Articles | Volume 23, issue 9
https://doi.org/10.5194/acp-23-5009-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-23-5009-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulated long-term evolution of the thermosphere during the Holocene – Part 1: Neutral density and temperature
Yihui Cai
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Xinan Yue
CORRESPONDING AUTHOR
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Zhipeng Ren
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Yongxin Pan
Key Laboratory of Earth and Planetary Physics, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100029, China
Beijing National Observatory of Space Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Related authors
Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 6383–6393, https://doi.org/10.5194/acp-23-6383-2023, https://doi.org/10.5194/acp-23-6383-2023, 2023
Short summary
Short summary
Secular variations in CO2 concentration and geomagnetic field can affect the dynamics of the upper atmosphere. We examine how these two factors influence the dynamics of the upper atmosphere during the Holocene, using two sets of ~ 12 000-year control runs by the coupled thermosphere–ionosphere model. The main results show that (a) increased CO2 enhances the thermospheric circulation, but non-linearly; and (b) geomagnetic variation induced a significant hemispheric asymmetrical effect.
Gang Chen, Yimeng Xu, Guotao Yang, Shaodong Zhang, Zhipeng Ren, Pengfei Hu, Tingting Yu, Fuju Wu, Lifang Du, Haoran Zheng, Xuewu Cheng, Faquan Li, and Min Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1888, https://doi.org/10.5194/egusphere-2025-1888, 2025
Short summary
Short summary
We usually believe that the impact of magnetic storms will not reach the mesosphere. However, in the storm on 4 Nov. 2021, the mesospheric metal layer depletion was recorded by three lidars for different metal components at mid-latitudes. The storm induced oxygen density enhancement is considered to consume more metal atoms in the metal layer. It implies that the effects of storm have reached mesosphere, and the influence of storm on metal layer is achieved through chemical processes.
Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 6383–6393, https://doi.org/10.5194/acp-23-6383-2023, https://doi.org/10.5194/acp-23-6383-2023, 2023
Short summary
Short summary
Secular variations in CO2 concentration and geomagnetic field can affect the dynamics of the upper atmosphere. We examine how these two factors influence the dynamics of the upper atmosphere during the Holocene, using two sets of ~ 12 000-year control runs by the coupled thermosphere–ionosphere model. The main results show that (a) increased CO2 enhances the thermospheric circulation, but non-linearly; and (b) geomagnetic variation induced a significant hemispheric asymmetrical effect.
Yungang Wang, Liping Fu, Fang Jiang, Xiuqing Hu, Chengbao Liu, Xiaoxin Zhang, Jiawei Li, Zhipeng Ren, Fei He, Lingfeng Sun, Ling Sun, Zhongdong Yang, Peng Zhang, Jingsong Wang, and Tian Mao
Atmos. Meas. Tech., 15, 1577–1586, https://doi.org/10.5194/amt-15-1577-2022, https://doi.org/10.5194/amt-15-1577-2022, 2022
Short summary
Short summary
Far-ultraviolet (FUV) airglow radiation is particularly well suited for space-based remote sensing. The Ionospheric Photometer (IPM) instrument carried aboard the Feng Yun 3-D satellite measures the spectral radiance of the Earth FUV airglow. IPM is a tiny, highly sensitive, and robust remote sensing instrument. Initial results demonstrate that the performance of IPM meets the designed requirement and therefore can be used to study the thermosphere and ionosphere in the future.
Mingzhe Li and Xinan Yue
Atmos. Meas. Tech., 14, 3003–3013, https://doi.org/10.5194/amt-14-3003-2021, https://doi.org/10.5194/amt-14-3003-2021, 2021
Short summary
Short summary
In this study, we statistically analyzed the correlation between the ionospheric irregularity and the quality of the GNSS atmospheric radio occultation (RO) products. The results show that the ionospheric irregularity could affect the GNSS atmospheric RO in terms of causing failed inverted RO events and the bending angle oscillation. Awareness of the ionospheric irregularity effect on RO could be beneficial to improve the RO data quality for weather and climate research.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Cited articles
A, E., Ridley, A. J., Zhang, D., and Xiao, Z.: Analyzing the hemispheric
asymmetry in the thermospheric density response to geomagnetic storms, J.
Geophys. Res.-Space Phys., 117, A08317, https://doi.org/10.1029/2011ja017259, 2012.
Afraimovich, E. L., Astafyeva, E. I., Oinats, A. V., Yasukevich, Yu. V., and Zhivetiev, I. V.: Global electron content: a new conception to track solar activity, Ann. Geophys., 26, 335–344, https://doi.org/10.5194/angeo-26-335-2008, 2008.
Akmaev, R. A. and Fomichev, V. I.: Cooling of the mesosphere and lower
thermosphere due to doubling of CO2, Ann. Geophys., 16, 1501–1512,
https://doi.org/10.1007/s00585-998-1501-z, 1998.
Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J.,
Baerenzung, J., Bondar, T. N., Brown, W. J., Califf, S., Chambodut, A.,
Chulliat, A., Cox, G. A., Finlay, C. C., Fournier, A., Gillet, N., Grayver,
A., Hammer, M. D., Holschneider, M., Huder, L., Hulot, G., Jager, T., Kloss,
C., Korte, M., Kuang, W., Kuvshinov, A., Langlais, B., Léger, J. M.,
Lesur, V., Livermore, P. W., Lowes, F. J., Macmillan, S., Magnes, W.,
Mandea, M., Marsal, S., Matzka, J., Metman, M. C., Minami, T., Morschhauser,
A., Mound, J. E., Nair, M., Nakano, S., Olsen, N., Pavón-Carrasco, F.
J., Petrov, V. G., Ropp, G., Rother, M., Sabaka, T. J., Sanchez, S.,
Saturnino, D., Schnepf, N. R., Shen, X., Stolle, C., Tangborn, A.,
Tøffner-Clausen, L., Toh, H., Torta, J. M., Varner, J., Vervelidou, F.,
Vigneron, P., Wardinski, I., Wicht, J., Woods, A., Yang, Y., Zeren, Z., and
Zhou, B.: International Geomagnetic Reference Field: the thirteenth
generation, Earth, Planets Space, 73, 49, https://doi.org/10.1186/s40623-020-01288-x, 2021.
Appleton, E. V.: Two Anomalies in the Ionosphere, Nature, 157, 691–691,
https://doi.org/10.1038/157691a0, 1946.
Aubert, J.: Geomagnetic forecasts driven by thermal wind dynamics in the
Earth's core, Geophys. J. Int., 203, 1738–1751,
https://doi.org/10.1093/gji/ggv394, 2015.
Balan, N., Liu, L., and Le, H.: A brief review of equatorial ionization
anomaly and ionospheric irregularities, Earth Planet. Phys., 2, 257–275,
https://doi.org/10.26464/epp2018025, 2018.
Cnossen, I.: The importance of geomagnetic field changes versus rising CO2
levels for long-term change in the upper atmosphere, J. Space Weather Space
Clim., 4, A18, https://doi.org/10.1051/swsc/2014016, 2014.
Cnossen, I.: A Realistic Projection of Climate Change in the Upper
Atmosphere Into the 21st Century, Geophys. Res. Lett., 49, e2022GL100693,
https://doi.org/10.1029/2022gl100693, 2022.
Cnossen, I. and Maute, A.: Simulated Trends in Ionosphere-Thermosphere
Climate Due to Predicted Main Magnetic Field Changes From 2015 to 2065, J.
Geophys. Res.-Space Phys., 125, e2019JA027738, https://doi.org/10.1029/2019ja027738, 2020.
Cnossen, I., Richmond, A. D., Wiltberger, M., Wang, W., and Schmitt, P.: The
response of the coupled magnetosphere-ionosphere-thermosphere system to a
25% reduction in the dipole moment of the Earth's magnetic field, J.
Geophys. Res.-Space Phys., 116, A12304, https://doi.org/10.1029/2011ja017063, 2011.
Cnossen, I., Richmond, A. D., and Wiltberger, M.: The dependence of the
coupled magnetosphere-ionosphere-thermosphere system on the Earth's magnetic
dipole moment, J. Geophys. Res.-Space Phys., 117, A05302, https://doi.org/10.1029/2012JA017555, 2012.
Constable, C., Korte, M., and Panovska, S.: Persistent high paleosecular
variation activity in southern hemisphere for at least 10 000 years, Earth
Planet. Sci. Lett., 453, 78–86, https://doi.org/10.1016/j.epsl.2016.08.015, 2016.
Dang, T., Li, X., Luo, B., Li, R., Zhang, B., Pham, K., Ren, D., Chen, X.,
Lei, J., and Wang, Y.: Unveiling the Space Weather During the Starlink
Satellites Destruction Event on 4 February 2022, Space Weather, 20,
e2022SW003152, https://doi.org/10.1029/2022sw003152, 2022.
EarthRef: EarthRef.org Digital Archive (ERDA), EarthRef [data set], https://earthref.org/ERDA/2207 (last access: 26 April 2023), 2023.
Eddy, J. A.: The Maunder Minimum, Science, 192, 1189–1202, https://doi.org/10.1126/science.192.4245.1189, 1976.
Emmert, J. T.: Altitude and solar activity dependence of 1967-2005
thermospheric density trends derived from orbital drag, J. Geophys. Res.-Space Phys., 120, 2940–2950, https://doi.org/10.1002/2015ja021047, 2015.
Emmert, J. T., Picone, J. M., Lean, J. L., and Knowles, S. H.: Global change
in the thermosphere: Compelling evidence of a secular decrease in density,
J. Geophys. Res.-Space Phys., 109, A02301, https://doi.org/10.1029/2003ja010176, 2004.
Emmert, J. T., Picone, J. M., and Meier, R. R.: Thermospheric global average
density trends, 1967–2007, derived from orbits of 5000 near-Earth objects,
Geophys. Res. Lett., 35, L05101, https://doi.org/10.1029/2007gl032809, 2008.
Förster, M. and Cnossen, I.: Upper atmosphere differences between
northern and southern high latitudes: The role of magnetic field asymmetry,
J. Geophys. Res.-Space Phys., 118, 5951–5966, https://doi.org/10.1002/jgra.50554, 2013.
Glassmeier, K.-H., Vogt, J., Stadelmann, A., and Buchert, S.: Concerning long-term geomagnetic variations and space climatology, Ann. Geophys., 22, 3669–3677, https://doi.org/10.5194/angeo-22-3669-2004, 2004.
Hedin, A. E. and Mayr, H. G.: Magnetic control of the near equatorial
neutral thermosphere, J. Geophys. Res., 78, 1688–1691, https://doi.org/10.1029/ja078i010p01688, 1973.
Heelis, R. A., Lowell, J. K., and Spiro, R. W.: A model of the high-latitude
ionospheric convection pattern, J. Geophys. Res.-Space Phys., 87,
6339–6345, https://doi.org/10.1029/JA087iA08p06339, 1982.
Hoyt, D. V. and Schatten, K. H.: Group Sunspot Numbers: A New Solar Activity
Reconstruction, Sol. Phys., 179, 189–219, https://doi.org/10.1023/A:1005007527816, 1998.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Core Writing Team, Pachauri, R. K. and Meyer, L. A.,
IPCC, Geneva, Switzerland, 151 pp., ISBN 978-92-9169-143-2, 2014.
Keating, G. M., Tolson, R. H., and Bradford, M. S.: Evidence of long term
global decline in the Earth's thermospheric densities apparently related to
anthropogenic effects, Geophys. Res. Lett., 27, 1523–1526, https://doi.org/10.1029/2000gl003771, 2000.
Keeling, C. D., Whorf, T. P., Wahlen, M., and Van Der Plichtt, J.:
Interannual extremes in the rate of rise of atmospheric carbon dioxide since
1980, Nature, 375, 666–670, https://doi.org/10.1038/375666a0,
1995.
Knipp, D. J., Tobiska, W. K., and Emery, B. A.: Direct and Indirect
Thermospheric Heating Sources for Solar Cycles 21–23, Sol. Phys., 224, 495,
https://doi.org/10.1007/s11207-005-6393-4, 2004.
Korte, M., Constable, C., Donadini, F., and Holme, R.: Reconstructing the
Holocene geomagnetic field, Earth Planet. Sci. Lett., 312, 497–505,
https://doi.org/10.1016/j.epsl.2011.10.031, 2011.
Laštovička, J.: Global pattern of trends in the upper atmosphere and
ionosphere: Recent progress, J. Atmos. Sol.-Terr. Phys., 71, 1514–1528,
https://doi.org/10.1016/j.jastp.2009.01.010, 2009.
Laštovička, J.: A review of recent progress in trends in the upper
atmosphere, J. Atmos. Sol.-Terr. Phys., 163, 2–13, https://doi.org/10.1016/j.jastp.2017.03.009, 2017.
Laštovička, J., Akmaev, R. A., Beig, G., Bremer, J., and Emmert, J.
T.: Global Change in the Upper Atmosphere, Science, 314, 1253–1254,
https://doi.org/10.1126/science.1135134, 2006.
Laštovička, J., Akmaev, R. A., Beig, G., Bremer, J., Emmert, J. T., Jacobi, C., Jarvis, M. J., Nedoluha, G., Portnyagin, Yu. I., and Ulich, T.: Emerging pattern of global change in the upper atmosphere and ionosphere, Ann. Geophys., 26, 1255–1268, https://doi.org/10.5194/angeo-26-1255-2008, 2008.
Laštovička, J., Solomon, S. C., and Qian, L.: Trends in the Neutral
and Ionized Upper Atmosphere, Space Sci. Rev., 168, 113–145, https://doi.org/10.1007/s11214-011-9799-3, 2012.
Lin, D., Wang, W., Garcia-Sage, K., Yue, J., Merkin, V., McInerney, J. M.,
Pham, K., and Sorathia, K.: Thermospheric Neutral Density Variation During
the “SpaceX” Storm: Implications From Physics-Based Whole Geospace
Modeling, Space Weather, 20, e2022SW003254, https://doi.org/10.1029/2022sw003254, 2022.
Liu, H., Lühr, H., Henize, V., and Köhler, W.: Global distribution
of the thermospheric total mass density derived from CHAMP, J. Geophys.
Res.-Space Phys., 110, A04301, https://doi.org/10.1029/2004ja010741, 2005.
Liu, H., Lühr, H., and Watanabe, S.: Climatology of the equatorial
thermospheric mass density anomaly, J. Geophys. Res.-Space Phys., 112,
A05305, https://doi.org/10.1029/2006ja012199, 2007.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650,000–800,000 years before present, Nature, 453, 379–382, https://doi.org/10.1038/nature06949, 2008.
Macfarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds,
R., Van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO2, CH4,
and N2O ice core records extended to 2,000 yr BP, Geophys. Res. Lett.,
33, L14810, https://doi.org/10.1029/2006gl026152, 2006.
Marcos, F. A., Wise, J. O., Kendra, M. J., Grossbard, N. J., and Bowman, B.
R.: Detection of a long-term decrease in thermospheric neutral density,
Geophys. Res. Lett., 32, L04103, https://doi.org/10.1029/2004gl021269, 2005.
NASA: Interface to produce plots, listings or output files from OMNI 2, OMNIWweb [data set], https://omniweb.gsfc.nasa.gov/form/dx1.html (last access: 26 April 2023), 2023.
NOAA: International Geomagnetic Reference Field, NOAA [data set], https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html (last access: 26 April 2023), 2019a.
NOAA: NOAA/WDS Paleoclimatology – AICC2012 800KYr Antarctic Ice Core Chronology, NOAA [data set], https://data.noaa.gov/dataset/dataset/noaa-wds-paleoclimatology (last access: 26 April 2023), 2019b.
NOAA: NOAA/WDS Paleoclimatology – Law Dome Ice Core 2000-Year CO2, CH4, and N2O Data, NOAA [data set], https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=noaa-icecore-9959 (last access: 26 April 2023), 2022.
NOAA: Trends in Atmospheric Carbon Dioxide, NOAA [data set], https://gml.noaa.gov/ccgg/trends/data.html (last access: 26 April 2023), 2023a.
NOAA: Sunspot Numbers, NOAA [data set], https://ngdc.noaa.gov/stp/solar/ssndata.html (last access: 26 April 2023), 2023b.
Qian, L. and Solomon, S. C.: Thermospheric Density: An Overview of Temporal
and Spatial Variations, Space Sci. Rev., 168, 147–173, https://doi.org/10.1007/s11214-011-9810-z, 2012.
Qian, L., Roble, R. G., Solomon, S. C., and Kane, T. J.: Calculated and
observed climate change in the thermosphere, and a prediction for solar
cycle 24, Geophys. Res. Lett., 33, L23705, https://doi.org/10.1029/2006gl027185, 2006.
Qian, L., Laštovička, J., Roble, R. G., and Solomon, S. C.: Progress
in observations and simulations of global change in the upper atmosphere, J.
Geophys. Res.-Space Phys., 116, A00H03, https://doi.org/10.1029/2010JA016317, 2011.
Qian, L., McInerney, J. M., Solomon, S. S., Liu, H., and Burns, A. G.:
Climate Changes in the Upper Atmosphere: Contributions by the Changing
Greenhouse Gas Concentrations and Earth's Magnetic Field From the 1960s to
2010s, J. Geophys. Res.-Space Phys., 126, e2020JA029067, https://doi.org/10.1029/2020ja029067, 2021.
Raghavarao, R., Wharton, L. E., Spencer, N. W., Mayr, H. G., and Brace, L.
H.: An equatorial temperature and wind anomaly (ETWA), Geophys. Res. Lett.,
18, 1193–1196, https://doi.org/10.1029/91gl01561, 1991.
Raghavarao, R., Hoegy, W. R., Spencer, N. W., and Wharton, L. E.: Neutral
temperature anomaly in the equatorial thermosphere-A source of vertical
winds, Geophys. Res. Lett., 20, 1023–1026, https://doi.org/10.1029/93gl01253, 1993.
Ren, Z., Wan, W., and Liu, L.: GCITEM-IGGCAS: A new global coupled
ionosphere–thermosphere-electrodynamics model, J. Atmos. Sol.-Terr. Phys.,
71, 2064–2076, https://doi.org/10.1016/j.jastp.2009.09.015,
2009.
Ren, Z., Wan, W., Xiong, J., and Liu, L.: Simulated wave number 4 structure
in equatorial F-region vertical plasma drifts, J. Geophys. Res.-Space Phys.,
115, A05301, https://doi.org/10.1029/2009ja014746, 2010.
Ren, Z., Wan, W., Liu, L., and Xiong, J.: Simulated longitudinal variations
in the lower thermospheric nitric oxide induced by nonmigrating tides, J.
Geophys. Res.-Space Phys., 116, A04301, https://doi.org/10.1029/2010ja016131, 2011.
Ren, Z., Wan, W., Xiong, J., and Li, X.: A Simulation of the Influence of
DE3 Tide on Nitric Oxide Infrared Cooling, J. Geophys. Res.-Space Phys.,
125, e2019JA027131, https://doi.org/10.1029/2019ja027131, 2020.
Richmond, A. D.: Ionospheric Electrodynamics Using Magnetic Apex
Coordinates, J. Geomagn. Geoelectr., 47, 191–212, https://doi.org/10.5636/jgg.47.191, 1995.
Roble, R. G. and Dickinson, R. E.: How will changes in carbon dioxide and
methane modify the mean structure of the mesosphere and thermosphere?,
Geophys. Res. Lett., 16, 1441–1444, https://doi.org/10.1029/GL016i012p01441, 1989.
Saunders, A., Lewis, H., and Swinerd, G.: Further evidence of long-term
thermospheric density change using a new method of satellite ballistic
coefficient estimation, J. Geophys. Res.-Space Phys., 116, A00H10,
https://doi.org/10.1029/2010ja016358, 2011.
Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., and Beer, J.:
Unusual activity of the Sun during recent decades compared to the previous
11,000 years, Nature, 431, 1084–1087, https://doi.org/10.1038/nature02995, 2004.
Solomon, S. C., Qian, L., and Roble, R. G.: New 3-D simulations of climate
change in the thermosphere, J. Geophys. Res.-Space Phys., 120, 2183–2193,
https://doi.org/10.1002/2014ja020886, 2015.
Solomon, S. C., Liu, H. L., Marsh, D. R., McInerney, J. M., Qian, L., and
Vitt, F. M.: Whole Atmosphere Simulation of Anthropogenic Climate Change,
Geophys. Res. Lett., 45, 1567–1576, https://doi.org/10.1002/2017gl076950, 2018.
Solomon, S. C., Liu, H. L., Marsh, D. R., McInerney, J. M., Qian, L., and
Vitt, F. M.: Whole Atmosphere Climate Change: Dependence on Solar Activity,
J. Geophys. Res.-Space Phys., 124, 3799–3809, https://doi.org/10.1029/2019ja026678, 2019.
Tapping, K. F.: The 10.7 cm solar radio flux (F10.7), Space Weather, 11,
394–406, https://doi.org/10.1002/swe.20064, 2013.
Tollefson, J.: IPCC climate report: Earth is warmer than it's been in
125,000 years, Nature, 596, 171–172, https://doi.org/10.1038/d41586-021-02179-1, 2021.
Usoskin, I. G., Solanki, S. K., and Kovaltsov, G. A.: Grand minima and
maxima of solar activity: New observational constraints, Astron. Astrophys.,
471, 301–309, https://doi.org/10.1051/0004-6361:20077704, 2007.
Wang, H., Zhang, J., Lühr, H., and Wei, Y.: Longitudinal modulation of
electron and mass densities at middle and auroral latitudes: Effect of
geomagnetic field strength, J. Geophys. Res.-Space Phys., 122, 6595–6610,
https://doi.org/10.1002/2016JA023829, 2017.
Weimer, D. R.: A flexible, IMF dependent model of high-latitude electric
potentials having “Space Weather” applications, Geophys. Res. Lett., 23,
2549–2552, https://doi.org/10.1029/96gl02255, 1996.
Yue, X., Cai, Y., Ren, Z., Zhou, X., Wei, Y., and Pan, Y.: Simulated
Long-Term Evolution of the Ionosphere During the Holocene, J. Geophys. Res.-Space Phys., 127, e2022JA031042, https://doi.org/10.1029/2022ja031042, 2022.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J.,
Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I.,
Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global
glacier mass changes and their contributions to sea-level rise from 1961 to
2016, Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019.
Zhou, X., Yue, X., Ren, Z., Liu, Y., Cai, Y., Ding, F., and Wei, Y.: Impact
of Anthropogenic Emission Changes on the Occurrence of Equatorial Plasma
Bubbles, Geophys. Res. Lett., 49, e2021GL09735, https://doi.org/10.1029/2021gl097354, 2022.
Zossi, B., Fagre, M., Amit, H., and Elias, A. G.: Geomagnetic Field Model
Indicates Shrinking Northern Auroral Oval, J. Geophys. Res.-Space Phys.,
125, https://doi.org/10.1029/2019ja027434, 2020.
Short summary
On timescales longer than the solar cycle, secular changes in CO2 concentration and geomagnetic field play a key role in influencing the thermosphere. We performed four sets of ~12000-year control runs with the coupled thermosphere–ionosphere model to examine the effects of the geomagnetic field, CO2, and solar activity on thermospheric density and temperature, deepening our understanding of long-term changes in the thermosphere and making projections for future thermospheric changes.
On timescales longer than the solar cycle, secular changes in CO2 concentration and geomagnetic...
Special issue
Altmetrics
Final-revised paper
Preprint