Articles | Volume 23, issue 7
https://doi.org/10.5194/acp-23-4283-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4283-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic
School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA
School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA
Connor J. Flynn
School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA
Yohei Shinozuka
NASA Ames Research Center, Moffett Field, California, USA
Bay Area Environmental Research Institute, Moffett Field, California,
USA
Sarah J. Doherty
Cooperative Institute for Climate, Ocean and Ecosystem Studies,
University of Washington, Seattle, Washington, USA
Department of Atmospheric Science, University of Washington, Seattle,
Washington, USA
Michael S. Diamond
Department of Earth, Ocean, and Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Karla M. Longo
National Institute for Space Research, São José dos Campos,
Brazil
Gonzalo A. Ferrada
Center for Global and Regional Environmental Research, University of
Iowa, Iowa City, Iowa, USA
Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
Gregory R. Carmichael
Center for Global and Regional Environmental Research, University of
Iowa, Iowa City, Iowa, USA
Patricia Castellanos
Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Arlindo M. da Silva
Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Pablo E. Saide
Institute of the Environment and Sustainability, University of
California, Los Angeles, Los Angeles, California, USA
Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, Los Angeles, California, USA
Calvin Howes
Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, Los Angeles, California, USA
Zhixin Xue
Department of Atmospheric and Earth Science, University of Alabama in
Huntsville, Huntsville, Alabama, USA
Center for Global and Regional Environmental Research, University of
Iowa, Iowa City, Iowa, USA
Marc Mallet
Centre National de Recherches Météorologiques, UMR3589,
Météo-France-CNRS, Toulouse, France
Ravi Govindaraju
Science Systems and Applications, Inc., Greenbelt, Maryland, USA
Qiaoqiao Wang
Institute for Environmental and Climate Research, Jinan University,
510632 Guangzhou, China
Yafang Cheng
Minerva Research Group, Max Planck Institute for Chemistry, 55128
Mainz, Germany
Environmental Science Division, Argonne National Laboratory, Argonne,
Illinois, USA
Sharon P. Burton
NASA Langley Research Center, Hampton, Virginia, USA
Richard A. Ferrare
NASA Langley Research Center, Hampton, Virginia, USA
Samuel E. LeBlanc
NASA Ames Research Center, Moffett Field, California, USA
Bay Area Environmental Research Institute, Moffett Field, California,
USA
Meloë S. Kacenelenbogen
Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Kristina Pistone
Bay Area Environmental Research Institute, Moffett Field, California,
USA
NASA Ames Research Center, Moffett Field, California, USA
Michal Segal-Rozenhaimer
NASA Ames Research Center, Moffett Field, California, USA
Bay Area Environmental Research Institute, Moffett Field, California,
USA
Department of Geophysics, Porter School of the Environment and Earth
Sciences, Tel-Aviv University, Tel-Aviv, Israel
Kerry G. Meyer
Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Ju-Mee Ryoo
NASA Ames Research Center, Moffett Field, California, USA
Science and Technology Corporation (STC), Moffett Field, California, USA
Leonhard Pfister
NASA Ames Research Center, Moffett Field, California, USA
Adeyemi A. Adebiyi
Department of Life and Environmental Sciences, University of
California, Merced, Merced, California, USA
Robert Wood
Department of Atmospheric Science, University of Washington, Seattle,
Washington, USA
Paquita Zuidema
Rosenstiel School of Marine, Atmospheric, and Earth Science,
University of Miami, Miami, Florida, USA
Sundar A. Christopher
Department of Atmospheric and Earth Science, University of Alabama in
Huntsville, Huntsville, Alabama, USA
Jens Redemann
School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA
Data sets
Suite of Aerosol, Cloud, and Related Data Acquired Aboard ER2 During ORACLES 2016, Version 3 ORACLES Science Team https://doi.org/10.5067/Suborbital/ORACLES/ER2/2016_V3
Suite of Aerosol, Cloud, and Related Data Acquired Aboard P3 During ORACLES 2016, Version 3 ORACLES Science Team https://doi.org/10.5067/Suborbital/ORACLES/P3/2016_V3
Suite of Aerosol, Cloud, and Related Data Acquired Aboard P3 During ORACLES 2017, Version 3 ORACLES Science Team https://doi.org/10.5067/Suborbital/ORACLES/P3/2017_V3
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic...
Altmetrics
Final-revised paper
Preprint