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Abstract. The estimation of daily variations in aerosol concentrations using meteorological data is meaningful
and challenging, given the need for accurate air quality forecasts and assessments. In this study, a 3× 50-layer
spatiotemporal deep learning (DL) model is proposed to link synoptic variations in aerosol concentrations and
meteorology, thereby building a “deep” Weather Index for Aerosols (deepWIA). The model was trained and
validated using 7 years of data and tested in January–April 2022. The index successfully reproduced the variation
in daily PM2.5 observations in China. The coefficient of determination between PM2.5 concentrations calculated
from the index and observation was 0.72, with a root mean square error (RMSE) of 16.5 µg m−3. The DeepWIA
performed better than Weather Forecast and Research (WRF)-Chem simulations for eight aerosol-polluted cities
in China. The simulating power of the model also outperformed commonly used PM2.5 concentration retrieval
models based on random forest (RF), extreme gradient boost (XGB), and multilayer perceptron (MLP). The
index and the DL model can be used as robust tools for estimating daily variations in aerosol concentrations.

1 Introduction

Meteorology and emissions drive variations in aerosol con-
centrations, with the latter strongly modulating seasonal-
ity and long-term trends (Q. Zhang et al., 2019; Wang et
al., 2011) but remaining stable at synoptic scales, exclud-
ing unexpected events such as volcanic activity and emer-
gency lockdowns. Meteorology dominates synoptic scale
(i.e., high-frequency) variations in aerosol concentrations
(Bei et al., 2016; Zheng et al., 2015; Leung et al., 2018) and
regulates aerosol physicochemical processes including their
generation, diffusion, transport, and deposition (Feng et al.,
2016), thus synchronizing periodic accumulation–removal of
aerosol pollution with activities of synoptic systems (Chen et
al., 2008; Guo et al., 2014).

Air quality forecasts and emission-reduction evaluations
require the estimation of aerosol concentrations and their
variations from meteorological data. The strong impacts of
meteorology on physicochemical processes make such esti-

mation possible. Chemical transport models (CTMs) can be
used as a tool for this purpose. Given an emission inventory,
CTMs aim to detail the physicochemical processes and sim-
ulate variations in aerosol concentrations over all timescales.
The CTM-based simulations provide information on inter-
mediate processes, allowing convenient analysis of mech-
anisms of aerosol pollution. However, uncertainties in pa-
rameterization and emission inventories lead to significant
estimation errors in aerosol concentrations (Zhong et al.,
2016; Zhang et al., 2016, 2018). Taking the commonly used
Weather Forecast and Research (WRF)-Chem model as an
example, Sicard et al. (2021) reported a Pearson correlation
coefficient of 0.44 (equivalent to a coefficient of determina-
tion (R2) of ∼ 0.2) between simulated and observed daily
surface PM2.5 (particle matter of diameter < 2.5 µm) concen-
trations in China, based on a resolution simulation of 8 km
in 2015. Another WRF-Chem simulation over 2014–2015
gave a better R2 value of 0.44 for a smaller WRF-Chem sim-
ulation domain over 131 cities in eastern China (Zhou et al.,
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2017). In addition, the complexity of CTMs requires large
computational resources.

Data-based models provide another estimation tool, us-
ing historical datasets to establish empirical or semiempiri-
cal models linking meteorology and aerosol concentrations
without a description of intermediate processes. A data-
based model requires negligible computational resources
compared with CTMs. In China, two semiempirical meteo-
rological indices are used for daily variations in aerosol con-
centrations, the Parameter Linking Air quality to Meteoro-
logical conditions (PLAM; Yang et al., 2016) and Air Stag-
nation Index (ASI; Feng et al., 2018, 2020b). Both indices
include an extra “background factor” describing the effects
of slowly changing emissions and regional differences. How-
ever, the weak nonlinear fitting power of these meteorologi-
cal indices makes it difficult to beat CTMs for daily aerosol
concentration estimation. In addition, such simple meteoro-
logical indices cannot be applied to a large region such as the
whole of China (Sect. 4).

As machine learning (ML) and deep learning (DL) are ap-
proaches to promoting the nonlinear fitting power of data-
based models, it is possible to establish an ML/DL model
for variations in aerosol concentrations. The ML/DL-based
observation retrieval for PM2.5 concentration has become
very popular (Yuan et al., 2020). Estimations in such stud-
ies use satellite-based aerosol optical depth (AOD; Wei et
al., 2019a, 2020; Geng et al., 2021; Li et al., 2020) or surface
visibility observations (Zhong et al., 2021; Gui et al., 2020)
as “primary” data and meteorological variables and other
quasistatic data (e.g., topography, population, emissions) as
“auxiliary” data, with these being fed into a generic ML/DL
model to estimate PM2.5 concentrations. Commonly used
models include random forest (RF; Wei et al., 2019a; Geng
et al., 2021), extreme gradient boost (XGB; Gui et al., 2020),
and multilayer perceptron (MLP; Li et al., 2020) methods,
applied individually or together (Song et al., 2021). Com-
pared with CTM simulations and meteorological indices,
the injection of observation data improves the estimation of
PM2.5 concentrations and its variations. In turn, the popular-
ity of these studies indicates that using only meteorological
data as primary data for aerosol concentrations is a challeng-
ing task, even with ML/DL.

To address this issue, two key points should be consid-
ered in model design. First, the model should focus only
on the synoptic-scale variability of aerosols, as meteorol-
ogy is not a predominant factor in the low-frequency vari-
ability of aerosol concentrations. Indeed, the direct fitting of
aerosol concentrations misinterprets the relationship between
meteorology and aerosols, possibly leading to an overfit-
ting ML/DL model. Second, the model should include more
spatiotemporal meteorological features and a more powerful
nonlinear capability to cover the complex characteristics of
aerosol variations over large regions such as China than pre-
vious linear and DL/ML models.

Therefore, here we propose a spatiotemporal deep neu-
ral network linking daily averaged meteorological fields and
aerosol concentrations in China. Rather than fitting PM2.5
concentrations, the DL model focuses on capturing their syn-
optic variations. In the DL model, daily averaged meteoro-
logical variables over 3 d and quasistatic data (as the input
variables) are fused to provide a daily deep Weather Index
for Aerosols (as the model output), termed “deepWIA” (the
model is named “deepWIA model”). Compared with CTM-
based and other data-based estimations reported in previous
studies, the model efficiently reduces the estimation error in
PM2.5 concentrations over China with no significant overfit-
ting, as often occurs in previous ML-based models.

The rest of this paper is organized as follows. Section 2 de-
scribes the deepWIA model, training data, methods of feature
engineering (i.e., preprocessing to generate input variables),
and results with training–validation datasets. Section 3 fo-
cuses on the performance of the model using a test dataset,
with a comparison with a WRF-Chem simulation in eight
heavily polluted cities. Section 4 gives a comparison with re-
lated studies. We also undertook several ablation experiments
to illustrate possible reasons for the strong performance of
the deepWIA model. Section 5 provides the geographic dis-
tribution of synoptic variations in aerosol pollution over the
test period. Section 6 concludes the study.

2 DeepWIA model

2.1 Input variables

Input variables of the deepWIA model includes daily aver-
aged meteorological variables from the fifth-generation
European Centre for Medium-range Weather Fore-
casts (ECMWF) reanalysis data (ERA5), with a horizontal
resolution of 0.25◦× 0.25◦. Since a trained DL model can
automatically select the input variables to compose the best
model that fits the target variable (PM2.5 concentrations)
with activation functions, the task for feature engineering is
to feed the DL model with as many variables as possible that
are related to the day-to-day variation of PM2.5 concentra-
tions. These input variables (Table 1) can be classified into
four categories as follows.

Basic meteorological variables near the surface. We use
10 m altitude wind components, 2 m temperature, surface
pressure, surface downward short-wave radiation, and total
precipitation, which are frequently used as input variables in
ML/DL-based studies of PM2.5 retrieval (Geng et al., 2021;
Wei et al., 2020; Gui et al., 2020; Li et al., 2020). In addition,
we introduce 100 m wind components and surface turbulent
stress, as they are related to horizontal and vertical diffusion
in the planetary boundary layer (PBL), respectively.

Meteorological fields in the upper air include geopotential
height and temperature at 850 hPa. We introduce these two
variables for the deepWIA model in learning the effects of
synoptic patterns on aerosol variations.
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Table 1. The input variables and their corresponding categories, references and importance ranking in the deepWIA model.

Variable name Category References Importance
ranking

10 m wind components Surface, basic 12
2 m temperature Surface, basic Geng et al. (2021), Wei 6
Surface pressure Surface, basic et al. (2020), Gui et al. 7
2 m mixing ratio Surface, basic (2020); Li et al. (2020) 2
Precipitation Surface, basic 21

100 m wind components Surface, basic Newly introduced 9

Downward short-wave radiation Surface, basic
Geng et al. (2021) 17

Low cloud cover Surface, basic

Surface turbulence stress components Surface, basic
Jia and Zhang (2020)

4
Yin et al. (2019)

Geopotential height at 850 hPa Upper air Miao et al. (2020) 21
Temperature at 850 hPa Upper air Hou et al. (2018) 12

2 m potential temperature Derived
Yang et al. (2016)

15
2 m wet-equivalent potential temperature Derived 15

Ventilation potency Derived
Feng et al. (2018, 2020b)

21
Vertical diffusion potency Derived 9
Wet deposition potency Derived 24

Max. 2 m temperature Derived
Porter et al. (2015)

4
Max. 100 m wind speed Derived 12
Max. and min. low troposphere stability Derived 9

Population density Quasistatic
Geng et al. (2021), Wei

3et al. (2020), Li et al.
(2020)

High vegetation cover Quasistatic
Wei et al. (2019a), Li et

17al. (2020) (use
vegetation index)

Surface altitude Quasistatic Geng et al. (2021) 7
Latitude and longitude Spatiotemporal Gui et al. (2020) 1

Day of year Spatiotemporal Newly introduced 17

Derived input variables referring to previous studies of
aerosol concentration–meteorology relationships. Our model
contains potential temperature and wet-equivalent potential
temperature derived from PLAM, as they can identify the
types of aerosol-related air masses controlling the local area
(Yang et al., 2016). In addition, we introduce three kernel pa-
rameters of ASI, including ventilation potency, vertical diffu-
sion potency, and wet deposition potency of aerosols (Feng
et al., 2018). The ventilation potency illustrates the effects
of wind speed in local PBL, which are simply represented
by the nonlinear function of the height-weighted average of
wind speed over the PBL; vertical diffusion potency is repre-
sented by the inverse of PBL height, which roughly presents
the vertical diffusion range of aerosols due to turbulence; and
wet deposition potency illustrates a significant decrease in
the aerosol concentrations due to precipitation. The values

of 0 and e correspond to precipitation greater than or equal
to and less than 3 mm d−1, respectively. All the formulae for
these variables derived from ASI are given in the Supplement
(Eqs. S1–S3l). Moreover, referring to Porter et al. (2015),
we use the daily maxima and minima of low-troposphere
stability (i.e., the potential temperature difference between
700 hPa and the surface) and daily maxima of 2 m tempera-
ture and of 100 m wind speed.

Quasistatic and spatiotemporal variables (non-
meteorological variables) include population density,
surface altitude, and surface high vegetation cover, which
are also commonly used in PM2.5 observation retrieval.
The population density is regridded from the Gridded
Population of the World (GPW) version 4 dataset at an
original resolution of 1 km. Surface altitude and surface
high vegetation cover are from the ERA5 datasets. These
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Figure 1. Probability density functions of (a) observed PM2.5 concentrations (C, orange line) and background concentrations (B, blue line),
(b) r

(
C
B

)
, and (c) r̂ (deepWIA target variable).

variables as well as latitude and longitude (Gui et al., 2020;
Zhong et al., 2021) aid learning of the local characteristics
of aerosol concentration. In addition, the model is built
uniformly using all observed samples in China as the dataset
(see Sect. 2.3). It is difficult for the model to obtain the
correct seasonal information in the meteorological variables
of these samples. Hence, we introduce seasonal information
to the deepWIA model through a variable of “day of the
year”, which has rarely been considered in previous models.

2.2 Target

The fitting target of the deepWIA model is not the PM2.5 con-
centration per se but an index that tracks synoptic variations
in PM2.5 concentrations. Motivated by the ASI and PLAM
approaches, we use the predefined form

r = C/B (1)

to separate the long-term background aerosol concentra-
tion, B, and synoptic variability, r , superimposed on B,
where C is the daily averaged PM2.5 concentration. We term
this process “timescale separation”. B is calculated as a 31 d
running average over the current year and the previous year,
i.e.,

B =
1

62

(
y∑

y−1

d+15∑
d−15

C

)
, (2)

where d and y denote the date and year of the PM2.5 sample,
respectively. The seasonality, the long-term trend in emis-
sions and local characteristics of each sample are contained
in B, and r , estimated from meteorological data, indicates
the effect of weather on high-frequency variations in PM2.5
concentrations. It should be noted that the timescale of the
running average is not a sensitive parameter for the perfor-
mance of the deepWIA model. When a new model with the
same structure, input variables, and training method as the

original deepWIA model, but with a 61 d running average
for the current year and the previous year as the background
is used, the model performance is close to the original one
using the background value with 31 d running averaged (see
Fig. S1 in the Supplement).

Target data imbalance is an issue of concern. Previous
studies have shown that PM2.5 concentrations have an ex-
tremely asymmetric long-tailed probability distribution func-
tion (PDF; Lu, 2002; Feng et al., 2018). The number of sam-
ples with low and medium values is much larger than that for
high values (Fig. 1); r has a similar PDF, with values of 0–15,
but concentrated mainly between 0 and 2. Such a distribu-
tion would weaken the performance of a data-based model,
as it is difficult for such a model to discern small differences
among low-value samples. To mitigate such data imbalance,
the fitting target (i.e., the deepWIA, labeled r̂) of our model
is defined as

r̂ = log2r. (3)

This label transformation maintains the value of the target
between −4 and 4 (Fig. 1c), giving a meaningful weather
index for aerosol, with positive and negative values denot-
ing aerosol-pollution days and clean days, respectively. For
example, r̂ =+1 and−1 mean that the PM2.5 concentrations
will be 2 times (i.e., 21) and 1/2 of (i.e., 2−1) the background
concentration B, respectively.

National surface PM2.5 observations are from the real-
time air quality platform (https://air.cnemc.cn:18007, last ac-
cess: 3 August 2022) of the China National Environmental
Monitoring Center. This platform has published air quality
data since 2013. We use data from 2015 because the num-
ber of observation sites since that year exceeds 1000, with a
widespread distribution across the country, making the sam-
ple more representative. Furthermore, the number of PM2.5
observation sites within different ERA5 grid cells is uneven,
which would also undermine the representativeness of the
sampling. Therefore, we use gridded observations, with the
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Figure 2. Backbone architecture of the deepWIA model.

PM2.5 observation in a grid cell being the mean of all obser-
vations within that cell.

2.3 Model description

Aerosol concentrations at specific times and locations de-
pend on local and surrounding meteorological fields over the
current and past few days, as CTMs indicate. Therefore, we
designed the deepWIA model as a spatiotemporal neural net-
work (Fig. 2).

The spatial module of the model is based on residual net-
work (ResNet; He et al., 2016). At each time step (i.e., day),
the module can extract the information of the input vari-
able and its spatial pattern within 9× 9 ERA5 grid cells
(about 200×200 km in China) around each observation sam-
ple point. We chose such a 9× 9 sampling grid cell with
reference to Feng et al. (2020b) and the limitations of our
computational resources. The ResNet has a structure simi-
lar to that of the classical ResNet-50 (He et al., 2016), but
only 49 convolution layers and a maximum of 512 channels
(i.e., variables in convolution layers). These convolution lay-
ers of the ResNet automatically reorganize the input vari-
ables into multiple features associated with the target (i.e.,
PM2.5 concentrations). This ResNet does not have the final
pooling (i.e., spatial average) layer of the original ResNet-50,
because a sample over the 9× 9 ERA5 grid cell has shrunk
to a scalar spatially after 49 convolution layers. The number
of channels is also less than the traditional ResNet-50 due
to our computational resource limitation. And more channels
do not provide better model performance. To be summarized,
the ResNet module fuses meteorological and quasistatic vari-
ables around the sample points at each time step into multiple
features.

The ResNet-extracted features are fed into the temporal
module based on a gated recurrent unit (GRU) (Cho et al.,
2014). The GRU is a recurrent neural network (RNN) that
links the multiple features in a day-by-day order, combines
the features together, and provides the final estimation of
PM2.5 concentrations. Here, we consider a short 3 d GRU
structure, with the exclusion of impacts of weather more
than 3 d earlier. Unlike other applications of GRU, we do
not use the output in every time step, except for the final
day (Fig. 2), as we fit the deepWIA only on the last day.
The GRU has learnable “gate” parameters that determine
the extent to which features in previous days affect current
aerosol concentrations. In other words, they would help the
model understand aerosol accumulation–removal processes
caused by weather changes. There is only 1 hidden layer with
1024 channels, and it is therefore computationally efficient.
To summarize, GRU quantifies the influences of meteorol-
ogy over 3 consecutive days and maps these influences on
the PM2.5 concentrations on the final day.

Model outputs on the final day fit the target r̂ for observa-
tion samples, using the mean squared error as the loss func-
tion.

2.4 Training and validation

We used ERA5 data and PM2.5 observations for 2015–
2021 for training and validation. The number of training–
validation samples was about 1.6 million. We selected the
model using traditional 10-fold cross validation (CV), divid-
ing training–validation samples randomly into 10 approxi-
mately equal parts, 9 of which were used for training and the
remaining 1 for validation. To avoid model overfitting, the
training process stopped when the loss function in the valida-
tion dataset did not decrease for several training epochs. Us-
ing every part as a validation dataset, the training–validation
process was then repeated 10 times, generating 10 models.
The RMSE for all validation datasets was used to select opti-
mal hyperparameters such as learning rate, number of convo-
lution channels, and batch size. Finally, retraining the entire
training–validation dataset using these hyperparameters de-
termined the final deepWIA model.

Both the deepWIA and the PM2.5 concentrations from
Eqs. (1) and (3) were evaluated to illustrate model perfor-
mance. We used five evaluation metrics in scatterplots, in-
cluding the commonly used R2, RMSE, and mean absolute
error (MAE). It is common for ML/DL-based models to un-
derestimate high values and overestimate low values due to
data imbalance (including in PM2.5 retrieval models). There-
fore, we used biases in the ranges of r̂ < 0 and r̂ > 0 to eval-
uate model performance for clean and polluted weather, re-
spectively. For PM2.5 concentrations (C), we used the ranges
of C > 35 µg m−3 and C < 35 µg m−3, as 35 µg m−3 is the
PM2.5 concentration limit of the China ambient air quality
standard.
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Figure 3. Training density scatterplots of (a) deepWIA (r̂) and (b) PM2.5 concentrations using data for 2015–2021 as a training set.

Figure 4. As for Fig. 3, but for the first validation dataset.

Figure 3 shows the fitting scatterplots of deepWIA
and PM2.5 concentrations for the entire training–validation
dataset. The r̂ value had an RMSE of 0.45, an MAE of 0.34,
and an R2 value of 0.58. The PM2.5 concentration had an
RMSE of 16.91 µg m−3, an MAE of 9.5 µg m−3, and an R2

value of 0.76. Additionally, The DL model still underesti-
mated high values and overestimated low values, although
label transformation and some other processes were per-
formed.

Scatterplots for the first validation dataset (Fig. 4) show
slightly lower performance than that for the training set
(RMSE= 0.49, MAE= 0.38, and R2

= 0.49 for r̂; and
16.01 µg m−3, 9.67 µg m−3 and 0.70, respectively, for PM2.5
concentration), partly because of the smaller set of train-
ing samples than that used in final training. Validations in
the other nine validation datasets had similar performance,
as summarized in Figs. S2 and S3. The RMSE and R2 val-
ues for r̂ for these validation datasets were in narrow ranges
of 0.48–0.55 and 0.47–0.50, and the RMSE and R2 val-
ues for PM2.5 concentrations were 0.67–0.77 and 15.54–

21.68 µg m−3, respectively. These metrics for 10-fold CV in-
dicate no significant overfitting by the final deepWIA model
and prove the stability of the model generated by the ResNet–
GRU structure.

Once the DL model is established after training, a ques-
tion worth discussing is the relative importance of these input
variables. A DL model cannot answer by voting as the RF
model. Therefore, here we perform sensitivity experiments
to solve the problem: (1) for every input variable shown in
Table 1, we deactivate it by setting all related model param-
eters to zero in the first convolutional layer; (2) we apply
the modified model (i.e., without the effect of the given vari-
able) to the training dataset and compute the RMSE of deep-
WIA; (3) we compute the difference between the RMSE and
that of the original model. The larger the RMSE increases,
the more important the input variable is. We applied these
steps to all input variables and showed their importance rank-
ings in Table 1. The five most important variables are lat-
itude and longitude, 2 m mixing ratio, population density,
maximal 2 m temperature, and surface turbulence stress com-
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ponents. However, some variables take little effect on the
model (with an RMSE increase of less than 0.001), includ-
ing wet deposition potency, precipitation, geopotential height
at 850 hPa, ventilation potency, downward short-wave radia-
tion, low cloud cover, and high vegetation cover.

Nevertheless, it would not be fair to compare the contribu-
tion of individual input variables to the DL model because
there are overlaps in the contribution of several variables,
such as 100 and 10 m winds. Therefore, we grouped all vari-
ables into six groups, namely near-surface wind variables,
near-surface temperature-humidity variables, near-surface
vertical diffusion variables, spatiotemporal geographic vari-
ables, synoptic pattern and radiation variables, and precipita-
tion variables (Table S1 in the Supplement). Using the same
approach as the individual variable, we compute the impor-
tance of each group of variables. The most important group
is the spatiotemporal geographic variable, followed by the
vertical diffusion and near-surface wind variables. The least
important one is precipitation (Fig. S4).

3 Model performance on the test dataset

Data for 3 January to 30 April 2022 were used as the test
dataset including about 85 000 samples to demonstrate model
performance in the normal aerosol-pollution season in China.
Feeding the input variables from the test dataset into the fi-
nal deepWIA model yields the estimated r̂ . A scatterplot
of r̂ and the corresponding PM2.5 concentration of the test
dataset is shown in Fig. 5. The r̂ value had an RMSE of 0.5,
an MAE of 0.39, and R2 of 0.53. The performance just de-
creased slightly relative to that with the training set, indicat-
ing that the deepWIA model is strongly robust with the test
dataset. And the r̂-based PM2.5 concentrations had an RMSE
of 16.54 µg m−3, an MAE of 10.25 µg m−3, and R2 of 0.72.
Note that some of the evaluation metrics were better than
those of validation datasets because more samples were used
to generate the final model than were used in validation.
The stable performance using the training set, the 10-fold
CV sets, and the test dataset indicates that our model can
be safely used for quantifying weather conditions of PM2.5
concentrations, at least in aerosol-pollution seasons.

The geographic distribution of biases and RMSEs for r̂

and PM2.5 concentrations estimated by the deepWIA model
are shown in Fig. 6. There was no significant estimation bias
of r̂ with observations in most grid cells. Small overestima-
tions (positive biases) of r̂ occurred in Northeast China, the
North China Plain (NCP), Ningxia, and the Zhuhai–Hong
Kong–Macao Bay area (ZHM), whereas underestimations
(negative biases) mainly occurred in south-central China.
The estimated PM2.5 concentration remained unbiased in
some areas but was underestimated in some grid cells in the
NCP, Northeast China, the Sichuan Basin, and south-central
China, with values of −6 to −8 µg m−3. The model also sig-
nificantly underestimated PM2.5 concentrations in the area

around the Taklamakan Desert by up to −10 µg m−3. The
r̂ values had small RMSEs in the southern NCP, the Sichuan
Basin, and the ZHM, with corresponding small RMSEs in
estimated PM2.5 concentrations of 0–10 µg m−3. Larger RM-
SEs for PM2.5 concentrations occurred in some grid cells lo-
cated in Northeast China, Xinjiang, Ningxia, and the western
NCP, with values of > 20 µg m−3. Large RMSEs and biases
in Xinjiang and Ningxia may be attributed to the frequent
occurrence of dust storms there (Wang et al., 2004). Due to
the scarcity of samples, a meteorological data-based model
cannot fully understand dust storm occurrence.

Eight cities were selected to illustrate the performance
of the deepWIA model in time series, with analysis of
daily variations in PM2.5 concentrations (Fig. 7). The cities
(Fig. 6c) are in northern China (Beijing and Xi’an), east-
ern China (Shanghai and Hangzhou), southwest China
(Chengdu and Chongqing), and south-central China (Wuhan
and Changsha), all of which suffer from aerosol pollution.

For comparison, the results of a WRF-Chem simulation
are also presented (Fig. 7). Similar to deepWIA, we also
use the ERA5 data to drive the WRF-Chem model. Hence,
both WRF-Chem and deepWIA models are run in hind-
cast mode. The simulation domain covered China, includ-
ing the above eight cities, with a high horizontal resolution
of 9 km. The model used the Multi-resolution Emission In-
ventory for China (MEIC, http://meicmodel.org/, last access:
3 August 2022) (Li et al., 2017) as an emission inventory.
To avoid weather-system drift due to long-term model inte-
gration (Feng et al., 2020a), the simulation restarted every
day at 12:00 UTC, with the mean of 12–35 h (i.e., 00:00–
23:00 UTC) simulated PM2.5 concentrations being used as
the daily value.

Estimations using the deepWIA model captured day-to-
day variations in PM2.5 concentrations, outperforming the
WRF-Chem simulation in all eight cities with a signifi-
cant reduction in RMSEs and improvement in R2 (RM-
SEs≤ 19 µg m−3 and R2

≥ 0.65). The simulation accuracy
of WRF-Chem varied substantially in different regions
of China. The four cities, including Beijing, Shanghai,
Hangzhou, and Chengdu, yielded good performances, with
RMSE≤ 30 µg m−3. The WRF-Chem model largely failed to
capture the day-to-day variations in aerosol concentrations
in the other five cities. In comparison, the deepWIA model
gave a robust performance in both northern and southern
China, indicating a wide application potential for different
regions. In conclusion, Fig. 5 shows that the main problem
with the deepWIA model is underestimation in extreme val-
ues of PM2.5 concentration, leading to the omission of some
heavy haze events.

To further present the good performance of the deep-
WIA model, two additional comparisons with WRF-Chem
are given. The first is the comparison of synoptic variabili-
ties that remove the variation longer than 31 d (Fig. S5), like
the timescale focused by the deepWIA model. The second
is a comparison with an operational system for air quality
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Figure 5. As for Fig. 3, but for the test dataset for 3 January to 30 April 2022.

Figure 6. Test biases (a, c) and RMSEs (b, d) in deepWIA (r̂) (a, b) and PM2.5 concentrations (c, d) over China from 3 January to
30 April 2022.

forecast based on WRF-Chem (Fig. S6). The simulation has
the same spatial and temporal resolution as the ERA5-driven
one above but is optimized for northern China. To reduce
initial and boundary errors, the system used the real-time as-
similated meteorological field and assimilated PM2.5, PM10,

SO2, NO2, O3, and CO concentrations within the domain
using the newly developed 3DVar module for WRF-Chem.
In both comparisons, the deepWIA model significantly out-
performs the corresponding WRF-Chem simulations for all
eight cities.
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Figure 7. Day-to-day series of PM2.5 concentrations based on observations (blue curves), WRF-Chem (orange curves), and deepWIA model
(green curves) in eight cities in China, 3 January to 30 April 2022.

4 Ablation experiments and related studies

4.1 Comparison of ablation experiments

Although the deepWIA appears accurate and robust in cap-
turing synoptic variations in PM2.5 concentrations, it is of
interest to investigate the reason for its strong performance.
The model has three key points: (1) a ResNet–GRU structure
with more meteorological variables; (2) a timescale separa-
tion approach making the model focus only on the effects of
meteorology on synoptic variations in PM2.5 concentrations;
and (3) a label transformation approach based on a logarith-
mic function to mitigate data imbalance. To investigate the
relative importance of these processes for the final deepWIA
model, two additional ablation experiments were performed
for comparison:

– AbExp_1: with fitting of PM2.5 concentrations directly
using the same ResNet–GRU structure, samples, and
training strategy, but with no timescale separation or la-

bel transformation. This experiment was similar to stud-
ies of ML-based PM2.5 concentration retrieval but using
meteorological variables as primary data. This experi-
ment was intended to assess the basic fitting power due
to the DL structure and input variables.

– AbExp_2: with fitting of r (Sect. 2.2) using the
same model structure, samples, training strategy, and
timescale separation, but with no label transformation.
A comparison of the results of AbExp_1 and AbExp_2
illustrates the importance of timescale separation. A
comparison of the results of AbExp_2 and original
deepWIA illustrates the impacts of label transform.

Scatterplots of PM2.5 concentrations for AbExp_1 and Ab-
Exp_2 using the same test dataset as that used for the deep-
WIA model are shown in Fig. 8. The AbExp_1 experiment
had an RMSE of 19.18 µg m−3, an MAE of 12.9 µg m−3,
and an R2 value of 0.63, achieving the level of ML-based
PM2.5 concentration retrieval (Sect. 4.2). The DL structure
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Figure 8. Density scatterplots of PM2.5 concentrations for the test dataset from the ablation experiments (a) directly using the
PM2.5concentration as the target, and (b) using r as the target (i.e., without label transform based on logarithmic function).

and the feature engineering for input variables thus builds
a solid foundation for the fitting power of the deepWIA
model. Compared with AbExp_1, AbExp_2 improved the
R2 value to 0.70, with the RMSE decreasing to 17.13 µg m−3

and the MAE to 10.92 µg m−3, indicating the importance
of timescale separation. Furthermore, the focus on synop-
tic variation also helped mitigate the overestimation of low
values and underestimation of high values. The final deep-
WIA model further improved the general performance in es-
timating PM2.5 concentrations, with improved R2, MAE, and
RMSE values. The logarithmic function-based label trans-
formation mitigated the overestimation of low values while
exacerbating the underestimation of high values, with this
treatment increasing the distance between low values but de-
creasing the distance between high values of the samples.
A scheme such as AbExp_2 may therefore be applicable to
studies of extreme haze events. To summarize, model and
feature engineering are most important in determining the fi-
nal performance of the deepWIA model, with timescale sep-
aration and label transformation following in that order.

4.2 Comparison with models used in previous studies

Recent studies of PM2.5 concentration retrieval use ML/DL
models such as RF, XGB and MLP (Table 2). Unlike our
model, these studies were not concerned with the role of
meteorology but only with the accuracy of estimated PM2.5
concentrations. There are many differences between these
methods and the deepWIA model in the model-building pro-
cesses. For example, (1) the deepWIA model uses timescale
separation to focus on synoptic variations in aerosol concen-
trations caused by meteorology. We do not use an emission
inventory as an input feature for the model because of its sig-
nificant uncertainty. It is difficult for DL models, which rely
heavily on input data, to build robust relationships among
emissions, meteorology, and aerosol concentrations. (2) Ex-

cept for the approach of Geng et al. (2021), the training sam-
ple size used in deepWIA is much larger than that used in
previous models, which often used data of 1 year for train-
ing (Geng et al., 2021 also built the ML model year-by-year,
starting from 2013). The large sample size aids the building
of a more robust model. (3) We introduce more derived mete-
orological variables than most studies by feature engineering.

Therefore, to make a fair comparison of the model per se,
we use six popular ML/DL models, with the same periods,
stations, and input parameters as the deepWIA model, in-
cluding two RF, two XGB, and two MLP models using the
input data over 3 d (i.e., the same as the deepWIA) and only
1 d that is fitted, named RF1, RF3, XGB1, XGB3, MLP1, and
MLP3 respectively (Table 3). The MLP models have nine full
connection layers with the maximal 512 neurons in the fifth
layer. Following the previous studies, all the models fit the
PM2.5 concentrations directly. It should be noted that these
models are applied here for the role of meteorological vari-
ables and thereby do not introduce satellite or visibility data,
so the RMSEs here are slightly higher than those reported in
previous studies.

These six models all have higher RMSEs and lower R2

than the deepWIA model in the test set (even than that of
the AbExp_1, which also fits PM2.5 concentrations directly;
Fig. 8a). The models with 3 d data always performed bet-
ter than these with only 1 d data, indicating the importance
of temporal information. Additionally, there is more severe
overfitting for these models than the deepWIA model, as
evidenced by the large performance difference between the
training and test sets, especially those of the RF1 and RF3.

The advantages of deepWIA over traditional RF, XGB and
MLP models should be attributed to two points: (1) the deep-
WIA model is much deeper than the commonly used RF,
XGB and MLP models, which aids learning of the complex
nonlinear relationship between meteorology and aerosol con-
centration; and (2) previous models do not necessarily in-
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Table 2. Comparison of studies of observation retrieval of PM2.5 concentrations and deepWIA. “
√

” indicates data used as model input
features. ERT and GBDT denote extreme random trees and gradient boosting decision trees, respectively.

Wei Li Gui Wei Geng Song deepWIA
et al. et al. et al. et al. et al. et al.
(2019a) (2020) (2020) (2020) (2021) (2021)

Data

Meteor.
√ √ √ √ √ √ √

Quasistatic
√ √ √ √ √ √ √

Satellite
√ √ √ √ √

Visibility
√

CTM
√

Model key points
Backbone RF MLP XGB ERT RF RF, GBDT, MLP ResNet–GRU
Data size (million) 0.15 0.06 0.37 0.23 > 3 Not reported ∼ 1.7
Spatiotemporal info. Tempo. dist. Tempo. dist. Not used Tempo. dist. Not used Not used Convolution and gates

Table 3. Comparison of ML/DL models performance using the
same time periods, stations, and input parameters as the deepWIA
model.

Models Training set Test set

RMSE R2 RMSE R2

RF1 7.15 0.97 25.43 0.34
RF3 6.72 0.97 23.66 0.43
XGB1 22.40 0.60 24.59 0.38
XGB3 20.36 0.67 23.76 0.42
MLP1 23.98 0.54 26.22 0.30
MLP3 20.42 0.67 22.10 0.50
deepWIA 16.91 0.76 16.54∗ 0.72

∗ Note that the RMSE of deepWIA on the test dataset is smaller
than that on the training dataset because the model does not
directly fit the PM2.5 concentration.

clude temporal correlations of aerosol concentrations; rather,
some use a predefined spatiotemporal distance for the injec-
tion of temporal information (Wei et al., 2019a, b, 2020; Li
et al., 2020). The deepWIA model uses gate parameters to
learn dynamic links of aerosol concentration among days.

We also compare the deepWIA and two semiempirical me-
teorological indices for aerosol pollution, namely PLAM and
ASI. These indices are commonly used to assess meteorolog-
ical effects on variations in aerosol concentrations (Wang et
al., 2021; X. Zhang et al., 2019). PLAM was applied to the
NCP (Yang et al., 2016), using visibility as the target vari-
able, while ASI was applied to North and Northeast China,
using PM2.5 concentrations as the target variable. Both in-
dices only considered the meteorology on that day only. By
comparison, as described in Section 2.1, deepWIA includes
all the kernel variables of these two indices, as well as other
spatiotemporal information. It will form the best DL model
to take advantage of these variables. Hence, its applicability
extends to the whole country. Additionally, PLAM and ASI
cannot provide a uniform model for PM2.5 concentrations,
unlike deepWIA. PLAM focused on the relationship between
meteorology and visibility; ASI just illustrates the temporal

relationship between meteorology and PM2.5 concentrations,
which varies from location to location. Therefore, estimating
PM2.5 concentrations also requires additional linear model-
ing at each grid cell. Due to these advantages, the deepWIA
could be a better tool for assessing the impact of weather on
aerosol concentrations.

5 Spatial distribution of deepWIA and its application
in quantifying the aerosol-related weather
condition

This section is to show the geographic distribution of deep-
WIA (r̂) over the test period, which can also be used to
quantify the aerosol-related weather conditions over China.
A positive or negative deepWIA indicates weather-related
enhancement or reduction of aerosol pollution, respec-
tively, relative to background concentrations (B). We pre-
pared an animation of daily deepWIA from 3 January to
30 April 2022, to illustrate synoptic variations in aerosol-
associated weather in China (see the data availability state-
ments). To assess weather conditions over the test period, we
applied a statistical metric, the ratio of good weather (RGW)
days for aerosol pollution calculated as

RGW=Nr̂≤0/N, (4)

where Nr̂≤0 and N denote the number of days with r̂ ≤ 0
values and total days over the test period, respectively.

The geographic distributions of the RGW indicate that
most areas in China had good weather for higher air quality
during January–April 2022 (Fig. 9). In south-central China,
almost all grid points had RGWs > 0.5 and negative MVs,
implying favorable weather conditions for higher air qual-
ity. In Beijing, RGW was about 0.65, implying a 15 % in-
crease in clean air days relative to background concentra-
tions. Unfavorable weather for aerosol pollution was found
mainly in the south-central NCP and on the western fringe
of the Sichuan Basin, with RGWs of 0.4–0.5. Note that with
Eqs. (1) and (2), all synoptic-scale changes are relative to
long-term background concentrations for the same season of
the last two years. A similar approach can be used to compare
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Figure 9. Geographic distributions of the ratio of good
weather (RGW) days for PM2.5 concentrations, 3 January to
30 April 2020.

the effects of weather on aerosols between two periods (e.g.,
2 years), by replacing the background concentration with that
calculated over the base period.

6 Conclusions

We propose a spatiotemporal deep network architecture to
link meteorology and aerosol concentrations. The network
uses a 49-layer ResNet structure to extract meteorological
information in the vicinity of observed grid points and a
GRU to dynamically fuse the information from the ResNet
for 3 consecutive days. Many approaches were undertaken
in improving its performance, including feature engineering,
timescale separation, and logarithmic function-based label
transformation. Based on the model, we produced a mete-
orology index, deepWIA, to capture synoptic variations in
aerosol concentrations.

The model was trained and 10-fold CV applied using
ground-based PM2.5 observations in China and ERA5 me-
teorological fields for the period 2015–2021. Tests were per-
formed using data for January–April 2022. The results in-
dicate that the model well estimates synoptic variations in
PM2.5 concentrations and corresponding weather changes.
Performance using the test dataset does not decrease signifi-
cantly relative to the training set, indicating very weak over-
fitting in the model. We also compared time series of PM2.5
concentrations between deepWIA and WRF-Chem in eight
cities in China. The deepWIA performed better than WRF-
Chem simulations with higher R2 values and lower RMSEs
in each city. In particular, the model yields consistent simu-
lating power in both southern and northern China, whereas
WRF-Chem failed to capture aerosol variations in four cities
in southern China. The predictive power of the deepWIA

model also outperformed the previously reported PM2.5 con-
centration retrieval scheme based on other ML/DL models.

The strong performance of deepWIA is due to the power-
ful ResNet–GRU architecture and the treatment of timescale
separation. Meteorology and emissions dominate different
timescales in aerosol variations. Meteorological variables
also vary on different timescales, ranging from hourly to in-
terannually. Therefore, it is very difficult to accurately es-
timate aerosol concentrations directly using a single data-
based model. The timescale separation used in this study is
thus necessary in allowing the model, despite its complexity,
to focus on day-to-day variations in aerosol concentrations
and associated weather.

As the background aerosol concentration is currently com-
puted from observations, the deepWIA model cannot directly
provide the spatial distribution of aerosol concentrations.
However, this can be obtained from a CTM simulation, ob-
servation retrieval, or even another ML/DL learning model.
Owing to the strong performance of deepWIA, a study is
planned for short- and medium-range forecast schemes for
PM2.5 concentrations based on the spatiotemporal DL model
and numerical weather prediction (NWP). In a real medium-
range forecast system, a re-trained deepWIA model should
be applied, with the real-time NWP data (i.e., from ECMWF
or WRF) as input meteorological data. Moreover, a short-
range forecast DL model should be more complex as it is
more sensitive to initial aerosol concentrations. Therefore,
more variables such as pre-forecast observations should be
injected into the DL model to provide better initial condi-
tions.

Code and data availability. The deepWIA data in the test dataset
can be downloaded from https://doi.org/10.5281/zenodo.6982879
(Feng, 2022a). The animation of daily deepWIA from
3 January to 30 April 2022 can be downloaded from
https://doi.org/10.5281/zenodo.6982971 (Feng, 2022b).
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