Articles | Volume 23, issue 1
https://doi.org/10.5194/acp-23-375-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data
Related authors
Related subject area
Subject: Aerosols | Research Activity: Machine Learning | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Reduction in vehicular emissions attributable to the Covid-19 lockdown in Shanghai: insights from 5 years of monitoring-based machine learning
Atmos. Chem. Phys., 23, 10313–10324,
2023Cited articles
Bei, N., Li, G., Huang, R.-J., Cao, J., Meng, N., Feng, T., Liu, S., Zhang,
T., Zhang, Q., and Molina, L. T.: Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong basin, China, Atmos. Chem. Phys., 16, 7373–7387, https://doi.org/10.5194/acp-16-7373-2016, 2016.
Chen, Z. H., Cheng, S. Y., Li, J. B., Guo, X. R., Wang, W. H., and Chen, D.
S.: Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China, Atmos. Environ., 42, 6078–6087, https://doi.org/10.1016/j.atmosenv.2008.03.043, 2008.
Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y.: On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, arXiv [preprint], arXiv:1409.1259, https://doi.org/10.48550/arXiv.1409.1259, 2014.
Feng, J.: Data for “Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data”, Zenodo [data set], https://doi.org/10.5281/zenodo.6982879, 2022a.
Feng, J.: Animation for “Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data”, Zenodo [video/audio], https://doi.org/10.5281/zenodo.6982971, 2022b.