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Abstract. We use the GEOS-Chem global 3-D model and two inverse methods (the maximum a posteriori
and ensemble Kalman filter) to infer regional methane (CH4) emissions and the corresponding stable-carbon-
isotope source signatures from 2004–2020 across the globe using in situ and satellite remote sensing data. We
use the Siegel estimator to determine linear trends from the in situ data. Over our 17-year study period, we es-
timate a linear increase of 3.6 Tg yr−1 yr−1 in CH4 emissions from tropical continental regions, including North
Africa, southern Africa, tropical South America, and tropical Asia. The second-largest increase in CH4 emis-
sions over this period (1.6 Tg yr−1 yr−1) is from China. For boreal regions we estimate a negative emissions trend
of −0.2 Tg yr−1 yr−1, and for northern and southern temperate regions we estimate trends of 0.03 Tg yr−1 yr−1

and 0.2 Tg yr−1 yr−1, respectively. These increases in CH4 emissions are accompanied by a progressively iso-
topically lighter atmospheric δ13C signature over the tropics, particularly since 2012, which is consistent with
an increased biogenic emissions source and/or a decrease in a thermogenic/pyrogenic emissions source with
a heavier isotopic signature. Previous studies have linked increased tropical biogenic emissions to increased
rainfall. Over China, we find a weaker trend towards isotopically lighter δ13C sources, suggesting that heavier
isotopic source signatures make a larger contribution to this region. Satellite remote sensing data provide addi-
tional evidence of emissions hotspots of CH4 that are consistent with the location and seasonal timing of wetland
emissions. The collective evidence suggests that increases in tropical CH4 emissions are from biogenic sources,
with a significant fraction from wetlands. To understand the influence of our results on changes in the hydroxyl
radical (OH), we also report regional CH4 emissions estimates using an alternative scenario of a 0.5 % yr−1

decrease in OH since 2004, followed by a larger 1.5 % drop in 2020 during the first COVID-19 lockdown. We
find that our main findings are broadly insensitive to those idealised year-to-year changes in OH, although the
corresponding change in atmospheric CH4 in 2020 is inconsistent with independent global-scale constraints for
the estimated annual-mean atmospheric growth rate.
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1 Introduction

Changes in atmospheric methane (CH4) over the last few
decades have unfolded without clear explanation, exposing
inadequacies in our measurement coverage and our ability to
definitively attribute those changes to individual emissions
and losses. The climatic importance of atmospheric CH4 lies
in its ability to absorb and emit infrared radiation at wave-
lengths that are relevant to outgoing terrestrial radiation and
incoming shortwave radiation (Allen et al., 2023). Conse-
quently, atmospheric CH4 helps to maintain Earth’s radia-
tive balance and surface and atmospheric temperatures. At-
mospheric CH4 is derived from emissions due to thermo-
genically (organic matter broken down at high temperatures
and pressures, mainly released during extraction and trans-
port of fossil fuels), pyrogenically (through incomplete com-
bustion of organic matter), and biogenically (microbial ac-
tivity) based production pathways. The main loss process
is from from the hydroxyl radical (OH), with minor losses
from the reaction with chlorine, uptake from soils, and strato-
spheric loss. Methane is the second-most abundant anthro-
pogenic greenhouse gas in terms of its anthropogenic radia-
tive forcing. The global CH4 growth rate was close to zero
from 2000 to 2006 (Dlugokencky et al., 2020) but has since
accelerated, with a global annual growth rate reported by the
NOAA exceeding 15 ppb for the first time in 2020 and more
than 18 ppb in 2021 (Feng et al., 2023). Concurrently, we
are witnessing a progressively isotopically lighter signature
of globally averaged CH4 (more negative global-average at-
mospheric δ13C value). Analysis of CH4 mole fraction and
δ13C–CH4 data suggests that thermogenic sources are un-
likely to be the dominant driver of the post-2006 global-mean
increase in atmospheric CH4 (Lan et al., 2021). A growing
body of work has proposed a range of hypotheses to explain
short periods of observed global and regional variations in
atmospheric CH4 (Turner et al., 2019). In this study, we take
a step back to look at observed CH4 variations from 2004 to
2020 in order to capture some of the zero-growth-rate period
and the subsequent increase in growth rate of CH4 post-2007.
We argue that monthly variations are part of a large-scale
shift in predominately thermogenic energy emissions from
high northern latitudes to biogenic emissions from the trop-
ics, driven by larger emissions over tropical North Africa and
tropical South America.

The post-2007 increase in atmospheric CH4 has been the
focus of many studies and has been attributed to differ-
ent plausible hypotheses associated with changes in various
emissions sources and the OH sink (Turner et al., 2019).
These studies have reached their conclusions using in situ
mole fraction observations alone or in combination with
other observations, e.g. in situ δ13C (Schaefer et al., 2016;
Rice et al., 2016; Nisbet et al., 2016; Fujita et al., 2020; Lan
et al., 2021; Basu et al., 2022; Oh et al., 2022), satellite ob-
servations (Worden et al., 2017; McNorton et al., 2018; Yin
et al., 2021; Feng et al., 2022), or other trace gases, using a

variety of analysis methods and computational models. Typi-
cal emissions sizes and uncertainties are indicated in Table 1,
adapted from Saunois et al. (2020). Our approach is unique
in that, for our δ13C inversion, we are solving for the δ13C
isotopic source signature of a geographical region. From the
isotopic source signature of a region, we can determine how
the source balance within a particular region has shifted over
time, e.g. larger or smaller contributions from pyrogenic and
biogenic sources, and consequently gain understanding of the
geographical shifts in the CH4 budget.

Methane oxidation by the OH radical in the troposphere is
responsible for 80 % of the total CH4 sink globally. Changes
in OH may have played a role in recent changes in atmo-
spheric CH4 (Rigby et al., 2017; Turner et al., 2017), but
the magnitude of this influence is uncertain (its short atmo-
spheric lifetime of< 1 s makes direct measurement of global
variability very difficult). Reducing values of OH effectively
increases atmospheric CH4 and therefore has the same ef-
fect as increasing emissions of CH4. Chemical reactions re-
sponsible for removing CH4 from the atmosphere are faster
for lighter isotopologues of CH4. This isotopic fractionation
therefore leads to an atmosphere enriched in heavier isotopes
relative to the globally emitted CH4. Lan et al. (2021) simu-
lated CH4 and δ13C in a 3-D chemistry transport model cov-
ering the period 1984–2016 and found that changes in OH
proposed by Turner et al. (2017) are not consistent with the
trend of increasingly isotopically light δ13C observed in the
atmospheric record. We explore the impact of reducing OH
in a sensitivity study, taking into account a larger OH de-
crease during 2020 (Peng et al., 2022; Feng et al., 2023) that
was associated with widespread reductions in nitrogen oxide
emissions (Cooper et al., 2022).

Here, we calculate trends in regional CH4 emissions and
isotopic δ13C source signatures across the world from 2004–
2020 using in situ mole fraction and δ13C data and satellite
column-averaged dry-air mole fraction data. This is achieved
by using three sets of inversions: two maximum a posteri-
ori inversions using ground-based data (solving separately
for regional emissions and isotopic sources signatures) and
an ensemble Kalman filter inversion using Greenhouse gases
Observing SATellite (GOSAT) data (solving for regional
CH4 emissions).

In the next section, we describe the data and methods we
use to quantify changes in regional CH4 emissions and the
corresponding regional stable isotope source signatures. In
Sect. 3, we report our results of a posteriori regional CH4
fluxes and regional δ13C isotopic signatures, including anal-
ysis of sensitivity calculations that involve different assump-
tions about year-to-year changes in the OH sink. We con-
clude the paper in Sect. 4.
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Table 1. Global-mean emissions of different CH4 source types from bottom-up inventories (Saunois et al., 2020) and our a posteriori
emissions estimates and the corresponding conventional isotope ratios’ signatures (Sherwood et al., 2017). Uncertainties are shown as max–
min values in square brackets.

Source type Annual-mean emission (Saunois et al., 2020) Annual-mean emission (this study) Isotopic ratio
2003–2012 (Tg/CH4) 2004–2020 (Tg/CH4) δ13C (‰)

Gas and oil 80 [68–92] 82.0 −44.0 [±10.7]
Coal 42 [29–61] 53.7 −49.5 [±11.2]
Livestock 111 [106–116] 115.2 −65.4 [±6.7]
Waste 65 [60–69] 67.9 −56.0 [±7.6]
Biomass burning 17 [14–26] 14.3 −26.2 [±4.8]
Termites 9 [3–15] 11.9 −63.4 [±6.4]
Wetlands 149 [102–182] 170.9 −61.5 [±5.4] (tropical)

−71.5 [±5.4] (Arctic)
Rice 30 [25–38] 30.7 −62.2 [±3.9]

2 Data and methods

2.1 In situ and satellite remote measurements of
atmospheric methane

We use surface-level flask data as constraints on both re-
gional CH4 emissions and the corresponding δ13 methane
isotopic source signatures. The CH4 mole fraction data (ver-
sion 2020-07; Dlugokencky et al., 2020) are taken from
31 National Oceanic and Atmosphere Administration –
Global Monitoring Laboratory (NOAA-GML) sites around
the world (Fig. 1). The data are monthly mean values that are
averaged from discrete data as collected at each site; anal-
ysed at the NOAA – Earth System Research Laboratories
(NOAA-ESRL) in Boulder, Colorado; and recorded accord-
ing to the NOAA 2004A standard scale (Dlugokencky et al.,
2005). Up to August 2019, the analysis was performed us-
ing gas chromatography (Steele et al., 1987; Dlugokencky
et al., 1994, 2005), and since August 2019, cavity ring-down
spectroscopy has been used (Dlugokencky et al., 2020). We
also include data from a site in Siberia, Karasevoe (KRS),
which is monitored by the National Institute for Environ-
ment Studies (NIES). This site was included to maximise
geographical coverage of in situ data. The CH4 mole frac-
tion measurements from this site are continuous, covering
the period 2004–2020, and were made from 65 m height
(Sasakawa et al., 2010). A scale factor of 0.997 is applied
to the NIES data in order to bring them into line with the
NOAA 2004A scale (Zhou et al., 2009). The site constitutes
part of the Japan–Russia Siberia Tall Tower Inland Observa-
tion Network (JR-STATION).
δ13C data are similarly monthly mean values that were cal-

culated from discrete flask samples at NOAA network sites
and reported on the international carbon isotope scale VPDB
(Vienna Pee Dee Belemnite). Isotope ratio “delta” values rep-
resent the excess of a heavy, less abundant stable isotope (for
δ13C values, carbon-13) over the light, most abundant stable
isotope (carbon-12) in a sample when compared to a stan-

dard. These measurements are useful as they are indicative
of the source of the CH4; biogenic sources are dominated
by isotopically lighter signatures, and thermogenic sources
are dominated by isotopically heavier signatures. For the
NOAA network, isotopic analysis of δ13C was performed
at the University of Colorado Institute of Arctic and Alpine
Research Stable Isotope Laboratory (CU-INSTAAR). They
follow an isotope ratio mass spectrometry approach (Miller,
2002; Vaughn et al., 2004). The geographical locations of
in situ measurement sites are shown in Fig. 1. These sites are
a subset of the entire NOAA network’s capacity for measur-
ing CH4 mole fractions. The sites included in the inversion
(for both CH4 and δ13C) are those that cover the entire pe-
riod of the inversion (2004–2020) without significant periods
of measurement breaks to ensure a consistent interpretation
of trends without consideration of possible biases introduced
through the inclusion or exclusion of specific sites.

We also estimate CH4 fluxes for 2010–2020 from the
Japanese Greenhouse gases Observing SATellite (GOSAT)
that was launched in 2009. GOSAT is in a sun-synchronous
orbit with an equatorial local overpass time of 13:30. Since
launch, it has provided continuous global observations of
dry-air atmospheric-column-averaged CO2 (XCO2) and CH4
(XCH4), retrieved from shortwave infrared wavelengths that
are most sensitive to changes in CH4 and CO2 in the lower
troposphere (Parker et al., 2020). We use the latest (v9) proxy
XCH4 : XCO2 retrievals that use spectral absorption features
around the wavelength of 1.6 µm (Parker et al., 2020; Palmer
et al., 2021) because of the smaller bias and better global
coverage than those provided by the full physics retrievals.
Analyses show the precision of a single proxy retrieval is
about 0.72 %, with a global bias of 0.2 % (Parker et al.,
2011, 2015, 2020). In our calculations, we assume a higher
observation uncertainty of 1.2 % and deduct a globally uni-
form bias of 0.3 % to obtain better a posteriori agreement
with the independent ground-based XCH4 data by the To-
tal Carbon Column Observing Network (TCCON). These
uncertainties are detailed in Feng et al. (2022). To anchor
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Figure 1. Map showing regions that are optimised in the CH4 and δ13C inversions in different colours. Black dots and labels show the
location of ground-based measurement sites that measure CH4 mole fraction. Red dots and labels indicate both CH4 mole fraction and δ13C
measuring sites. Regions are named as follows: grey – North American boreal, yellow – North American temperate, light green – South
American tropical, dark green – South American temperate, purple – Europe, blue – North Africa, light blue – southern Africa, pink – boreal
Eurasia, orange – China, brown – India, peach – temperate Eurasia, red – tropical SE Asia, lilac – Oceania, white – oceans. Site identifiers
are detailed in Table A2.

Table 2. Annual regional-mean a posteriori CH4 emissions (Tg yr−1) from 2004 to 2020. Regions include Australia (AUS), boreal Eurasia
(BEUR), boreal North America (BNA), China (CHN), India (IND), Europe (EUR), temperate Eurasia (TEUR), temperate North America
(TNA), temperate South America (TSA), southern Africa (SAf), North Africa (NAf), tropical Asia (TrAS), tropical South America (TrSA),
oceans (OCN), tropics (Tr), boreal (BOR), northern temperate (TN), and southern temperate (TS). The last row marked as SLE denotes the
Siegel linear estimate of the linear trend in CH4 emissions (Tg yr−1 yr−1) over the 2004–2020 period.

AUS BEUR BNA CHN IND EUR TEUR TNA TSA SAf NAf TrAS TrSA OCN Tr BOR TN TS

2004 9.3 13.6 15.7 62.2 37.8 51.0 61.7 46.5 28.0 43.0 28.8 47.9 70.9 11.0 190.6 29.3 159.1 28.0
2005 9.1 13.5 20.1 51.0 37.7 44.1 57.1 49.7 29.2 43.8 31.9 45.8 71.7 13.2 193.1 33.6 150.9 29.2
2006 9.2 13.7 20.6 53.8 31.7 48.4 60.0 52.2 29.8 44.2 32.1 47.2 72.6 12.9 196.1 34.3 160.6 29.8
2007 8.7 13.8 20.3 69.7 45.8 45.5 59.1 50.9 28.7 44.0 32.5 47.6 72.8 13.1 196.9 34.1 155.5 28.7
2008 8.4 12.0 18.1 60.7 38.4 42.5 53.7 56.8 28.7 42.5 31.4 43.6 69.4 12.2 186.8 30.2 153.0 28.7
2009 10.0 12.9 15.4 67.7 34.5 51.8 54.0 44.9 30.7 45.7 31.5 49.0 75.4 11.4 201.7 28.3 150.7 30.7
2010 10.7 10.9 24.9 64.5 38.2 48.3 58.8 51.5 33.9 51.5 39.5 53.7 85.5 13.8 230.2 35.8 158.7 33.9
2011 10.9 8.8 16.1 59.4 45.1 43.9 68.0 37.1 31.2 44.1 33.3 53.9 79.8 12.4 211.0 24.9 148.9 31.2
2012 13.0 9.0 19.1 62.8 37.9 45.2 77.0 42.8 28.0 44.2 40.8 60.9 75.2 13.1 221.1 28.1 165.0 28.0
2013 10.3 9.7 17.3 64.2 42.5 39.3 69.8 35.8 30.0 41.8 36.2 58.3 81.9 12.3 218.2 27.0 144.9 30.0
2014 10.6 9.4 21.4 68.1 31.5 42.9 69.6 47.3 29.9 42.9 36.4 61.0 94.0 12.7 234.2 30.8 159.7 29.9
2015 10.3 11.3 18.0 70.9 33.4 44.4 67.7 41.0 33.3 45.3 43.2 61.6 89.6 13.9 239.6 29.3 153.1 33.3
2016 10.6 10.0 18.2 73.6 39.9 41.9 73.5 35.7 30.7 45.8 39.3 65.0 95.7 14.2 245.7 28.2 151.1 30.7
2017 10.4 10.0 17.1 68.9 37.7 44.9 67.5 40.1 33.0 45.9 40.8 62.3 87.1 13.9 236.1 27.1 152.4 33.0
2018 11.0 11.1 16.7 74.1 37.3 46.2 73.1 38.3 32.8 46.7 43.1 65.7 82.5 14.2 237.9 27.7 157.6 32.8
2019 12.7 12.1 16.5 76.4 38.4 37.6 75.1 45.4 29.0 42.5 42.4 63.8 86.1 12.9 234.8 28.6 158.0 29.0
2020 11.2 10.6 19.7 80.2 43.5 49.3 72.7 42.9 29.6 45.8 53.9 62.5 84.1 14.2 246.2 30.3 164.9 29.6

SLE 0.1 −0.1 −0.2 1.6 0.0 −0.4 1.0 −0.7 0.2 0.1 1.0 1.5 1.2 0.1 3.6 −0.2 0.03 0.2

the constraints from the proxy XCH4 : XCO2 ratio (Fraser
et al., 2014; Feng et al., 2017), we also assimilate the GLOB-
ALVIEW CH4 and CO2 data (Schuldt et al., 2021), with as-
sumed uncertainties of 0.5 ppm and 8 ppb for in situ mea-
surements of CO2 and CH4, respectively. GLOBALVIEW
constitutes a combination of CH4 data from ground-based
data (both flask and continuous) and aircraft data from 54 dif-
ferent laboratories, combined and published by the NOAA-
GML (Schuldt et al., 2021). Locations of the assimilated

GLOBALVIEW CH4 (sub-)dataset are shown in Feng et al.
(2022).

2.2 GEOS-Chem atmospheric chemistry and transport
model

To relate CH4 emissions to atmospheric CH4 concentrations,
we use v12.1 of the GEOS-Chem 3-D global chemical trans-
port model (CTM) (Bey et al., 2001) at a horizontal reso-
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lution of 2◦ (latitude) by 2.5◦ (longitude) with 47 vertical
levels from the surface to 80 km height using meteorological
data from the MERRA-2 meteorological reanalyses (Gelaro
et al., 2017) from the NASA Global Modeling and Assimila-
tion Office (GMAO).

Our a priori emissions include (1) monthly EDGAR v6 an-
thropogenic emissions (Crippa et al., 2021) that account for
emissions from oil and gas, coal, livestock, landfills, wastew-
ater, rice, and other anthropogenic sources (including bio-
fuel) from 2004 to 2018, after which we repeat 2018 emis-
sions estimates; (2) monthly GFED-4 biomass burning emis-
sions (version 4.1; Randerson et al., 2017); and (3) monthly
v1.0 WetCHARTs wetland emissions (Bloom et al., 2017b).
The Harvard–NASA Emissions COmponent (HEMCO) soft-
ware within GEOS-Chem converts the emissions invento-
ries at their native horizontal resolution to the GEOS-Chem
2◦× 2.5◦ resolution. Beyond the end of the emissions inven-
tory, emissions are repeated yearly in a priori simulation.

Table 1 shows the δ13C signatures for the source types
included in our simulations. These are extracted as mean
global values from Sherwood et al. (2017), which provide
a database of global isotopic source signatures that are bro-
ken down into the same sectors as we employed in our
simulations. However, individual source types show a wide
range of source signatures, and this uncertainty is reflected
in the assigned uncertainty given to the a priori source signa-
tures in the inversion (Sect. 2.3). In the inversion, we dif-
ferentiate between Arctic and tropical wetlands by apply-
ing a 10 ‰ isotopically lighter source signature to the Arctic
source (Table 1) following Ganesan et al. (2018), who pro-
duced a global wetland source signature map based on pub-
lished δ13C data. Recent work showed that atmospheric sim-
ulations that included this isotopic distinction between Arctic
and tropical wetlands provided clearer support for rising mi-
crobial emissions being responsible for a large fraction of the
increase in atmospheric CH4 since 2007 (Oh et al., 2022).
In GEOS-Chem, we simulate isotopologues separately (i.e.
for δ13C, 12CH4, and 13CH4) and then calculate δ13C values.
The arithmetic underlying the conversion of isotope ratios to
isotopologue emissions for input to the model is detailed in
Appendix A.

We include the loss of atmospheric CH4 from reac-
tion with chlorine, soil uptake, and oxidation by OH. We
use monthly 3-D fields of OH, calculated using the full-
chemistry version of GEOS-Chem, and monthly 3-D fields of
atomic chlorine (Sherwen et al., 2016). Stratospheric loss fre-
quency fields are determined using the NASA Global Mod-
eling Initiative (GMI) stratospheric model (Duncan et al.,
2007). Estimates of the microbial consumption of CH4 in
soils are determined from Fung et al. (1991). The resulting
atmospheric lifetime of CH4 against OH is 9.77 years. The
corresponding lifetime for methyl chloroform is 5.41 years,
which is consistent with atmospheric observation of methyl
chloroform. This lifetime also compares well with a multi-
model study (Voulgarakis et al., 2013; Morgenstern et al.,

2017) that reported global-mean lifetimes of CH4 that range
from 7.2–10.1 years. In our default model configuration,
none of these loss processes include interannual variations.

To account for isotopic fractionation due to loss of CH4
in the troposphere and stratosphere, we use published kinetic
isotope effect (KIE) values. These values are employed to
scale the reaction rate constants used in the simulations for
12CH4 and 13CH4 (Table A1). The OH and Cl sinks are han-
dled in the hard coding of the model, whereas the soil sink
is handled as a negative emission in the HEMCO file. There-
fore, for the soil sink, the KIE is directly applied as a scale
factor in the HEMCO configuration file (Snover and Quay,
2000; Burkholder et al., 2019).

We created the initial conditions for atmospheric CH4 by
first scaling a standard CH4 GEOS-Chem restart file (a file
containing a default realistic distribution of CH4 across the
atmosphere) to conditions nearly representative of the start
of our analysis in January 2004. We then ran the model
60 times, repeating 2004 MERRA-2 meteorology and emis-
sions (corresponding to approximately 6 e-folding lifetimes
for CH4) to improve as far as possible the simulation of atmo-
spheric gradients in CH4 under the initial conditions. We then
ran a single-year inversion for 2004 to optimise the isotope
ratios and CH4 concentrations relative to ground-based ob-
servations following the inverse method detailed below. The
δ13C inversion used the regional emissions estimate provided
by the posteriori from the CH4 inversion as a starting point,
with sectoral emissions scaled as detailed in Appendix A.
The output of this 2004 inversion is a final step in the cre-
ation of the initial conditions, which serve as a starting point
for the longer inversion that we report here (2004–2020).

For all our calculations, we sample GEOS-Chem at the
grid box and local time that correspond to the in situ and
satellite remote sensing data. For the satellite data, we also
apply scene-dependent averaging kernels to account for ver-
tical structure. This approach allows us to directly compare
the model with measurements. Regional trends are calculated
by examining the grid boxes encompassed by a given region
on the global grid.

2.3 Inverse methods

We use two inverse methods that reflect the volume and sim-
plicity of the data being used. For in situ data we use the
maximum a posteriori (MAP) inverse methods, and for the
more voluminous satellite data we use an ensemble Kalman
filter (EnKF). For brevity, we include only the essential de-
tails about either method and refer the reader to dedicated
papers.

2.3.1 Maximum a posteriori

To infer regional a posteriori CH4 fluxes and regional δ13C
emissions source signatures from the atmospheric measure-
ments of CH4, we use the maximum a posteriori solution
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(MAP) inverse method (Rodgers, 2000). We solve for CH4
fluxes and δ13C emissions signatures from 14 geographical
regions (Fig. 1). This method combines a priori knowledge
and its uncertainty with the measurements and their uncer-
tainties and has been used in a number of studies, e.g. Fraser
et al. (2014) and McNorton et al. (2018).

The MAP solution and the associated a posteriori uncer-
tainty are described as, respectively,

xa
= xb

+ (HTB−1H+ R−1)−1HTB−1(y−Hxb), (1)

A= (HTB−1H+R−1)−1, (2)

using the convention that lower-case and upper-case vari-
ables denote vectors and matrices, where x denotes the state
vector that describes the estimated quantities, which in this
study includes monthly CH4 fluxes and δ13C source sig-
natures from regions across the world (Fig. 1). Subscripts
“a” and “b” denote a posteriori and a priori CH4 fluxes, re-
spectively, and superscripts “−1” and “T” denote matrix in-
verse and transpose operations, respectively. The measure-
ment vector y includes CH4 mole fraction or δ13C data. The
matrices B, A, and R denote a priori, a posteriori, and mea-
surement error covariance matrices, respectively. B and R are
diagonal matrices. For B we assume uncertainties of 50 % of
the regional CH4 fluxes and 15 ‰ for the δ13C values, and for
R we assume 10 ppb for the mole fraction data and 0.1 ‰ for
the isotope data. These uncertainties were based on similar
studies (Fraser et al., 2014; McNorton et al., 2016). We as-
sume a model transport error of 12 ppb following Feng et al.
(2022).

The Jacobian matrix H describes the sensitivity of the
measurements to changes in the state vector, i.e. ∂y/∂x.
For the CH4 mole fraction inversion, the Jacobian matrix
describes the sensitivity of mole fractions in the model to
changes in regional CH4 emissions. We construct the ma-
trix using a series of GEOS-Chem model runs. We system-
atically let each individual emitting region (described by the
state vector) emit for 1 month, while all other regions emit as
normal. The individual regional source is then switched off
(emissions set to zero), and the effect of this on the 3-D atmo-
spheric distribution of CH4 mole fractions is recorded over
the following 3 months. The result of this test is recorded at
the grid boxes that correspond to the location of the measure-
ment sites. The resulting mole fractions therefore describe
the sensitivity of a particular measurement site to changes in
a specific regional source up to 3 months after emission. This
is repeated for every month within the inversion timescale
and for every region described in the state vector.

For the δ13C inversions, the Jacobian matrix describes the
sensitivity of modelled δ13C to changes in the regional iso-
topic source signatures. We construct the Jacobian as the
difference between a control model calculation (using the
CH4 a posteriori regional emissions and mean source sig-
nature values from Sherwood et al., 2017) and perturbed-
source-signature model calculation for the whole study pe-

riod (2004–2020). For the perturbed model calculation, we
systematically perturb the isotopic source signature of each
region (all of the sectors that are contained geographically
within a region) isotopically heavier by 20 ‰ for the pe-
riod 2004–2020. The difference in the δ13C value between
the control and perturbed run at the location of each mea-
surement site is then divided by the value of δ13C perturba-
tion for the region’s source signature to understand the effect
of changing a region’s source signature on the δ13C value
recorded at each measurement site location.

The output from the inversion is improved estimates of re-
gional CH4 fluxes and δ13C source signatures. The model
simulates the global atmosphere on a 2◦× 2.5◦ horizontal
grid. The a posteriori regional CH4 fluxes and isotopic source
signatures are applied to the grid boxes in the model which
correspond to a given region in an a posteriori simulation.

2.3.2 Ensemble Kalman filter

We use an ensemble Kalman filter (EnKF) approach in per-
forming the inversion using satellite data because we cannot
easily evaluate the necessary matrix operations associated
with an analytic inversion. Here we use an ensemble of flux
perturbation pulses to represent uncertainty in our a priori
estimate for regional monthly CH4 fluxes. We subsequently
use a global chemistry transport model (i.e. the GEOS-Chem
v12) to track the transport and chemistry processes of the
tagged emissions pulses in the atmosphere in order to project
their spreads to the observation space. With the ensemble of
a priori flux perturbations and the simulated observation im-
pacts, we use the ensemble transform Kalman filter (ETKF)
algorithm to numerically estimate the a posteriori CH4 fluxes
and the associated uncertainties by optimally comparing the
model simulation with observations (see Feng et al., 2017,
for more details). To reduce the computational costs, mainly
from tracking tagged emissions pulses, we introduce a 4-
month moving lag window for each assimilation step because
any observation has limited ability to distinguish between the
signals emitted long (> 4 months) before from variations in
the ambient background atmosphere (Feng et al., 2017). As
a result, we are able to include a larger state vector, consist-
ing of monthly scaling factors for 487 (476 land regions and
11 oceanic regions) regional CH4 (and CO2) pulse-like basis
functions (Fig. S1 in Feng et al., 2022). We define these land
sub-regions by dividing the 11 TransCom-3 (Gurney et al.,
2002) land regions into 42 to 56 nearly equal sub-regions
and use the 11 oceanic regions defined by the TransCom-3
experiment. Because of their smaller sizes, we have assumed
a higher uncertainty percentage (60 %) for a priori emissions
than the MAP approach described above. We also include
spatial correlation with a correlation length of 500 km be-
tween the sub-regions.
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2.4 Sensitivity of results to changes in assumed OH
distributions

To examine the sensitivity of our results to changes in the
magnitude of OH, we ran a single sensitivity run that is
made up of two parts. First, we imposed a 0.5 % yr−1 uni-
form decrease on our 3-D OH field from 2004 to 2019, con-
sistent with the 7 % reduction over 2003–2016 proposed by
Turner et al. (2017). Second, we imposed a larger global-
scale OH reduction of 1.5 % in 2020 based on recent studies
(Miyazaki et al., 2021; Laughner et al., 2021) to describe a
more abrupt change due to widespread reductions in nitro-
gen oxides (NOx) associated with closing down manufactur-
ing during the first Covid-19 lockdown (Cooper et al., 2022).
Newer studies have suggested that the OH reduction in 2020
was closer to 1 % (Peng et al., 2022; Feng et al., 2023), but
these estimates are also subject to uncertainties. The purpose
of this numerical experiment is to determine the sensitivity of
a posteriori CH4 flux estimates to changes in assumed varia-
tions in OH and not to issue a proclamation about a time pro-
file of OH that would simultaneously fit observed changes in
CH4 and δ13C–CH4.

We use the Siegel linear non-parametric estimates (Siegel,
1982) to fit a line to our a posteriori CH4 emissions. This
method is less sensitive to outliers, e.g. El Niño, that would
otherwise compromise the linear-trend estimate (Palmer
et al., 2021), and the resulting linear-trend estimate has lower
variables than simpler methods. We find that Siegel trend es-
timates are similar to those estimated by the Theil–Sen esti-
mator.

3 Results

Here, we report a posteriori estimates for total CH4 emis-
sions inferred from in situ and GOSAT data and then the cor-
responding a posteriori isotopic source signatures for δ13C.
We draw comparisons with previous studies throughout this
section.

A posteriori emissions estimates of total CH4

Figure 2 shows the annual-mean differences in regions be-
tween a priori emissions estimates and a posteriori emissions
estimates for both ground-based (2004–2020) and GOSAT
results (2009–2020). Absolute emissions values are plotted
in Fig. 3 for completeness.

On a global scale, terrestrial a posteriori emissions inferred
in situ and GOSAT data have progressively increased relative
to a priori values since about 2014. The peak difference is in
2020, when we find increased emissions, relative to a pri-
ori emissions, of 68.5± 61.5 Tg yr−1 for the in situ inversion
and of 61.5± 37.3 Tg yr−1 for the GOSAT inversion. Global
ocean a posteriori CH4 emissions inferred from in situ and
GOSAT data support a negative bias in the a priori emissions,
which we do not discuss further.

As a zeroth-order check of our a posteriori emissions esti-
mate of total CH4 (Fig. 4) we compare the published NOAA
atmospheric growth rate of CH4 with our corresponding
a posteriori atmospheric mole fractions. Generally, we find
that the a posteriori values inferred from in situ and GOSAT
data are consistent with the overall trend of the changes in the
growth rate, with large year-to-year changes that we explain
now in terms of regional emissions changes.

Changes in the global terrestrial emissions reflect changes
from different geographical regions. Differences between
a posteriori emissions estimates inferred from in situ and
GOSAT data are partly due to differences in the geographic
coverage of the datasets. Ground-based data have poorer
geographic coverage, particularly over the tropics and the
Southern Hemisphere, and satellite data are currently avail-
able at most once per day under cloud-free conditions.
Using the in situ data, we find that the largest a poste-
riori emissions increases between 2004 and 2020, deter-
mined by the Siegel linear estimator, are over the tropics
(3.6 Tg yr−1 yr−1; comprising North Africa, southern Africa,
tropical South America, and tropical Asia), followed by
China (1.6 Tg yr−1 yr−1). Smaller contributions (individually
< 0.2 Tg yr−1) were made elsewhere.

Table 1 provides an overview of our annual-mean sector-
based a posteriori emissions for 2004–2020. Generally, our
values are close to the reported median values and within the
range of values reported by Saunois et al. (2020).

Over the tropics, there is broad consistency between
GOSAT and in situ data (Fig. 2) that highlights the neg-
ative bias in the a priori values over North Africa (bias
of −8.6 Tg yr−1), tropical Asia (bias of −7.2 Tg yr−1), and
tropical South America (bias of −11.63 Tg yr−1). The in situ
and GOSAT data for China support a small, steady increase
in emissions from 2009 to 2020 (1.0 Tg yr−1), with emissions
inferred from the GOSAT data generally smaller than a priori
values throughout the period (Fig. 2). Data over India have a
small mean annual trend (0.33 Tg yr−1). In situ and GOSAT
data are more consistent in sign (but not magnitude) at tem-
perate latitudes (Fig. 2). A posteriori emissions from in situ
and GOSAT data are generally lower by more than 12.0 and
5.6 Tg yr−1, respectively, over temperate North America and
higher by more than 13.0 and 7.0 Tg yr−1, respectively, over
temperate Eurasia, with the smallest discrepancies relative
to the a priori values before 2009. A posteriori emissions
from boreal regions appear to be larger than a priori values
by 4.2 Tg yr−1 before 2009 (Fig. 2). After 2009, in situ data
become progressively more consistent with the a priori over
North America and are typically smaller than a priori val-
ues over Eurasia by ' 2.6 Tg yr−1. GOSAT appears to show
the converse situation; after 2009, data are lower than a pri-
ori values by 4.4 Tg yr−1 over North America and compara-
ble with a priori values over Eurasia. In the Southern Hemi-
sphere, in situ data closely follow a priori values, as expected,
since there are few places where data are collected. GOSAT
data show a small but persistent increase in emissions with
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Figure 2. Annual-mean CH4 a posteriori emissions estimates as a residual value relative to a priori values (Tg yr−1) from each of the inver-
sion regions in latitudinal order (geographic coverage indicated in Fig. 1) for both ground-based and GOSAT inversion results. Uncertainties
are indicated, as calculated from inversion calculations, with an a priori uncertainty of 50 % for the ground-based results and 60 % for the
GOSAT results. The ground-based a posteriori is in blue; the GOSAT a posteriori is in red.

time over southern Africa (0.41 Tg yr−1), highlighting the
negative bias in a priori emissions over Australia and over
temperate South America.

We use the a posteriori error covariance matrix from our
MAP inversion (A; Eq. 2) to determine our ability to inde-
pendently estimate CH4 emissions from our geographical re-
gions. Figure A1 shows no significant a posteriori correla-
tions between neighbouring geographical regions in our state
vector. This is consistent with the in situ data being able to
independently estimate regional emissions estimates in our
state vector.

Our a posteriori emissions estimates are broadly consistent
with previous studies. For example, the increase in tropical
emissions has been reported using GOSAT data or in situ
data within a 3-D CTM inversion (McNorton et al., 2016;
Fujita et al., 2020), which examined shorter time periods of

2003–2015 and 1995–2013, respectively. The increase over
eastern Africa (which lies within our North Africa region)
has been reported by several studies (Lunt et al., 2019, 2021;
Pandey et al., 2021; Feng et al., 2022). Using GOSAT data,
Sheng et al. (2021) reported that CH4 emissions from China
increased by 0.36 Tg yr−1 from 2012 to 2017. Over the same
time period, we estimate an increase of 0.64 and 0.50 Tg yr−1

inferred from in situ and GOSAT data, respectively.
Figure A2 shows observed CH4 time series at ground-

based sites that we use to determine the corresponding
GEOS-Chem a priori and a posteriori mole fractions. A pri-
ori values already show excellent agreement with observa-
tions (mean residual of 14.1 ppb and root-mean-square er-
ror, RMSE, of 18.3 ppb), but this is generally improved af-
ter the model is fitted to the in situ data, with smaller mean
residuals (12.5 ppb) and RMSE (17.0 ppb). This is consistent
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Figure 3. A posteriori emissions estimates (Tg yr−1) inferred from ground-based in situ data (blue) and GOSAT data (red, with record
starting in 2010) for the geographical regions shown in Fig. 1. A priori emissions estimates are denoted by black dots, and a posteriori
uncertainties are denoted by whisker bars.

with previous studies such as McNorton et al. (2018) that
reported a posteriori RMSE values of 12.3 ppb. Figure A3
shows a posteriori CH4 mole fractions at NOAA sites that we
do not include in the inversion. This provides an additional
and independent test of our ability to describe atmospheric
CH4 using a subset of NOAA data that we use in our inver-
sion (Table A2). Generally, our a posteriori estimates agree
with these independent data, but for some sites the model
has difficulty reproducing the data, e.g. AMY (western South
Korea), KZD (Kazakhstan), and SDZ (mainland China). This
is because some sites are influenced by local sources that are
not representative of the spatial scale of our transport model
(' 50 000 km2). Similarly, we find agreement using a poste-
riori mole fractions using GOSAT data (Fig. A4; mean resid-
ual of 29.1 ppb and RMSE 35.1 ppb).

A posteriori source signatures of δ13C

Figure 5 shows source signatures of a posteriori regional
δ13C emissions inferred from ground-based in situ data. We
group our results into approximately 3-year bands, as a resid-
ual from the 2004–2007 mean value, to show how the re-
gional isotopic source signatures change across the time se-
ries.

Relative to a priori emissions (Fig. A5), a posteriori val-
ues from northern boreal regions (boreal North America and
Eurasia) have isotopically lighter signatures (−62 ‰), con-
sistent with a larger contribution from isotopically lighter
biogenic emissions and/or a smaller contribution from
isotopically heavier thermogenic or pyrogenic emissions
(Fig. A5). Conversely, a posteriori values from regions
such as temperate Eurasia, Australia, and southern Africa
have isotopically heavier source signatures (approximately
−40 ‰), suggesting a larger proportion of thermogenic or
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Figure 4. A posteriori annual-mean atmospheric CH4 growth rate
inferred from in situ (black line) and GOSAT data (blue line) com-
pared with the equivalent data as published by the NOAA (red
line, with uncertainty as surrounding blue field; Dlugokencky et al.,
2020). The green line denotes the annual atmospheric growth rate
determined using the in situ mole fraction data from the sites in-
cluded in the inversion (“Sites-Post”). To calculate the atmospheric
growth rates from model calculations (NOAA-Post and GOSAT-
post), we compare the average global CH4 mole fraction in 1 year
(the mean mole fraction of every grid box in every month of a year)
with the mean value from the following year. The calculation is
January–January in order to remove the effects of the seasonal cycle
following the approach by the NOAA (Dlugokencky et al., 2020).

pyrogenic emissions and/or a smaller contribution from iso-
topically light biogenic emissions.

Figure 5 shows a general trend towards isotopically lighter
regional source signatures of δ13C across the time series.
Our analysis suggests that this trend has been ongoing since
2012 and is observed in all regions worldwide but is strongest
(compared with a priori estimates) over tropical and Southern
Hemisphere regions. For example, tropical South America
and southern Africa are 1.2 ‰ and 0.9 ‰ isotopically lighter
than a priori values for 2019 and 2020, respectively.

Our analysis also highlights the period 2007–2012, when
regional source signatures, particularly in Northern Hemi-
sphere regions, become isotopically heavier compared with
a priori source signatures (by 1.0 ‰ between 2007–2009, by
0.8 ‰ between 2010–2012, and by 0.3 ‰ between 2013–
2015). After 2012, regional source signatures of δ13C gen-
erally become isotopically lighter. This result suggests that
2012 was a period when there was a change in the balance of
global sources that determine changes in atmospheric CH4.
These isotopic shifts in 2008 and 2012 are noted by Nisbet
et al. (2016), who used a box model and examine data from
sites measured by the NOAA and Royal Holloway, Univer-
sity of London (RHUL). They found that changes in removal
rates could not explain these anomalies so that these events
were attributed to changing emissions. We find that China
experiences a weaker shift in 2012 to an isotopically lighter
(∼ 0.1 ‰) δ13C source signature compared to a priori val-
ues (Fig. 5) and compared to other temperate regions. This
suggests that heavier isotopic source signatures (such as coal
mines) make a larger contribution to this region.

Unlike the a posteriori total CH4 emissions estimates, we
find significant a posteriori correlations between neighbour-
ing regions for δ13C source signatures (Fig. A6). For ex-
ample, there is a correlation of 0.95 between estimates for
southern Africa and temperate South America, so these can-
not be considered to be independent estimates. This result
aligns with Basu et al. (2022), who used CH4 mole frac-
tion and δ13C measurements to determine that tropical bio-
genic sources are driving CH4 growth. They acknowledged
that measurement coverage limited conclusions based ex-
clusively on isotope ratio measurements. Nevertheless, they
found a clear trend of stronger emissions of isotopically
lighter CH4, indicative of an increased role for biogenic
emissions in the global source makeup.

We find that a posteriori regional δ13C source signatures
result in a time series of δ13C that is more consistent with
observations than a priori values (Fig. A7), as expected.
This particularly affects the period 2008–2018, when a pri-
ori emissions source signatures are significantly isotopically
lighter. Our a posteriori source signatures result in a mean ob-
servation—model residual and RMSE of 0.11 ‰ and 0.14 ‰,
respectively. These are smaller than those corresponding to
a priori values for the observation—model residual (0.37 ‰)
and RMSE (0.41 ‰). Our comparison is consistent with Mc-
Norton et al. (2018) (RMSE of 0.1 ‰) and Fujita et al. (2020)
(RMSE of 0.08–0.25 ‰).

Sensitivity to assumptions about OH

Figure 6 shows the result of our sensitivity test, which as-
sumes a 0.5 % yr−1 uniform decrease in our 3-D OH field
from 2004 to 2019, followed by a more abrupt decrease of
−1.5 % in 2020, to describe the widespread reduction in ni-
trogen oxide emissions. This is an idealised sensitivity test
that is inconsistent with global-scale constraints on estimates
of the global-mean atmospheric growth of atmospheric CH4;
i.e. most of the observed global growth in atmospheric CH4
can be explained by the changes in OH. Nevertheless this test
provides us with some idea of the robustness of our results
against changes in OH.

We find that this alternative assumption about OH does not
significantly affect our results until much later in the time se-
ries (2017–2019), reflecting our large a posteriori uncertain-
ties. We find a similar quality of fit of the a posteriori model
to the data with or without considering the OH trend (not
shown). This does not preclude a role for changes in OH, but
the concurrent a posteriori shifts in CH4 emissions and re-
gional isotopic source signatures of δ13C are consistent with
decreasing OH playing a smaller role than increasing emis-
sions with isotopically light δ13C source signatures in de-
termining observed changes in atmospheric CH4 (Lan et al.,
2021).

The larger, abrupt change in 2020 results in a marked re-
duction (approximately 6 %, ∼ 40 Tg yr−1) in the emissions
necessary to explain the increase in atmospheric CH4. There
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Figure 5. Regional and global a posteriori δ13C emissions source signatures (‰) in 3-year groups (2004-06, 2007-09, 2010-12, 2013-
15, 2016-18, 2019-20) as a residual from the 2004–2006 a posteriori regional emissions source signature value. The a priori equivalent is
represented by black dots. The regions are those solved for in the CH4 and δ13C inversions and are indicated in Fig. 1.

is still debate about the impact of a posteriori CH4 methane
emissions. Peng et al. (2022) used in situ data and concluded
that the increase in atmospheric CH4 in 2020 could be at-
tributed approximately equally to a decrease in OH and an
increase in OH. Analysis of GOSAT suggests that increased
emissions play a larger role (Qu et al., 2022; Feng et al.,
2023).

4 Conclusions

We estimated regional CH4 emissions and δ13C source sig-
natures for the period 2004–2020, inclusively, by fitting the
GEOS-Chem 3-D atmospheric chemistry transport model to
surface mole fraction data (Fig. 1) and GOSAT atmospheric
column data (2010–2020) using Bayesian inverse methods.
We used surface sites for which we had complete monthly

coverage over most of the study period (Table A2). Collec-
tively, our results indicate that the post-2007 increases in
CH4 emissions are best explained by a progressive latitudi-
nal shift in emissions from the northern mid-latitudes to trop-
ical latitudes. A posteriori CH4 emissions estimates inferred
from the ground-based and GOSAT data show larger tropi-
cal emissions, particularly over North Africa, tropical Asia,
and tropical South America as well as over China and at the
same time as mid-latitudinal emissions proportions decrease.
Source signature estimates inferred from the δ13C measure-
ments (Fig. 1) over the same time period indicate that the lati-
tudinal shift in CH4 emissions is due to a larger proportion of
sources with a lighter atmospheric δ13C signature (e.g. bio-
genic source such as wetlands) and/or a smaller proportion
of sources with a heavier atmospheric δ13C signature (e.g.
thermogenic or pyrogenic sources). Our results are broadly
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Figure 6. Annual-mean CH4 emissions (Tg yr−1) for each region of the inversion (indicated in Fig. 1) inferred from the ground-based data
(dark blue) and the emissions estimates determined by reduced OH values (described in the text, shown in red). A priori regional emissions
estimates are indicated by black dots. Regional uncertainties for the a posteriori emissions are indicated.

consistent with previous studies that focus on shorter con-
tributing periods (McNorton et al., 2018; Nisbet et al., 2019;
Fujita et al., 2020; Yin et al., 2021; Lan et al., 2021; Basu
et al., 2022), providing confidence in our model assumptions
and data selection. We find that our main results are robust
against assuming a 0.5 % yr−1 OH decrease from 2004 to
2019, consistent with Turner et al. (2017), followed by an
abrupt 1.5 % OH drop in 2020 that reflects the widespread
decrease in nitrogen oxide emissions from shutting down
manufacturing during the first Covid-19 lockdown. This is
an idealised sensitivity test but nevertheless provides us with
some idea of the robustness of our results against changes in
OH. A more detailed discussion of the role of OH in 2020 is
discussed elsewhere (Qu et al., 2022; Peng et al., 2022; Feng
et al., 2023).

Sparse geographic coverage of ground-based data results
in larger uncertainties for regional emissions estimates that

are informed by fewer data, i.e. high and low latitudes in
both hemispheres. For CH4, this deficiency can be partly
addressed using the satellite data, but isotope ratios cannot
usefully be retrieved from Earth observation satellite instru-
ments. We use only three measurement sites for δ13C in the
Southern Hemisphere, which have a continuous record over
the period of study. A consequence of this data sparsity is
strong correlations between source signatures from neigh-
bouring regions (Fig. A6). We assume mean sectoral δ13C
source signatures from Sherwood et al. (2017). These values
are highly uncertain, as different sectors produce a range of
possible δ13C values, and there are significant overlaps be-
tween recorded source signatures (Douglas et al., 2017), but
the values chosen represent our current best knowledge of
mean values. These data have greater value when they are
used in a broader context with other data, as we describe in
this study. We have used satellite observations to help iden-

Atmos. Chem. Phys., 23, 8429–8452, 2023 https://doi.org/10.5194/acp-23-8429-2023



A. Drinkwater et al.: Data support a multi-decadal shift in global methane budget 8441

tify that large-scale emissions change over regions that coin-
cide with wetlands.

Collectively, empirical evidence, including in situ and
GOSAT observation of CH4 and in situ δ13C data, points
to an increasing biogenic source originating from the trop-
ics. While we cannot definitively attribute these changes to
increasing wetland emissions, there is sufficient contextual
evidence, building on previous studies, to suggest that wet-
lands have played a significant role in recent growth of at-
mospheric CH4. First, large changes in OH that would be
needed to explain this atmospheric growth are inconsistent
with increasingly isotopically light δ13C observations in the
atmospheric record (Lan et al., 2021). Second, we know from
in situ data the broad geographical regions responsible for in-
creasing CH4 emissions and isotopically lighter δ13C source
signature, where the seasonal cycles are consistent with bio-
genic emissions peaking outside the burning season. Third,
GOSAT provides us with additional information about the
geographical distribution of CH4 emissions; tropical emis-
sions hotspots are colocated with known wetland regions
(Lunt et al., 2019, 2021; Pandey et al., 2021; Wilson et al.,
2021; Feng et al., 2022, 2023). Finally, we also have ev-
idence from other satellite data, e.g. hydrology, that helps
explain the growth of wetland emissions in the last decade
(Lunt et al., 2019; Feng et al., 2022). Greater confidence
in source attribution of changes in atmospheric CH4 may
come from collecting and interpreting δD and multiply sub-
stituted “clumped” isotopes (Douglas et al., 2017; Chung and
Arnold, 2021), alongside δ13C. This needs to be accompa-
nied by field measurements of these isotope ratios to improve
delineation between different sectors.

The evidence presented here is consistent with a growing
body of work that points to a substantial increase in biogenic
CH4 emissions from the tropics. This increase will likely
have major implications for achieving the goals of the Paris
Agreement (Nisbet et al., 2019). Nature does not care about
the origin of atmospheric CH4 so that increasing biogenic
emissions will require larger emissions reductions from an-
thropogenic sectors, placing additional pressure on citizens
to reduce their carbon footprints.

Appendix A: Isotopologue emissions

To simulate the atmospheric isotope ratio δ13C, the isotopo-
logues 12CH4 and 13CH4 are considered separately in the
model. To calculate the specific sectoral isotopologue emis-
sions we use the emissions calculated from the CH4 mole
fraction simulation and the isotope ratios defined in Table 2.
We consider the isotope 13C relative to all isotopes in the
sample (designated hereafter as 13x) using

13x =
13C

12C+ 13C
=

13C/12C
1+ (13C/12C)

, (A1)

where 13C/12C is calculated from the δ13C reported on the
international carbon isotope scale VPDB (Vienna Pee Dee
Belemnite). This is the proportional molar abundance of the
isotopologues containing 13C (dominated by 13CH4) relative
to the isotopologues containing 12C (dominated by 12CH4).
This value has to be adjusted before being applied in GEOS-
Chem to convert from isotope ratio values to kilogram values
used by emissions inventories:

SF13= 13x×
M13

Mtot
, (A2)

where SF13 is the scale factor applied to each emissions type
for the 13CH4 simulation, M13 is the molecular weight of
13CH4 (17.035 g mol−1), andMtot is the molecular weight of
CH4 (16.04 g mol−1).

For the 12CH4 counterpart to 13CH4, we use a similar ap-
proach. The ratio of 12C to all isotopes in the sample (desig-
nated as 12x) is given by

12x =
12C

13C+ 12C
. (A3)

This is similarly adjusted from molar to mass ratio; SF12
is the scale factor for each emissions type in the 12CH4 sim-
ulations:

SF12= 12x×
M12

Mtot
, (A4)

where M12 is the molecular weight of 12CH4
(16.03 g mol−1). Since 13C and 12C are the only stable
carbon isotopes of CH4, 13x and 12x should sum to 1.
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Figure A1. A posteriori correlations between CH4 emissions from geographical regions inferred from ground-based CH4 mole fraction data.
These correlations are determined by normalising the diagonal elements of the a posteriori error covariance matrix (Eq. 2).
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Figure A2. Observed (red), a priori (grey), and a posteriori (black) model atmospheric mole fractions at a series of NOAA sites (subplot
titles denote site codes; Table A2) covering a range of latitudes.
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Figure A3. A posteriori (black) monthly estimates of atmospheric CH4 simulated at NOAA sites across latitudes. Red indicates monthly
mean CH4 data from the NOAA network sites indicated. These sites were not included in the CH4 inversion but are shown here to pro-
vide independent validation of a posteriori emissions. The sites included are Baltic Sea, Poland (55.35◦ N, 17.22◦ E); Cold Bay, Alaska
(55.21◦ N, 162.72◦W); Sary Taukum, Kazahkstan (44.08◦ N, 76.87◦ E); Shangdianzi, China (44.65◦ N, 117.12◦ E); Point Arena, USA
(38.95◦ N, 123.74◦W); Anmyeon-do, Republic of Korea (36.54◦ N, 126.38◦ E); Terceira Island, Azores (38.77◦ N, 27.37◦W); Dongsha
Island, Taiwan (20.70◦ N, 116.73◦ E); High Altitude Global Climate Observation Center, Mexico (18.98◦ N, 97.31◦W); Mt. Kenya, Kenya
(0.06◦ S, 37.29◦ E); Bukit Kototabang, Indonesia (0.20◦ S, 100.31◦ E); Arembepe, Brazil (12.77◦ S, 38.17◦W); Gobabeb, Namibia (23.58◦ S,
15.03◦ E); Cape Point, South Africa (34.35◦ S, 18.49◦ E); and Drake Passage (59.00◦ S, 64.69◦W).

Figure A4. Observed (red) and 3-hourly surface a posteriori CH4 values inferred from GOSAT data (black) at the location of a number of
NOAA sites (Table A2) from 2010–2020.
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Figure A5. Monthly a priori (grey) and a posteriori (blue) regional δ13C source signatures (‰). Values are produced using ground-based
in situ δ13C data. Uncertainties in source signatures are indicated as shaded envelopes, with a priori uncertainties of 15 ‰.
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Figure A6. A posteriori correlations between δ13C source signatures from geographical regions inferred from ground-based δ13C data.
These correlations are determined by normalising the diagonal elements of the a posteriori error covariance matrix (Eq. 2).

Figure A7. A priori (grey) and a posteriori (black) monthly estimates of atmospheric δ13C simulated at NOAA sites across latitudes (site
codes listed in Table A2). Red indicates monthly mean δ13C data from CU-INSTAAR for the respective sites.
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Table A1. Kinetic isotope effects (KIEs) for different isotopologues reacting with the three main sinks of CH4 (OH, Cl, soil) at 298 K. A
KIE indicates relative reaction rate compared with 12CH4, the reaction rate constant is applied to the OH and Cl sinks and is dependent on
temperature (T ), and the scaling factor is applied to the soil sink at each time step (handled as a negative emission).

Isotopologue Sink KIE Reaction rate constant Scaling factor Literature source

12CH4 OH 1 2.45× 10−12
× e

−1775
T n/a Burkholder et al. (2019)

12CH4 Cl 1 9.600× 10−12
× e

−1360
T n/a Kirschke et al. (2013)

12CH4 Soil n/a n/a 1 Snover and Quay (2000)
13CH4 OH 1.0039 2.44× 10−12

× e
−1775
T n/a Burkholder et al. (2019)

13CH4 Cl 1.06 9.057× 10−12
× e

−1360
T n/a Feilberg et al. (2005)

13CH4 Soil n/a n/a 1.0670 Snover and Quay (2000)

n/a – not applicable

Table A2. Sites that are included in the in situ inversions. All sites are part of the NOAA network except for KRS, which is part of the
JR-STATION network, monitored by NIES Japan.

Code Full Name Latitude Longitude

ALT Alert Station 82.28 −62.30
ZEP Ny-Ålesund, Svalbard 78.90 11.89
SUM Summit, Greenland 72.60 −38.42
BRW Barrow Station 71.32 156.61
ICE Stórhöfði,Iceland 63.40 −20.29
KRS Karasevoe, Siberia 58.14 82.25
MHD Mace Head, Ireland 53.33 −9.90
SHM Shemya Island, Alaska 52.71 174.12
UUM Ulaan-Uul, Mongolia 44.45 111.09
NWR Niwot Ridge, Colorado 40.05 −105.59
UTA Wendover, Utah 39.90 −113.72
WLG Mt. Waliguan, China 36.29 100.90
BMW Bermuda 32.26 −64.88
WIS Ketura, Israel 29.96 35.06
IZO Izana, Tenerife 28.31 −16.50
MID Midway Islands 28.22 −177.37
KEY Key Biscayne, Florida 25.67 −80.16
ASK Assekrem, Algeria 23.26 5.63
KUM Cape Kumukahi, Hawaii 19.56 −154.89
MLO Mauna Loa, Hawaii 19.54 −155.58
RPB Ragged Point, Barbados 13.17 −59.43
SEY Mahé, Seychelles −4.68 55.53
ASC Ascension Island −7.97 −14.40
SMO American Samoa −14.25 −170.56
CGO Cape Grim −40.68 144.69
BHD Baring Head −41.40 174.87
CRZ Crozet Islands −46.43 51.85
USH Ushuaia, Argentina −54.84 −68.31
PSA Palmer Station, Antarctica −64.77 −64.05
SYO Syowa Station, Antarctica −69.01 39.59
SPO South Pole, Antarctica −89.98 −24.8
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Code availability. The community-led GEOS-Chem model of at-
mospheric chemistry is maintained centrally by Harvard Univer-
sity (https://geoschem.github.io/, Bey et al., 2001) and is available
on request. The ensemble Kalman filter code is publicly available
as PyOSSE (https://www.nceo.ac.uk/data-tools/atmospheric-tools/,
Feng et al., 2009).

Data availability. All the data and materials used in this study
are freely available. The NOAA-GML and CU-INSTAAR ground-
based CH4 and δ13C data are available from the NOAA GML FTP
server (https://gml.noaa.gov/dv/data, last access: 24 July 2023,
https://doi.org/10.15138/VNCZ-M766, Dlugokencky et al., 2020),
subject to their fair-use policies. Data from the JR-STATION
network were provided with the cooperation of NIES Japan. The
University of Leicester GOSAT Proxy v9.0 XCH4 data are available
from the Centre for Environmental Data Analysis data repository
at https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb
(Parker and Boesch, 2020) and from the Copernicus Climate Data
Store. EDGAR data are available at https://edgar.jrc.ec.europa.eu/
(Crippa et al., 2021), GFED-4 data are available at
https://www.globalfiredata.org/data.html (last access: 24
July 2023, https://doi.org/10.3334/ORNLDAAC/1293, Ran-
derson et al., 2017), and WetCHARTs data are available at
https://doi.org/10.3334/ORNLDAAC/1502 (Bloom et al., 2017b).
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