Articles | Volume 23, issue 13
https://doi.org/10.5194/acp-23-7479-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-7479-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Isolating methane emissions from animal feeding operations in an interfering location
Megan E. McCabe
Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071, USA
Ilana B. Pollack
Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
Emily V. Fischer
Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
Kathryn M. Steinmann
Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071, USA
Dana R. Caulton
CORRESPONDING AUTHOR
Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071, USA
Related authors
No articles found.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023, https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Short summary
Air quality in the USA has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfire pollution in the western USA in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we used a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western USA.
Madison J. Shogrin, Vivienne H. Payne, Susan S. Kulawik, Kazuyuki Miyazaki, and Emily V. Fischer
Atmos. Chem. Phys., 23, 2667–2682, https://doi.org/10.5194/acp-23-2667-2023, https://doi.org/10.5194/acp-23-2667-2023, 2023
Short summary
Short summary
We evaluate the spatiotemporal variability of peroxy acyl nitrates (PANs), important photochemical pollutants, over Mexico City using satellite observations. PANs exhibit a seasonal cycle that maximizes in spring. Wildfires contribute to observed interannual variability, and the satellite indicates several areas of frequent outflow. Recent changes in NOx emissions are not accompanied by changes in PANs. This work demonstrates analysis approaches that can be applied to other megacities.
Vivienne H. Payne, Susan S. Kulawik, Emily V. Fischer, Jared F. Brewer, L. Gregory Huey, Kazuyuki Miyazaki, John R. Worden, Kevin W. Bowman, Eric J. Hintsa, Fred Moore, James W. Elkins, and Julieta Juncosa Calahorrano
Atmos. Meas. Tech., 15, 3497–3511, https://doi.org/10.5194/amt-15-3497-2022, https://doi.org/10.5194/amt-15-3497-2022, 2022
Short summary
Short summary
We compare new satellite measurements of peroxyacetyl nitrate (PAN) with reference aircraft measurements from two different instruments flown on the same platform. While there is a systematic difference between the two aircraft datasets, both show the same large-scale distribution of PAN and the discrepancy between aircraft datasets is small compared to the satellite uncertainties. The satellite measurements show skill in capturing large-scale variations in PAN.
Cited articles
Archimède, H., Eugène, M., Marie Magdeleine, C., Boval, M.,
Martin, C., Morgavi, D. P., Lecomte, P., and Doreau, M.: Comparison of
methane production between C3 and C4 grasses and legumes, Anim. Feed Sci.
Tech., 166–167, 59–64, https://doi.org/10.1016/j.anifeedsci.2011.04.003, 2011. a
Arnold, S., Dileo, J., and Takushi, T.: Colorado Greenhouse Gas Inventory —
2014 Update Including Projections to 2020 & 2030, Department of Public
Heath & Environment, https://oitco.hylandcloud.com/pop/docpop/docpop.aspx (last access: 26 April 2021), 2014. a
Bjorneberg, D. L., Leytem, A. B., Westermann, D. T., Griffiths, P. R., Shao,
L., and Pollard, M. J.: Measurement of Atmospheric Ammonia, Methane, and
Nitrous Oxide at a Concentrated Dairy Production Facility in Southern Idaho
Using Open-Path FTIR Spectrometry, T. ASABE, 52,
1749–1756, 2009. a
Cambaliza, M. O. L., Shepson, P. B., Caulton, D. R., Stirm, B., Samarov, D., Gurney, K. R., Turnbull, J., Davis, K. J., Possolo, A., Karion, A., Sweeney, C., Moser, B., Hendricks, A., Lauvaux, T., Mays, K., Whetstone, J., Huang, J., Razlivanov, I., Miles, N. L., and Richardson, S. J.: Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions, Atmos. Chem. Phys., 14, 9029–9050, https://doi.org/10.5194/acp-14-9029-2014, 2014. a, b, c
Caulton, D.: Ammonia phase PARtitioning and Transport-lite (APART-lite), University of Wyoming [data set], https://doi.org/10.15786/22677718.v1, 2023. a
Caulton, D. R., Shepson, P. B., Santoro, R. L., Sparks, J. P., Howarth, R. W.,
Ingraffea, A. R., Cambaliza, M. O., Sweeney, C., Karion, A., Davis, K. J.,
Stirm, B. H., Montzka, S. A., and Miller, B. R.: Toward a better
understanding and quantification of methane emissions from shale gas
development, P. Natl. Acad. Sci. USA, 111, 6237–6242, https://doi.org/10.1073/pnas.1316546111, 2014. a, b
CDPHE: Colorado Department of Public Health and Environment CAFO Permit
Database 2021,
http://www.colorado.gov/pacific/cdphe/animal-and-livestock-feeding-operations
(last access: March 2022), 2022. a
Crosson, E. R.: A cavity ring-down analyzer for measuring atmospheric levels
of methane, carbon dioxide, and water vapor, Appl. Phys. B-Lasers O., 92,
403–408, https://doi.org/10.1007/s00340-008-3135-y, 2008. a
Eilerman, S. J., Peischl, J., Neuman, J. A., Ryerson, T. B., Aikin, K. C.,
Holloway, M. W., Zondlo, M. A., Golston, L. M., Pan, D., Floerchinger, C.,
and Herndon, S.: Characterization of Ammonia, Methane, and Nitrous Oxide
Emissions from Concentrated Animal Feeding Operations in Northeastern
Colorado, Environ. Sci. Technol., 50, 10885–10893,
https://doi.org/10.1021/acs.est.6b02851, 2016. a, b, c
Golston, L. M., Pan, D., Sun, K., Tao, L., Zondlo, M. A., Eilerman, S. J.,
Peischl, J., Neuman, J. A., and Floerchinger, C.: Variability of Ammonia and
Methane Emissions from Animal Feeding Operations in Northeastern Colorado,
Environ. Sci. Technol., 54, 11015–11024, https://doi.org/10.1021/acs.est.0c00301,
2020. a, b, c, d, e, f
Gordon, M., Li, S.-M., Staebler, R., Darlington, A., Hayden, K., O'Brien, J., and Wolde, M.: Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations, Atmos. Meas. Tech., 8, 3745–3765, https://doi.org/10.5194/amt-8-3745-2015, 2015. a
Griffith, D. W., Bryant, G. R., Hsu, D., and Reisinger, A. R.: Methane
emissions from free-ranging cattle: Comparison of tracer and integrated
horizontal flux techniques, Aust. J. Exp. Agr., 48, 582–591,
https://doi.org/10.2134/jeq2006.0426, 2008. a
Hacker, J. M., Chen, D., Bai, M., Ewenz, C., Junkermann, W., Lieff, W.,
McManus, B., Neininger, B., Sun, J., Coates, T., Denmead, T., Flesch, T.,
McGinn, S., and Hill, J.: Using airborne technology to quantify and
apportion emissions of CH4 and NH3 from feedlots, Anim. Prod. Sci., 56,
190–203, https://doi.org/10.1071/AN15513, 2016. a, b, c
Higley, B. D. K. and Cox, D. O.: Oil and Gas Exploration and Development along
the Front Range in the Denver Basin of Colorado, Nebraska, and Wyoming,
USGS Province 39: U.S. Geological Survey Digital Data Series, Ch. 2,
http://www.usgs.gov/pubprod (last access: 11 April 2021), 2007. a
Karion, A., Sweeney, C., Pétron, G., Frost, G., Michael Hardesty, R.,
Kofler, J., Miller, B. R., Newberger, T., Wolter, S., Banta, R., Brewer, A.,
Dlugokencky, E., Lang, P., Montzka, S. A., Schnell, R., Tans, P., Trainer,
M., Zamora, R., and Conley, S.: Methane emissions estimate from airborne
measurements over a western United States natural gas field, Geophys. Res.
Lett., 40, 4393–4397, https://doi.org/10.1002/grl.50811, 2013. a, b
Karion, A., Sweeney, C., Kort, E. A., Shepson, P. B., Brewer, A., Cambaliza,
M., Conley, S. A., Davis, K., Deng, A., Hardesty, M., Herndon, S. C.,
Lauvaux, T., Lavoie, T., Lyon, D., Newberger, T., Pétron, G., Rella,
C., Smith, M., Wolter, S., Yacovitch, T. I., and Tans, P.: Aircraft-Based
Estimate of Total Methane Emissions from the Barnett Shale Region, Environ.
Sci. Technol., 49, 8124–8131, https://doi.org/10.1021/acs.est.5b00217, 2015. a
Kille, N., Baidar, S., Handley, P., Ortega, I., Sinreich, R., Cooper, O. R., Hase, F., Hannigan, J. W., Pfister, G., and Volkamer, R.: The CU mobile Solar Occultation Flux instrument: structure functions and emission rates of NH3, NO2 and C2H6, Atmos. Meas. Tech., 10, 373–392, https://doi.org/10.5194/amt-10-373-2017, 2017. a
Kille, N., Chiu, R., Frey, M., Hase, F., Sha, M. K., Blumenstock, T., Hannigan,
J. W., Orphal, J., Bon, D., and Volkamer, R.: Separation of Methane
Emissions From Agricultural and Natural Gas Sources in the Colorado Front
Range, Geophys. Res. Lett., 46, 3990–3998, https://doi.org/10.1029/2019GL082132,
2019. a, b, c, d, e, f, g, h, i
Leytem, A. B., Dungan, R. S., Bjorneberg, D. L., and Koehn, A. C.: Emissions
of Ammonia, Methane, Carbon Dioxide, and Nitrous Oxide from Dairy Cattle
Housing and Manure Management Systems, J. Environ. Qual., 40, 1383–1394,
https://doi.org/10.2134/jeq2009.0515, 2011. a
Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M.,
Wirth, T., Hight, C., DeFigueiredo, M., Desai, M., Schmeltz, R., Hockstad,
L., Bloom, A. A., Bowman, K. W., Jeong, S., and Fischer, M. L.: Gridded
National Inventory of U.S. Methane Emissions, Environ. Sci. Technol., 50,
13123–13133, https://doi.org/10.1021/acs.est.6b02878, 2016. a, b
Mielke-Maday, I., Schwietzke, S., Yacovitch, T. I., Miller, B., Conley, S.,
Kofler, J., Handley, P., Thorley, E., Herndon, S. C., Hall, B., Dlugokencky,
E., Lang, P., Wolter, S., Moglia, E., Crotwell, M., Crotwell, A., Rhodes, M.,
Kitzis, D., Vaughn, T., Bell, C., Zimmerle, D., Schnell, R., and Pétron, G.:
Methane source attribution in a U.S. dry gas basin using spatial patterns of
ground and airborne ethane and methane measurements, Elementa, 7, 13, https://doi.org/10.1525/elementa.351, 2019. a
Miller, D. J., Sun, K., Tao, L., Pan, D., Zondlo, M. A., Nowak, J. B., Liu, Z.,
Diskin, G., Sachse, G., Beyersdorf, A., Ferrare, R., and Scarino, A. J.:
Ammonia and methane dairy emission plumes in the San Joaquin Valley of
California from individual feedlot to regional scales, J. Geophys.
Res.-Atmos., 120, 9718–9738,
https://doi.org/10.1002/2015JD023241, 2015. a
Montes, F., Meinen, R., Dell, C., Rotz, A., Hristov, A. N., Oh, J., Waghorn,
G., Gerber, P. J., Henderson, B., Makkar, H. P., and Dijkstra, J.: SPECIAL
TOPICS-Mitigation of methane and nitrous oxide emissions from animal
operations: II. A review of manure management mitigation options, J. Anim.
Sci., 91, 5070–5094, https://doi.org/10.2527/jas.2013-6584, 2013. a
Moumen, A., Azizi, G., ChekrounK, B., and Baghour, M.: The effects of livestock
methane emission on the global warming: A review, Int. J. Global Warming, 9,
229–253, https://doi.org/10.1504/IJGW.2016.074956, 2016. a
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt,
J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B.,
Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhan, H., and Zhang,
H.: Anthropogenic and Natural Radiative Forcing: Supplementary Material,
Climate Change 2013: The Physical Science Basis, Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change: The Physical Science Basis. Contribution of Working Group I
to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., 1–44,
http://www.climatechange2013.org (last access: 4 September 2022), 2013. a
Nathan, B. J., Golston, L. M., Brien, A. S. O., Ross, K., Harrison, W. A., Tao,
L., Lary, D. J., Johnson, D. R., Covington, A. N., Clark, N. N., and Zondlo,
M. A.: Near-Field Characterization of Methane Emission Variability from a
Compressor Station Using a Model Aircraft, Environ. Sci. Technol.,
49, 7896–7903, https://doi.org/10.1021/acs.est.5b00705, 2015. a
Peischl, J., Ryerson, T. B., Aikin, K. C., Gouw, J. A., Gilman, J. B.,
Holloway, J. S., Lerner, B. M., Nadkarni, R., Neuman, J. A., Nowak, J. B.,
Trainer, M., Warneke, C., and Parrish, D. D.:
Quantifying Methane and Ethane Emissions to the Atmosphere From Central and Western U.S. Oil and Natural Gas Production Regions, J. Geophys. Res.,
120, 2119–2139, https://doi.org/10.1002/2014JD022697.Received, 2015. a, b, c, d
Peischl, J., Eilerman, S. J., Neuman, J. A., Aikin, K. C., de Gouw, J., Gilman,
J. B., Herndon, S. C., Nadkarni, R., Trainer, M., Warneke, C., and Ryerson,
T. B.: Quantifying Methane and Ethane Emissions to the Atmosphere From
Central and Western U.S. Oil and Natural Gas Production Regions, J. Geophys.
Res.-Atmos., 123, 7725–7740, https://doi.org/10.1029/2018JD028622, 2018. a, b, c
Picarro: G2401 Analyzer Datasheet,
https://www.picarro.com/support/library/documents/g2401_analyzer_datasheet (last access: 12 August 2022), 2023. a
Pollack, I. B., Lindaas, J., Roscioli, J. R., Agnese, M., Permar, W., Hu, L., and Fischer, E. V.: Evaluation of ambient ammonia measurements from a research aircraft using a closed-path QC-TILDAS operated with active continuous passivation, Atmos. Meas. Tech., 12, 3717–3742, https://doi.org/10.5194/amt-12-3717-2019, 2019. a, b, c
Pollack, I. B., McCabe, M. E., Caulton, D. R., and Fischer, E. V.:
Enhancements in Ammonia and Methane from Agricultural Sources in the
Northeastern Colorado Front Range Using Observations from a Small Research
Aircraft, Environ. Sci. Technol., 56, 2236–2247,
https://doi.org/10.1021/acs.est.1c07382, 2022. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Richardson, S. J., Miles, N. L., Davis, K. J., Crosson, E. R., Rella, C. W.,
and Andrews, A. E.: Field testing of cavity ring-down spectroscopy analyzers
measuring carbon dioxide and water vapor, J. Atmos. Ocean Tech., 29,
397–406, https://doi.org/10.1175/JTECH-D-11-00063.1, 2012. a
Roscioli, J. R., Zahniser, M. S., Nelson, D. D., Herndon, S. C., and Kolb,
C. E.: New Approaches to Measuring Sticky Molecules: Improvement of
Instrumental Response Times Using Active Passivation, J. Phys. Chem. A, 120,
1347–1357, https://doi.org/10.1021/acs.jpca.5b04395, 2015. a, b
Shonkwiler, K. B. and Ham, J. M.: Agr. Forest Meteorol. Ammonia emissions from
a beef feedlot: Comparison of inverse modeling techniques using long-path
and point measurements of fenceline NH3, Agr. Forest
Meteorol., 258, 29–42, https://doi.org/10.1016/j.agrformet.2017.10.031, 2017. a
Smith, C., Nicholls, Z., Armour, K., Collins, W., Forster, P., Meinshausen, M.,
Palmer, M., and Watanabe, M.: The Earth’s Energy Budget, Climate Feedbacks,
and Climate Sensitivity Supplementary Material, https://www.ipcc.ch/ (last access: 2 November 2021), 2021. a
Smith, M. L., Kort, E. A., Karion, A., Sweeney, C., Herndon, S. C., and
Yacovitch, T. I.: Airborne Ethane Observations in the Barnett Shale:
Quantification of Ethane Flux and Attribution of Methane Emissions, Environ.
Sci. Technol., 49, 8158–8166, https://doi.org/10.1021/acs.est.5b00219, 2015. a
Staebler, R. M., McGinn, S. M., Crenna, B. P., Flesch, T. K., Hayden, K. L.,
and Li, S. M.: Three-dimensional characterization of the ammonia plume from
a beef cattle feedlot, Atmos. Environ., 43, 6091–6099,
https://doi.org/10.1016/j.atmosenv.2009.08.045, 2009. a, b, c
Strauss, L., Serafin, S., Haimov, S., and Grubišić, V.: Turbulence in
breaking mountain waves and atmospheric rotors estimated from airborne in
situ and Doppler radar measurements, Q. J. Roy.
Meteor. Soc., 141, 3207–3225,
https://doi.org/10.1002/qj.2604, 2015. a
Townsend-Small, A. E., Botner, C., Jimenez, K. L., Schroeder, J. R., Blake,
N. J., Meinardi, S., Blake, D. R., Sive, B. C., Bon, D., Crawford, J. H.,
Pfist, G., and Frank, F. M.: Using stable isotopes of hydrogen to quantify
biogenic and thermogenic atmospheric methane sources: A case study from the
Colorado Front Range Amy, Geophys. Res. Lett., 31, 1–8,
https://doi.org/10.1002/2013GL058740.Received, 2016. a, b
United States Department of Agriculture [USDA]: Colorado Annual Bulletin
Colorado Agricultural Statistics, National Agricultural Statistics Service 1,
1–58, https://www.nass.usda.gov/Statistics_by_State/Colorado/Publications/Annual_Statistical_Bulletin/Bulletin2018.pdf (last access: 5 January 2021), 2018.
a
Yacovitch, T. I., Herndon, S. C., Roscioli, J. R., Floerchinger, C., McGovern,
R. M., Agnese, M., Pétron, G., Kofler, J., Sweeney, C., Karion, A.,
Conley, S. A., Kort, E. A., Nähle, L., Fischer, M., Hildebrandt, L.,
Koeth, J., McManus, J. B., Nelson, D. D., Zahniser, M. S., and Kolb, C. E.:
Demonstration of an Ethane Spectrometer for Methane Source Identification,
Environ. Sci. Technol., 48, 8028–8034, https://doi.org/10.1021/es501475q, 2014. a, b
Yacovitch, T. I., Daube, C., Vaughn, T. L., Bell, C. S., Roscioli, J. R.,
Knighton, W. B., Nelson, D. D., Zimmerle, D., Pétron, G., and Herndon,
S. C.: Natural gas facility methane emissions: measurements by tracer flux
ratio in two US natural gas producing basins, Elementa, 5, 69, https://doi.org/10.1525/elementa.251, 2017. a
Zimmerle, D., Duggan, G., Vaughn, T., Bell, C., Lute, C., Bennett, K., Kimura,
Y., Cardoso-Saldaña, F. J., and Allen, D. T.: Modeling air emissions
from complex facilities at detailed temporal and spatial resolution: The
Methane Emission Estimation Tool (MEET), Sci. Total Environ.,
824, 153653, https://doi.org/10.1016/j.scitotenv.2022.153653, 2022. a, b
Short summary
Agriculture emissions, including those from beef and dairy cattle feeding operations, make up a large portion of the United States’ total greenhouse gas emissions, but many of these operations reside in areas where methane from oil and natural gas is prevalent, making it difficult to attribute methane in these areas. This work investigates two approaches to emission attribution for cattle feeding operations and provides guidance for emission attribution in other complicated regions.
Agriculture emissions, including those from beef and dairy cattle feeding operations, make up a...
Altmetrics
Final-revised paper
Preprint