Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6559-2023
https://doi.org/10.5194/acp-23-6559-2023
Research article
 | 
15 Jun 2023
Research article |  | 15 Jun 2023

Opposing trends of cloud coverage over land and ocean under global warming

Huan Liu, Ilan Koren, Orit Altaratz, and Mickaël D. Chekroun

Related authors

Dynamical regimes of CCN activation in adiabatic air parcels
Manuel Santos Gutiérrez, Mickaël David Chekroun, and Ilan Koren
EGUsphere, https://doi.org/https://doi.org/10.48550/arXiv.2405.11545,https://doi.org/https://doi.org/10.48550/arXiv.2405.11545, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Record-breaking statistics detect islands of cooling in a sea of warming
Elisa T. Sena, Ilan Koren, Orit Altaratz, and Alexander B. Kostinski
Atmos. Chem. Phys., 22, 16111–16122, https://doi.org/10.5194/acp-22-16111-2022,https://doi.org/10.5194/acp-22-16111-2022, 2022
Short summary
Revisiting adiabatic fraction estimations in cumulus clouds: high-resolution simulations with a passive tracer
Eshkol Eytan, Ilan Koren, Orit Altaratz, Mark Pinsky, and Alexander Khain
Atmos. Chem. Phys., 21, 16203–16217, https://doi.org/10.5194/acp-21-16203-2021,https://doi.org/10.5194/acp-21-16203-2021, 2021
Short summary
Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021,https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Sensitivity of warm clouds to large particles in measured marine aerosol size distributions – a theoretical study
Tom Dror, J. Michel Flores, Orit Altaratz, Guy Dagan, Zev Levin, Assaf Vardi, and Ilan Koren
Atmos. Chem. Phys., 20, 15297–15306, https://doi.org/10.5194/acp-20-15297-2020,https://doi.org/10.5194/acp-20-15297-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024,https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Simulations of primary and secondary ice production during an Arctic mixed-phase cloud case from the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) campaign
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024,https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024,https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Effects of radiative cooling on advection fog over the northwest Pacific Ocean: observations and large-eddy simulations
Liu Yang, Saisai Ding, Jing-Wu Liu, and Su-Ping Zhang
Atmos. Chem. Phys., 24, 6809–6824, https://doi.org/10.5194/acp-24-6809-2024,https://doi.org/10.5194/acp-24-6809-2024, 2024
Short summary
Evaluating the Wegener–Bergeron–Findeisen process in ICON in large-eddy mode with in situ observations from the CLOUDLAB project
Nadja Omanovic, Sylvaine Ferrachat, Christopher Fuchs, Jan Henneberger, Anna J. Miller, Kevin Ohneiser, Fabiola Ramelli, Patric Seifert, Robert Spirig, Huiying Zhang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 6825–6844, https://doi.org/10.5194/acp-24-6825-2024,https://doi.org/10.5194/acp-24-6825-2024, 2024
Short summary

Cited articles

Aerenson, T., Marchand, R., Chepfer, H., and Medeiros, B.: When will MISR detect rising high clouds?, J. Geophys. Res.-Atmos., 127, 2021–035865, https://doi.org/10.1029/2021JD035865, 2022. 
ajdawson: eofs, GitHub [code], https://github.com/ajdawson/eofs (last access: 15 January 2022), 2019. 
Aleksandrova, M., Gulev, S. K., and Belyaev, K.: Probability distribution for the visually observed fractional cloud cover over the ocean, J. Climate, 31, 3207–3232, https://doi.org/10.1175/JCLI-D-17-0317.1, 2018 
Baldwin, M. P., Stephenson, D. B., and Jolliffe, I. T.: Spatial weighting and iterative projection methods for eofs, J. Climate, 22, 234–243, https://doi.org/10.1175/2008JCLI2147.1, 2009. 
Barker, H. W.: Representing cloud overlap with an effective decorrelation length: An assessment using CloudSat and CALIPSO data, J. Geophys. Res.-Atmos., 113, D24205, https://doi.org/10.1029/2008JD010391, 2008. 
Download
Short summary
Clouds' responses to global warming contribute the largest uncertainty in climate prediction. Here, we analyze 42 years of global cloud cover in reanalysis data and show a decreasing trend over most continents and an increasing trend over the tropical and subtropical oceans. A reduction in near-surface relative humidity can explain the decreasing trend in cloud cover over land. Our results suggest potential stress on the terrestrial water cycle, associated with global warming.
Altmetrics
Final-revised paper
Preprint