Articles | Volume 23, issue 9
https://doi.org/10.5194/acp-23-5009-2023
https://doi.org/10.5194/acp-23-5009-2023
Research article
 | 
04 May 2023
Research article |  | 04 May 2023

Simulated long-term evolution of the thermosphere during the Holocene – Part 1: Neutral density and temperature

Yihui Cai, Xinan Yue, Xu Zhou, Zhipeng Ren, Yong Wei, and Yongxin Pan

Related authors

Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides
Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 6383–6393, https://doi.org/10.5194/acp-23-6383-2023,https://doi.org/10.5194/acp-23-6383-2023, 2023
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
Atmos. Chem. Phys., 23, 7001–7014, https://doi.org/10.5194/acp-23-7001-2023,https://doi.org/10.5194/acp-23-7001-2023, 2023
Short summary
Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides
Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 6383–6393, https://doi.org/10.5194/acp-23-6383-2023,https://doi.org/10.5194/acp-23-6383-2023, 2023
Short summary
Numerical modelling of relative contribution of planetary waves to the atmospheric circulation
Andrey V. Koval, Olga N. Toptunova, Maxim A. Motsakov, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, and Eugene V. Rozanov
Atmos. Chem. Phys., 23, 4105–4114, https://doi.org/10.5194/acp-23-4105-2023,https://doi.org/10.5194/acp-23-4105-2023, 2023
Short summary
Decay times of atmospheric acoustic–gravity waves after deactivation of wave forcing
Nikolai M. Gavrilov, Sergey P. Kshevetskii, and Andrey V. Koval
Atmos. Chem. Phys., 22, 13713–13724, https://doi.org/10.5194/acp-22-13713-2022,https://doi.org/10.5194/acp-22-13713-2022, 2022
Short summary
Suppressed migrating diurnal tides in the mesosphere and lower thermosphere region during El Niño in northern winter and its possible mechanism
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874, https://doi.org/10.5194/acp-22-7861-2022,https://doi.org/10.5194/acp-22-7861-2022, 2022
Short summary

Cited articles

A, E., Ridley, A. J., Zhang, D., and Xiao, Z.: Analyzing the hemispheric asymmetry in the thermospheric density response to geomagnetic storms, J. Geophys. Res.-Space Phys., 117, A08317, https://doi.org/10.1029/2011ja017259, 2012. 
Afraimovich, E. L., Astafyeva, E. I., Oinats, A. V., Yasukevich, Yu. V., and Zhivetiev, I. V.: Global electron content: a new conception to track solar activity, Ann. Geophys., 26, 335–344, https://doi.org/10.5194/angeo-26-335-2008, 2008. 
Akmaev, R. A. and Fomichev, V. I.: Cooling of the mesosphere and lower thermosphere due to doubling of CO2, Ann. Geophys., 16, 1501–1512, https://doi.org/10.1007/s00585-998-1501-z, 1998. 
Appleton, E. V.: Two Anomalies in the Ionosphere, Nature, 157, 691–691, https://doi.org/10.1038/157691a0, 1946. 
Short summary
On timescales longer than the solar cycle, secular changes in CO2 concentration and geomagnetic field play a key role in influencing the thermosphere. We performed four sets of ~12000-year control runs with the coupled thermosphere–ionosphere model to examine the effects of the geomagnetic field, CO2, and solar activity on thermospheric density and temperature, deepening our understanding of long-term changes in the thermosphere and making projections for future thermospheric changes.
Altmetrics
Final-revised paper
Preprint