Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6559-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-6559-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Opposing trends of cloud coverage over land and ocean under global warming
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, Rehovot, 76100, Israel
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, Rehovot, 76100, Israel
Orit Altaratz
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, Rehovot, 76100, Israel
Mickaël D. Chekroun
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, Rehovot, 76100, Israel
Related authors
No articles found.
Huan Liu, Ilan Koren, Orit Altaratz, and Shutian Mu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2574, https://doi.org/10.5194/egusphere-2025-2574, 2025
Short summary
Short summary
Clouds play a crucial role in Earth's climate by reflecting sunlight and trapping heat. Understanding how clouds respond to global warming (cloud feedback) is essential for climate change. However, the natural climate variability, like ENSO, can distort these estimates. Relying on long-term reanalysis data and simulations, this study finds that ENSO with a typical periodicity of 2–7 years can introduce a significant bias on cloud feedback estimates on even decadal to century time scales.
Manuel Santos Gutiérrez, Mickaël David Chekroun, and Ilan Koren
EGUsphere, https://doi.org/10.48550/arXiv.2405.11545, https://doi.org/10.48550/arXiv.2405.11545, 2024
Preprint withdrawn
Short summary
Short summary
This letter explores a novel approach for the formation of cloud droplets in rising adiabatic air parcels. Our approach combines microphysical equations accounting for moisture, updrafts and concentration of aerosols. Our analysis reveals three regimes: A) Low moisture and high concentration can hinder activation; B) Droplets can activate and stabilize above critical sizes, and C) sparse clouds can have droplets exhibiting activation and deactivation cycles.
Elisa T. Sena, Ilan Koren, Orit Altaratz, and Alexander B. Kostinski
Atmos. Chem. Phys., 22, 16111–16122, https://doi.org/10.5194/acp-22-16111-2022, https://doi.org/10.5194/acp-22-16111-2022, 2022
Short summary
Short summary
We used record-breaking statistics together with spatial information to create record-breaking SST maps. The maps reveal warming patterns in the overwhelming majority of the ocean and coherent islands of cooling, where low records occur more frequently than high ones. Some of these cooling spots are well known; however, a surprising elliptical area in the Southern Ocean is observed as well. Similar analyses can be performed on other key climatological variables to explore their trend patterns.
Eshkol Eytan, Ilan Koren, Orit Altaratz, Mark Pinsky, and Alexander Khain
Atmos. Chem. Phys., 21, 16203–16217, https://doi.org/10.5194/acp-21-16203-2021, https://doi.org/10.5194/acp-21-16203-2021, 2021
Short summary
Short summary
Describing cloud mixing processes is among the most challenging fronts in cloud physics. Therefore, the adiabatic fraction (AF) that serves as a mixing measure is a valuable metric. We use high-resolution (10 m) simulations of single clouds with a passive tracer to test the skill of different methods used to derive AF. We highlight a method that is insensitive to the available cloud samples and allows considering microphysical effects on AF estimations in different environmental conditions.
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Short summary
A part of continental shallow convective cumulus (Cu) was shown to share properties such as organization and formation over vegetated areas, thus named green Cu. Mechanisms behind the formed patterns are not understood. We use different metrics and an empirical orthogonal function (EOF) to decompose the dataset and quantify organization factors (cloud streets and gravity waves). We show that clouds form a highly organized grid structure over hundreds of kilometers at the field lifetime.
Tom Dror, J. Michel Flores, Orit Altaratz, Guy Dagan, Zev Levin, Assaf Vardi, and Ilan Koren
Atmos. Chem. Phys., 20, 15297–15306, https://doi.org/10.5194/acp-20-15297-2020, https://doi.org/10.5194/acp-20-15297-2020, 2020
Short summary
Short summary
We used in situ aerosol measurements over the Atlantic, Caribbean, and Pacific to initialize a cloud model and study the impact of aerosol concentration and sizes on warm clouds. We show that high aerosol concentration increases cloud mass and reduces surface rain when giant particles (diameter > 9 µm) are present. The large aerosols changed the timing and magnitude of internal cloud processes and resulted in an enhanced evaporation below cloud base and dramatically reduced surface rain.
Cited articles
Aerenson, T., Marchand, R., Chepfer, H., and Medeiros, B.: When will MISR
detect rising high clouds?, J. Geophys. Res.-Atmos.,
127, 2021–035865, https://doi.org/10.1029/2021JD035865, 2022.
ajdawson: eofs, GitHub [code], https://github.com/ajdawson/eofs (last access: 15 January 2022), 2019.
Aleksandrova, M., Gulev, S. K., and Belyaev, K.: Probability distribution for
the visually observed fractional cloud cover over the ocean, J.
Climate, 31, 3207–3232, https://doi.org/10.1175/JCLI-D-17-0317.1, 2018
Baldwin, M. P., Stephenson, D. B., and Jolliffe, I. T.: Spatial weighting and
iterative projection methods for eofs, J. Climate, 22, 234–243,
https://doi.org/10.1175/2008JCLI2147.1, 2009.
Barker, H. W.: Representing cloud overlap with an effective decorrelation
length: An assessment using CloudSat and CALIPSO data, J.
Geophys. Res.-Atmos., 113, D24205, https://doi.org/10.1029/2008JD010391, 2008.
Bengtsson, L.: The global atmospheric water cycle, Environ. Res.
Lett., 5, 025202, https://doi.org/10.1088/1748-9326/5/2/025002, 2010.
Binder, H., Boettcher, M., Joos, H., Sprenger, M., and Wernli, H.: Vertical
cloud structure of warm conveyor belts–a comparison and evaluation of ERA5
reanalysis, CloudSat and CALIPSO data, Weather Clim. Dynam., 1,
577–595, https://doi.org/10.5194/wcd-1-577-2020, 2020.
Bintanja, R., van Oldenborgh, G. J., Drijfhout, S., Wouters, B., and Katsman,
C.: Important role for ocean warming and increased ice-shelf melt in
antarctic sea-ice expansion, Nat. Geosci., 6, 376–379,
https://doi.org/10.1038/ngeo1767, 2013.
Byrne, M. P. and O'Gorman, P. A.: Trends in continental temperature and
humidity directly linked to ocean warming, P. Natl.
Acad. Sci. USA, 115, 4863–4868, https://doi.org/10.1073/pnas.1722312115, 2018.
Ceppi, P., Brient, F., Zelinka, M. D., and Hartmann, D. L.: Cloud feedback
mechanisms and their representation in global climate models, Wiley
Interdisciplinary Reviews: Climate Change, 8, 465, https://doi.org/10.1002/wcc.465,
2017.
Chen, T., Rossow, W. B., and Zhang, Y.: Radiative effects of cloud-type
variations, J. Climate, 13, 264–286,
https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2, 2000.
Chepfer, H., Noel, V., Winker, D., and Chiriaco, M.: Where and when will we
observe cloud changes due to climate warming?, Geophys. Res. Lett.,
41, 8387–8395, https://doi.org/10.1002/2014GL061792, 2014.
Compo, G. P. and Sardeshmukh, P. D.: Removing ENSO-related variations from the
climate record, J. Climate, 23, 1957–1978,
https://doi.org/10.1175/2009JCLI2735.1, 2010.
Davey, M., Brookshaw, A., and Ineson, S.: The probability of the impact of
ENSO on precipitation and near-surface temperature, Clim. Risk Manage.,
1, 5–24, https://doi.org/10.1016/j.crm.2013.12.002, 2014.
Dawson, A.: Eofs: a library for eof analysis of meteorological,
oceanographic, and climate data, J. Open Res. Softw., 4, e14,
https://doi.org/10.5334/jors.122, 2016.
Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.: Sea surface
temperature variability: patterns and mechanisms, Annu. Rev. Mar. Sci, 2,
115–143, https://doi.org/10.1146/annurev-marine-120408-151453, 2010.
Dror, T., Chekroun, M. D., Altaratz, O., and Koren, I.: Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens , Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, 2021.
Dunkerton, T. J.: Observation of 3–6-day meridional wind oscillations over
the tropical pacific, 1973–1992: vertical structure and interannual
variability, J. Atmos. Sci., 50, 3292–3307,
https://doi.org/10.1175/1520-0469(1993)050<3292:OODMWO>2.0.CO;2, 1993.
Eastman, R., Warren, S. G., and Hahn, C. J.: Variations in cloud cover and
cloud types over the ocean from surface observations, 1954–2008, J.
Climate, 24, 5914–5934, https://doi.org/10.1175/2011JCLI3972.1, 2011.
Evan, A. T., Heidinger, A. K., and Vimont, D. J.: Arguments against a physical
long-term trend in global ISCCP cloud amounts, Geophys. Res. Lett.,
34, L04701, https://doi.org/10.1029/2006GL028083, 2007.
Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R., Barreiro
Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor,
S., Min, S., Morgenstern, O., and Sun, Y.: Human influence on the climate system, edited by: Masson-Delmotte, V., Zhai,
P., Pirani, A., Connors, S. L., Pean, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews,
J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., 423–552, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2021.
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame,
D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and
Zhang, H.: The Earth's energy budget, climate
feedbacks, and climate sensitivity, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,
Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang,
M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield,
T., Yelekci, O., Yu, R., and Zhou, B., 923–1054, Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 2021.
Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C., Angel,
W. E., Berry, D. I., Brohan, P., Eastman, R., Gates, L., and Gloeden, W.:
ICOADS Release 3.0: a major update to the historical marine climate record,
Int. J. Climatol., 37, 2211–2232,
https://doi.org/10.1002/joc.4775, 2017.
Gettelman, A. and Sherwood, S. C.: Processes responsible for cloud feedback,
Curr. Clim. Change Rep., 2, 179–189,
https://doi.org/10.1007/s40641-016-0052-8, 2016.
Glantz, M. H. and Ramirez, I. J.: Reviewing the oceanic Nino index (ONI) to
enhance societal readiness for El Nino's impacts, Int. J.
Disaster Risk Sci., 11, 394–403, https://doi.org/10.1007/s13753-020-00275-w,
2020.
Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M.,
Gerland, S., Gong, D., Kaufman, D. S., Nnamchi, H. C., Quaas, J., Rivera,
J. A., Sathyendranath, S., Smith, S. L., Trewin, B., von Schuckmann, K., and
Vose, R. S.: Changing state of the climate
system, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,
Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang,
M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield,
T., Yelekci, O., Yu, R., and Zhou, B., 287–422, Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2021.
Hahn, C. J. and Warren, S. G.: Extended edited synoptic cloud reports from
ships and land stations over the globe, 1952–1996, United States,
https://doi.org/10.2172/12532, 1999.
Hahn, C. J., Warren, S. G., and Eastman, R.: Cloud Climatology for Land
Stations Worldwide, 1971-2009 (NDP-026D) (No. NPD-026D), United States, https://doi.org/10.3334/CDIAC/cli.ndp026d, 2012.
Heede, U. K. and Fedorov, A. V.: Eastern equatorial pacific warming delayed by
aerosols and thermostat response to co2 increase, Nat. Clim. Change, 11,
696–703, https://doi.org/10.1038/s41558-021-01101-x, 2021.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A.,
Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskov, M., Keeley,
S., Laloyaus, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P. D., Rozum, I.,
Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global reanalysis.
Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J-N.: ERA5
monthly averaged data on single levels from 1940 to present. Copernicus
Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.f17050d7, 2023a.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J-N.: ERA5
monthly averaged data on pressure levels from 1940 to present. Copernicus
Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.6860a573, 2023b.
Heidinger, A. K., Foster, M. J., Walther, A., and Zhao, X. T.: The pathfinder
atmospheres–extended AVHRR climate dataset, B. Am.
Meteorol. Soc., 95, 909–922, https://doi.org/10.1175/BAMS-D-12-00246.1,
2014.
Hope, P., Henley, B. J., Gergis, J., Brown, J., and Ye, H.: Time-varying
spectral characteristics of ENSO over the last millennium, Clim. Dynam.,
49, 1705–1727, https://doi.org/10.1007/s00382-016-3393-z, 2017.
Houze Jr., R. A.: Cloud Dynamics, Academic press, Oxford UK, ISBN 978-0-12-374266-7, 1–432,
2014.
Hong, J. S., Yeh S. W., and Yang Y. M.: Interbasin interactions between the
Pacific and Atlantic Oceans depending on the phase of Pacific decadal
oscillation and Atlantic multidecadal oscillation, J. Climate, 35,
2883–2894, https://doi.org/10.1175/JCLI-D-21-0408.1, 2022.
Karlsson, K.-G. and Devasthale, A.: Inter-comparison and evaluation of the
four longest satellite-derived cloud climate data records: Clara-a2, esa
cloud cci v3, isccp-hgm, and patmos-x, Remote Sens., 10, 1567,
https://doi.org/10.3390/rs10101567, 2018.
Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olonscheck, D., and
Ghosh, R.: Multiple drivers of the north Atlantic warming hole, Nat.
Clim. Change, 10, 667–671, https://doi.org/10.1038/s41558-020-0819-8, 2020.
Koren, I., Feingold, G., and Remer, L. A.: The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact?, Atmos. Chem. Phys., 10, 8855–8872, https://doi.org/10.5194/acp-10-8855-2010, 2010.
Li, Y., Ge, J., Dong, Z., Hu, X., Yang, X., Wang, M., and Han, Z.:
Pairwise-rotated eofs of global cloud cover and their linkages to sea
surface temperature, Int. J. Climatol., 41, 2342–2359,
https://doi.org/10.1002/joc.6962, 2021.
Lorenz, E. N.: Empirical Orthogonal Functions and Statistical Weather
Prediction, Massachusetts Institute of Technology, Department of Meteorology
Cambridge, Cambridge Massachusetts, 1, 1–49,
1956.
Manaster, A., O'Dell, C. W., and Elsaesser, G.: Evaluation of cloud liquid
water path trends using a multidecadal record of passive microwave
observations, J. Climate, 30, 5871–5884,
https://doi.org/10.1175/JCLI-D-16-0399.1, 2017.
NASA: EarthData Search, MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG, NASA [data set], https://search.earthdata.nasa.gov/search?q=MYD08_D3 (last access: 9 May 2022), 2023.
Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F.-F., Wakata, Y., Yamagata,
T., and Zebiak, S. E.: ENSO theory, J. Geophys. Res.-Oceans,
103, 14261–14290, https://doi.org/10.1029/97JC03424, 1998.
NOAA: Description of Changes to Ocean Niño Index (ONI), Climate Prediction Center, National Weather Service, NOAA [data set], https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml (last access: 30 March 2023), 2017.
Norris, J. R. and Evan, A. T.: Empirical removal of artifacts from the isccp
and patmos-x satellite cloud records, J. Atmos. Ocean.
Technol., 32, 691–702, https://doi.org/10.1175/JTECH-D-14-00058.1, 2015.
Norris, J. R., Allen, R. J., Evan, A. T., Zelinka, M. D., O'Dell, C. W., and
Klein, S. A.: Evidence for climate change in the satellite cloud record,
Nature, 536, 72–75, https://doi.org/10.1038/nature18273, 2016.
Oki, T. and Kanae, S.: Global hydrological cycles and world water resources,
Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Platnick, S.: MODIS Atmosphere L3 Daily Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA, NASA Earch Data [data set], https://doi.org/10.5067/MODIS/MYD08_D3.061, 2015.
Preisendorfer, R. W. and Mobley, C. D.: Principal Component Analysis in Meteorology and Oceanography, Elsevier Science Publishers, AH Amsterdam, ISBN 0-444-43014-8, 17, 1-673, 1988.
Python: Python, version
3.7.0, Pyhton [code], https://www.python.org/ (last access: 2 November 2020), 2023.
Richman, M. B.: Rotation of principal components, J. Climatol., 6,
293–335, https://doi.org/10.1002/joc.3370060305, 1986.
Rossow, W. B. and Schiffer, R. A.: Advances in understanding clouds from
ISCCP, B. Am. Meteorol. Soc., 80, 2261–2287,
https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2, 1999.
Schnur, R., Schmitz, G., Grieger, N., and Von Storch, H.: Normal modes of
the atmosphere as estimated by principal oscillation patterns and derived
from quasigeostrophic theory, J. Atmos. Sci., 50,
2386–2400, https://doi.org/10.1175/1520-0469(1993)050<2386:NMOTAA>2.0.CO;2, 1993.
Serreze, M. C. and Barry, R. G.: Processes and impacts of arctic
amplification: a research synthesis, Global Planet. Change, 77,
85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Stengel, M., Stapelberg, S., Sus, O., Schlundt, C., Poulsen, C., Thomas, G., Christensen, M., Carbajal Henken, C., Preusker, R., Fischer, J., Devasthale, A., Willén, U., Karlsson, K.-G., McGarragh, G. R., Proud, S., Povey, A. C., Grainger, R. G., Meirink, J. F., Feofilov, A., Bennartz, R., Bojanowski, J. S., and Hollmann, R.: Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project, Earth Syst. Sci. Data, 9, 881–904, https://doi.org/10.5194/essd-9-881-2017, 2017.
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S.,
L'ecuyer, T., Stackhouse, P. W., Lebsock, M., and Andrews, T.: An update on
earth's energy balance in light of the latest global observations, Nat.
Geosci., 5, 691–696, https://doi.org/10.1038/ngeo1580, 2012.
Stevens, B. and Bony, S.: What are climate models missing?, Science, 340,
1053–1054, https://doi.org/10.1126/science.1237554, 2013.
Taschetto, A. S., Ummenhofer, C. C., Stuecker, M. F., Dommenget,
D., Ashok, K., Rodrigues, R. R., and Yeh, S. W.: ENSO Atmospheric Teleconnections, El Nino Southern Oscillation in a Changing Climate, Am, Geophys, Union, 309–335, https://doi.org/10.1002/9781119548164.ch14, 2020.
Warren, S. G., Eastman, R. M., and Hahn, C. J.: A survey of changes in cloud
cover and cloud types over land from surface observations, 1971–96, J.
Climate, 20, 717–738, https://doi.org/10.1175/JCLI4031.1, 2007.
Wells, D. E. and Krakiwsky, E. J.: The Method of Least Squares, Department of
Surveying Engineering, University of New Brunswick, Fredericton N.B., 18,
1971.
Wood, R.: Stratocumulus clouds, Mon. Weather Rev., 140, 2373–2423,
https://doi.org/10.1175/MWR-D-11-00121.1, 2012.
Yang, Y., Russell, L. M., Xu, L., Lou, S., Lamjiri, M. A., Somerville, R. C.,
Miller, A. J., Cayan, D. R., DeFlorio, M. J., Ghan, S. J., Liu, Y., Singh, B.,
Wang, H., Yoon, J.-H., and Rasch, P. J.: Impacts of ENSO events on cloud
radiative effects in preindustrial conditions: changes in cloud fraction and
their dependence on interactive aerosol emissions and concentrations.
J. Geophys. Res.-Atmos., 121, 6321–6335,
https://doi.org/10.1002/2015JD024503, 2016.
Yao, B., Teng, S., Lai, R., Xu, X., Yin, Y., Shi, C., and Liu, C.: Can
atmospheric reanalyses (CRA and ERA5) represent cloud spatiotemporal
characteristics?, Atmos. Res., 244, 105091,
https://doi.org/10.1016/j.atmosres.2020.105091, 2020.
Zelinka, M. D., Zhou, C., and Klein, S. A.: Insights from a refined decomposition
of cloud feedbacks, Geophys. Res. Lett., 43, 9259–9269,
https://doi.org/10.1002/2016GL069917, 2016.
Zelinka, M. D., Randall, D. A., Webb, M. J., and Klein, S. A.: Clearing clouds
of uncertainty, Nat. Clim. Change, 7, 674–678,
https://doi.org/10.1038/nclimate3402, 2017.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of higher climate
sensitivity in cmip6 models, Geophys. Res. Lett., 47, 2019–085782,
https://doi.org/10.1029/2019GL085782, 2020.
Zhou, C., Zelinka, M. D., and Klein, S. A.: Impact of decadal cloud variations
on the earth's energy budget, Nat. Geosci., 9, 871–874,
https://doi.org/10.1038/ngeo2828, 2016.
Short summary
Clouds' responses to global warming contribute the largest uncertainty in climate prediction. Here, we analyze 42 years of global cloud cover in reanalysis data and show a decreasing trend over most continents and an increasing trend over the tropical and subtropical oceans. A reduction in near-surface relative humidity can explain the decreasing trend in cloud cover over land. Our results suggest potential stress on the terrestrial water cycle, associated with global warming.
Clouds' responses to global warming contribute the largest uncertainty in climate prediction....
Altmetrics
Final-revised paper
Preprint