Articles | Volume 23, issue 9
https://doi.org/10.5194/acp-23-5009-2023
https://doi.org/10.5194/acp-23-5009-2023
Research article
 | 
04 May 2023
Research article |  | 04 May 2023

Simulated long-term evolution of the thermosphere during the Holocene – Part 1: Neutral density and temperature

Yihui Cai, Xinan Yue, Xu Zhou, Zhipeng Ren, Yong Wei, and Yongxin Pan

Related authors

Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides
Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 6383–6393, https://doi.org/10.5194/acp-23-6383-2023,https://doi.org/10.5194/acp-23-6383-2023, 2023
Short summary

Cited articles

A, E., Ridley, A. J., Zhang, D., and Xiao, Z.: Analyzing the hemispheric asymmetry in the thermospheric density response to geomagnetic storms, J. Geophys. Res.-Space Phys., 117, A08317, https://doi.org/10.1029/2011ja017259, 2012. 
Afraimovich, E. L., Astafyeva, E. I., Oinats, A. V., Yasukevich, Yu. V., and Zhivetiev, I. V.: Global electron content: a new conception to track solar activity, Ann. Geophys., 26, 335–344, https://doi.org/10.5194/angeo-26-335-2008, 2008. 
Akmaev, R. A. and Fomichev, V. I.: Cooling of the mesosphere and lower thermosphere due to doubling of CO2, Ann. Geophys., 16, 1501–1512, https://doi.org/10.1007/s00585-998-1501-z, 1998. 
Appleton, E. V.: Two Anomalies in the Ionosphere, Nature, 157, 691–691, https://doi.org/10.1038/157691a0, 1946. 
Short summary
On timescales longer than the solar cycle, secular changes in CO2 concentration and geomagnetic field play a key role in influencing the thermosphere. We performed four sets of ~12000-year control runs with the coupled thermosphere–ionosphere model to examine the effects of the geomagnetic field, CO2, and solar activity on thermospheric density and temperature, deepening our understanding of long-term changes in the thermosphere and making projections for future thermospheric changes.
Share
Altmetrics
Final-revised paper
Preprint