Articles | Volume 23, issue 14
https://doi.org/10.5194/acp-23-8429-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-8429-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric data support a multi-decadal shift in the global methane budget towards natural tropical emissions
Alice Drinkwater
School of GeoSciences, University of Edinburgh, Edinburgh, UK
National Physical Laboratory, Teddington, UK
School of GeoSciences, University of Edinburgh, Edinburgh, UK
National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK
Liang Feng
School of GeoSciences, University of Edinburgh, Edinburgh, UK
National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK
Tim Arnold
National Physical Laboratory, Teddington, UK
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Sylvia E. Michel
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
Robert Parker
National Centre for Earth Observation, Space Park Leicester, University of Leicester, Leicester, UK
Earth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UK
Hartmut Boesch
National Centre for Earth Observation, Space Park Leicester, University of Leicester, Leicester, UK
Earth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UK
Data sets
CMS: Global 0.5-deg Wetland Methane Emissions and Uncertainty (WetCHARTs v1.0) A. A. Bloom, K. Bowman, M. Lee, A. J. Turner, R. Schroeder, J. R. Worden, R. J. Weidner, K. C. McDonald, and D. J. Jacob https://doi.org/10.3334/ORNLDAAC/1502
Short summary
Changes in atmospheric methane over the last few decades are largely unexplained. Previous studies have proposed different hypotheses to explain short-term changes in atmospheric methane. We interpret observed changes in atmospheric methane and stable isotope source signatures (2004–2020). We argue that changes over this period are part of a large-scale shift from high-northern-latitude thermogenic energy emissions to tropical biogenic emissions, particularly from North Africa and South America.
Changes in atmospheric methane over the last few decades are largely unexplained. Previous...
Altmetrics
Final-revised paper
Preprint