1, 2009.
Sardeshmukh, P. D. and Hoskins, B. J.: The Generation of Global Rotational Flow by Steady Idealized Tropical Divergence, J. Atmos. Sci., 45, 1228–1251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2, 1988.
Schneider, D. P., Deser, C., Fasullo, J., and Trenberth, K. E.: Climate Data Guide Spurs Discovery and Understanding, EOS T. Am. Geophys. Un., 94, 121, https://doi.org/10.1002/2013eo130001, 2013.
Simpkins, G. R., McGregor, S., Taschetto, A. S., Ciasto, L. M., and England,
M. H.: Tropical Connections to Climatic Change in the Extratropical Southern
Hemisphere: The Role of Atlantic SST Trends, J. Climate, 27, 4923–4936,
https://doi.org/10.1175/JCLI-D-13-00615.1, 2014.
Simpson, C. C., Pearce, H. G., Sturman, A. P., and Zawar-Reza, P.: Behaviour
of fire weather indices in the 2009–10 New Zealand wildland fire season, Int. J. Wildland Fire, 23, 1147–1164, https://doi.org/10.1071/wf12169, 2014.
Storch, H. V. and Zwiers, F. W.: Statistical Analysis in Climate Research, Cambridge University Press, Cambridge, 6–8, https://doi.org/10.2307/2669798, 2000.
Trenberth, K. E.: The Definition of El Niño, B. Am. Meteorol. Soc.,
78, 2771–2778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2, 1997.
Trenberth, K. E. and Shea, D. J.: Atlantic hurricanes and natural
variability in 2005, Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894, 2006.
Trenberth, K. E. and Stepaniak, D. P.: Indices of El Niño Evolution, J.
Climate, 14, 1697–1701, https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2, 2001.
van Oldenborgh, G. J., Krikken, F., Lewis, S., Leach, N. J., Lehner, F., Saunders, K. R., van Weele, M., Haustein, K., Li, S., Wallom, D., Sparrow, S., Arrighi, J., Singh, R. K., van Aalst, M. K., Philip, S. Y., Vautard, R., and Otto, F. E. L.: Attribution of the Australian bushfire risk to anthropogenic climate change, Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, 2021.
Wang, B., Liu, J., Kim, H.-J., Webster, P. J., Yim, S.-Y., and Xiang, B.:
Northern Hemisphere summer monsoon intensified by mega-El Niño/southern
oscillation and Atlantic multidecadal oscillation, P. Natl. Acad. Sci.
USA, 110, 5347–5352, https://doi.org/10.1073/pnas.1219405110, 2013.
Wang, X. Y., Li, X. C., Zhu, J., and Tanajura, C. A. S.: The strengthening
of Amazonian precipitation during the wet season driven by tropical sea
surface temperature forcing, Environ. Res. Lett., 13, 094015,
https://doi.org/10.1088/1748-9326/aadbb9, 2018.
Xue, J. Q., Sun, C., Li, J. P., and Mao, J. Y.: South Atlantic Forced
Multidecadal Teleconnection to the Midlatitude South Indian Ocean, Geophys.
Res. Lett., 45, 8480–8489, https://doi.org/10.1029/2018GL078990, 2018.
Yu, J., Kao, P., Paek, H., Hsu, H., Hung, C., Lu, M., and An, S.: Linking
Emergence of the Central Pacific El Niño to the Atlantic Multidecadal
Oscillation, J. Climate, 28, 651–662, https://doi.org/10.1175/JCLI-D-14-00347.1, 2015.
Yu, P., Xu, R. B., Abramson, M. J., Li, S. S., and Guo, Y. M.: Bushfires in
Australia: a serious health emergency under climate change, Lancet Planet.
Health, 4, E7–E8, https://doi.org/10.1016/S2542-5196(19)30267-0, 2020.
Zhao, S., Li, J. P., Li, Y. J., Jin, F. F., and Zheng, J. Y.:
Interhemispheric influence of Indo-Pacific convection oscillation on
Southern Hemisphere precipitation through southward propagation of Rossby
waves, Clim. Dynam., 52, 3203–3221, https://doi.org/10.1007/s00382-018-4324-y, 2019.
Short summary
Fires in Australia are positively correlated with the El Niño–Southern Oscillation (ENSO). However, the correlation between ENSO and the Australian Fire Weather Index (FWI) increases from 0.17 to 0.70 when the Atlantic Multidecadal Oscillation (AMO) shifts from a negative to positive phase. This is explained by the teleconnection effect through which the warmer AMO generates Rossby wave trains and results in high pressures and a weather condition conducive to wildfires.
Fires in Australia are positively correlated with the El Niño–Southern Oscillation (ENSO)....
Altmetrics
Final-revised paper
Preprint