Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6559-2023
https://doi.org/10.5194/acp-23-6559-2023
Research article
 | 
15 Jun 2023
Research article |  | 15 Jun 2023

Opposing trends of cloud coverage over land and ocean under global warming

Huan Liu, Ilan Koren, Orit Altaratz, and Mickaël D. Chekroun

Related authors

Dynamical regimes of CCN activation in adiabatic air parcels
Manuel Santos Gutiérrez, Mickaël David Chekroun, and Ilan Koren
EGUsphere, https://doi.org/https://doi.org/10.48550/arXiv.2405.11545,https://doi.org/https://doi.org/10.48550/arXiv.2405.11545, 2024
Preprint withdrawn
Short summary
Record-breaking statistics detect islands of cooling in a sea of warming
Elisa T. Sena, Ilan Koren, Orit Altaratz, and Alexander B. Kostinski
Atmos. Chem. Phys., 22, 16111–16122, https://doi.org/10.5194/acp-22-16111-2022,https://doi.org/10.5194/acp-22-16111-2022, 2022
Short summary
Revisiting adiabatic fraction estimations in cumulus clouds: high-resolution simulations with a passive tracer
Eshkol Eytan, Ilan Koren, Orit Altaratz, Mark Pinsky, and Alexander Khain
Atmos. Chem. Phys., 21, 16203–16217, https://doi.org/10.5194/acp-21-16203-2021,https://doi.org/10.5194/acp-21-16203-2021, 2021
Short summary
Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021,https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Sensitivity of warm clouds to large particles in measured marine aerosol size distributions – a theoretical study
Tom Dror, J. Michel Flores, Orit Altaratz, Guy Dagan, Zev Levin, Assaf Vardi, and Ilan Koren
Atmos. Chem. Phys., 20, 15297–15306, https://doi.org/10.5194/acp-20-15297-2020,https://doi.org/10.5194/acp-20-15297-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024,https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024,https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024,https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024,https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Exploring aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean using the WRF-Chem–SBM model
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
Atmos. Chem. Phys., 24, 9101–9118, https://doi.org/10.5194/acp-24-9101-2024,https://doi.org/10.5194/acp-24-9101-2024, 2024
Short summary

Cited articles

Aerenson, T., Marchand, R., Chepfer, H., and Medeiros, B.: When will MISR detect rising high clouds?, J. Geophys. Res.-Atmos., 127, 2021–035865, https://doi.org/10.1029/2021JD035865, 2022. 
ajdawson: eofs, GitHub [code], https://github.com/ajdawson/eofs (last access: 15 January 2022), 2019. 
Aleksandrova, M., Gulev, S. K., and Belyaev, K.: Probability distribution for the visually observed fractional cloud cover over the ocean, J. Climate, 31, 3207–3232, https://doi.org/10.1175/JCLI-D-17-0317.1, 2018 
Baldwin, M. P., Stephenson, D. B., and Jolliffe, I. T.: Spatial weighting and iterative projection methods for eofs, J. Climate, 22, 234–243, https://doi.org/10.1175/2008JCLI2147.1, 2009. 
Barker, H. W.: Representing cloud overlap with an effective decorrelation length: An assessment using CloudSat and CALIPSO data, J. Geophys. Res.-Atmos., 113, D24205, https://doi.org/10.1029/2008JD010391, 2008. 
Download
Short summary
Clouds' responses to global warming contribute the largest uncertainty in climate prediction. Here, we analyze 42 years of global cloud cover in reanalysis data and show a decreasing trend over most continents and an increasing trend over the tropical and subtropical oceans. A reduction in near-surface relative humidity can explain the decreasing trend in cloud cover over land. Our results suggest potential stress on the terrestrial water cycle, associated with global warming.
Altmetrics
Final-revised paper
Preprint