Articles | Volume 23, issue 3
https://doi.org/10.5194/acp-23-2145-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-2145-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Residence times of air in a mature forest: observational evidence from a free-air CO2 enrichment experiment
Edward J. Bannister
Birmingham Institute of Forest Research, University of Birmingham,
Edgbaston, Birmingham, UK
Department of Geography, Earth and Environmental Sciences,
University of Birmingham, Edgbaston, Birmingham, UK
now at: Risk Management Solutions, London, UK
Mike Jesson
Birmingham Institute of Forest Research, University of Birmingham,
Edgbaston, Birmingham, UK
Department of Civil Engineering, University of Birmingham, Edgbaston, Birmingham, UK
Nicholas J. Harper
Birmingham Institute of Forest Research, University of Birmingham,
Edgbaston, Birmingham, UK
Kris M. Hart
Birmingham Institute of Forest Research, University of Birmingham,
Edgbaston, Birmingham, UK
Giulio Curioni
Birmingham Institute of Forest Research, University of Birmingham,
Edgbaston, Birmingham, UK
Xiaoming Cai
Department of Geography, Earth and Environmental Sciences,
University of Birmingham, Edgbaston, Birmingham, UK
retired
A. Rob MacKenzie
CORRESPONDING AUTHOR
Birmingham Institute of Forest Research, University of Birmingham,
Edgbaston, Birmingham, UK
Department of Geography, Earth and Environmental Sciences,
University of Birmingham, Edgbaston, Birmingham, UK
Related authors
No articles found.
Yuqing Dai, Bowen Liu, Chengxu Tong, David Carslaw, Robert MacKenzie, and Zongbo Shi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1376, https://doi.org/10.5194/egusphere-2025-1376, 2025
Short summary
Short summary
Air pollution causes millions of deaths annually, driving policies to improve air quality. However, assessing these policies is challenging because weather changes can hide their true impact. We created a logical evaluation framework and found that a widely applied machine learning approach that adjusts for weather effects could underestimate the effectiveness of short-term policies, like emergency traffic controls. We proposed a refined approach that could largely reduce such underestimation.
Susan E. Quick, Giulio Curioni, Nicholas J. Harper, Stefan Krause, and A. Robert MacKenzie
Biogeosciences, 22, 1557–1581, https://doi.org/10.5194/bg-22-1557-2025, https://doi.org/10.5194/bg-22-1557-2025, 2025
Short summary
Short summary
To study the effects of rising CO2 levels on water usage of old-growth temperate oak forest, we monitored trees in an open-air elevated CO2 experiment for 5 years. We found 4 %–16 % leaf-on season reduction in daylight water usage for ~35% increase in atmospheric CO2. July-only reduction varied more widely. Tree water usage depended on tree size, i.e. stem size and projected canopy area, across all treatments. Experimental infrastructure increased the water usage of the trees in leaf-on season.
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
Atmos. Meas. Tech., 16, 4885–4898, https://doi.org/10.5194/amt-16-4885-2023, https://doi.org/10.5194/amt-16-4885-2023, 2023
Short summary
Short summary
Pollen grains are important components of the atmosphere and have the potential to impact upon cloud processes via their ability to help in the formation of rain droplets. This study investigates the hygroscopicity of two different pollen species using an acoustic levitator. Pollen grains are levitated, and their response to changes in relative humidity is investigated. A key advantage of this method is that it is possible study pollen shape under varying environmental conditions.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Jian Zhong, Xiaoming Cai, and Zheng-Tong Xie
Geosci. Model Dev., 14, 323–336, https://doi.org/10.5194/gmd-14-323-2021, https://doi.org/10.5194/gmd-14-323-2021, 2021
Short summary
Short summary
A synthetic inflow turbulence generator was implemented in the idealised Weather Research and Forecasting large eddy simulation. The inflow case yielded a mean velocity profile and second-moment profiles that agreed well with those generated using periodic boundary conditions, after a short adjustment distance. This implementation can be extended to a multi-scale seamless nesting simulation from a meso-scale domain with a kilometre-scale resolution to LES domains with metre-scale resolutions.
Clarissa Baldo, Paola Formenti, Sophie Nowak, Servanne Chevaillier, Mathieu Cazaunau, Edouard Pangui, Claudia Di Biagio, Jean-Francois Doussin, Konstantin Ignatyev, Pavla Dagsson-Waldhauserova, Olafur Arnalds, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 20, 13521–13539, https://doi.org/10.5194/acp-20-13521-2020, https://doi.org/10.5194/acp-20-13521-2020, 2020
Short summary
Short summary
We showed that Icelandic dust has a fundamentally different chemical and mineralogical composition from low-latitude dust. In particular, magnetite is as high as 1 %–2 % of the total dust mass. Our results suggest that Icelandic dust may have an important impact on the radiation balance in the subpolar and polar regions.
Cited articles
Aubinet, M., Feigenwinter, C., Heinesch, B., Bernhofer, C., Canepa, E.,
Lindroth, A., Montagnani, L., Rebmann, C., Sedlák, P., and Van Gorsel,
E.: Direct advection measurements do not help to solve the night-time CO2
closure problem: Evidence from three different forests, Agr. Forest
Meteorol., 150, 655–664, https://doi.org/10.1016/j.agrformet.2010.01.016, 2010.
Bailey, B. N., Stoll, R., Pardyjak, E. R., and Mahaffee, W. F.: Effect of
vegetative canopy architecture on vertical transport of massless particles,
Atmos. Environ., 95, 480–489, https://doi.org/10.1016/j.atmosenv.2014.06.058, 2014.
Bannister, E. J., Cai, X., Zhong, J., and MacKenzie, A. R.:
Neighbourhood-scale flow regimes and pollution transport in cities.
Bound.-Lay. Meteorol., 179, 259–289, https://doi.org/10.1007/s10546-020-00593-y,
2021.
Bannister, E. J., MacKenzie, A. R., and Cai, X.-M.: Realistic forests and
the modeling of forest–atmosphere exchange, Rev. Geophys., 60, 1–47,
https://doi.org/10.1029/2021rg000746, 2022a.
Bannister, E. J., Mackenzie, R., Curioni, G., and Jesson, M.: Data and code supporting the publication “Air-parcel residence times in a mature forest: observational evidence from a free-air CO2 enrichment experiment”, University of Birmingham [code], https://doi.org/10.25500/edata.bham.00000836, 2022b.
Bash, J. O., Walker, J. T., Katul, G. G., Iones, M. R., Nemitz, E., and
Robarge, W. P.: Estimation of in-canony ammonia sources and sinks in a
fertilized zea mays field, Environ. Sci. Technol., 44, 1683–1689,
https://doi.org/10.1021/es9037269, 2010.
Mackenzie, R., Curioni, G., Hart, K., and Harper, N.: BIFoR FACE environmental monitoring data, BIFoR FACE [data set], https://doi.org/10.25500/edata.bham.00000564, 2020.
Bonn, B., Bourtsoukidis, E., Sun, T. S., Bingemer, H., Rondo, L., Javed, U., Li, J., Axinte, R., Li, X., Brauers, T., Sonderfeld, H., Koppmann, R., Sogachev, A., Jacobi, S., and Spracklen, D. V.: The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany, Atmos. Chem. Phys., 14, 10823–10843, https://doi.org/10.5194/acp-14-10823-2014, 2014.
Bréda, N. J. J.: Ground-based measurements of leaf area index: a review
of methods, instruments and current controversies, J. Exp. Bot., 54,
2403–2417, https://doi.org/10.1093/jxb/erg263, 2003.
Brunet, Y.: Turbulent Flow in Plant Canopies: Historical Perspective and
Overview, Bound.-Lay. Meteorol., 177, 315–364,
https://doi.org/10.1007/s10546-020-00560-7, 2020.
Cai, X.: Effects of differential wall heating in street canyons on
dispersion and ventilation characteristics of a passive scalar, Atmos.
Environ., 51, 268–277, https://doi.org/10.1016/j.atmosenv.2012.01.010, 2012.
Carslaw, D. C. and Ropkins, K.: Openair – An r package for air quality data
analysis, Environ. Model. Softw., 27–28, 52–61,
https://doi.org/10.1016/j.envsoft.2011.09.008, 2012.
Cava, D., Katul, G. G., Scrimieri, A., Poggi, D., Cescatti, A., and Giostra,
U.: Buoyancy and the sensible heat flux budget within dense canopies,
Bound.-Lay. Meteorol., 118, 217–240, https://doi.org/10.1007/s10546-005-4736-1,
2006.
Chen, B., Chamecki, M., and Katul, G. G.: Effects of topography on in-canopy
transport of gases emitted within dense forests, Q. J. Roy. Meteorol. Soc.,
145, 2101–2114, https://doi.org/10.1002/qj.3546, 2019.
Chen, B., Chamecki, M., and Katul, G. G.: Effects of Gentle Topography on
Forest-Atmosphere Gas Exchanges and Implications for Eddy-Covariance
Measurements, J. Geophys. Res.-Atmos., 125, 1–15,
https://doi.org/10.1029/2020JD032581, 2020.
Cook, B. D., Davis, K. J., Wang, W., Desai, A. R., Berger, B. W., Teclaw, R.
M., Martin, J. G., Bolstad, P. V., Bakwin, P. S., Yi, C., and Heilman, W.:
Carbon exchange and venting anomalies in an upland deciduous forest in
northern Wisconsin, USA, Agr. Forest Meteorol., 126, 271–295,
https://doi.org/10.1016/j.agrformet.2004.06.008, 2004.
Corrsin, S.: Limitations of gradient transport models in random walks and in
turbulence, Adv. Geophys., 18, 25–60,
https://doi.org/10.1016/S0065-2687(08)60451-3, 1975.
Danckwerts, P. V.: Significance of Liquid-Film Coefficients in Gas
Absorption, Ind. Eng. Chem., 43, 1460–1467, https://doi.org/10.1021/ie50498a055,
1951.
Drake, J. E., Macdonald, C. A., Tjoelker, M. G., Crous, K. Y., Gimeno, T.
E., Singh, B. K., Reich, P. B., Anderson, I. C., and Ellsworth, D. S.:
Short-term carbon cycling responses of a mature eucalypt woodland to gradual
stepwise enrichment of atmospheric CO2 concentration, Global Change Biol.,
22, 380–390, https://doi.org/10.1111/gcb.13109, 2016.
Dupont, S. and Patton, E. G.: Influence of stability and seasonal canopy
changes on micrometeorology within and above an orchard canopy: The CHATS
experiment, Agr. Forest Meteorol., 157, 11–29,
https://doi.org/10.1016/j.agrformet.2012.01.011, 2012.
Edburg, S. L., Stock, D., Lamb, B. K. and Patton, E. G.: The Effect of the
Vertical Source Distribution on Scalar Statistics within and above a Forest
Canopy, Bound.-Lay. Meteorol., 142, 365–382,
https://doi.org/10.1007/s10546-011-9686-1, 2012.
Farmer, D. K. and Cohen, R. C.: Observations of HNO3, ΣAN, ΣPN and NO2 fluxes: evidence for rapid HOx chemistry within a pine forest canopy, Atmos. Chem. Phys., 8, 3899–3917, https://doi.org/10.5194/acp-8-3899-2008, 2008.
Finnigan, J. J.: Turbulence in Plant Canopies, Annu. Rev. Fluid Mech., 32,
519–571, 2000.
Finnigan, J. J., Ayotte, K., Harman, I. N., Katul, G. G., Oldroyd, H.,
Patton, E. G., Poggi, D., Ross, A. N., and Taylor, P.: Boundary-Layer Flow
Over Complex Topography, Bound.-Lay. Meteorol., 177, 247–313,
https://doi.org/10.1007/s10546-020-00564-3, 2020.
Forkel, R., Guenther, A. B., Ashworth, K., Bedos, C., Delon, C., Lathiere,
J., Noe, S., Potier, E., Rinne, J., Tchepel, O., and Zhang, L.: Review and
Integration of Biosphere-Atmosphere Modelling of Reactive Trace Gases and
Volatile Aerosols, Rev. Integr. Biosph. Model. React. Trace Gases Volatile
Aerosols, 169–179, https://doi.org/10.1007/978-94-017-7285-3, 2015.
Fuentes, J. D., Lerdau, M. T., Atkinson, R., Baldocchi, D. D., Bottenheim,
J. W., Ciccioli, P., Lamb, B. K., Geron, C. D., Gu, L., Guenther, A. B.,
Sharkey, T. D., and Stockwell, W. R.: Biogenic Hydrocarbons in the
Atmospheric Boundary Layer: A Review, B. Am. Meteorol. Soc., 81,
1537–1575, https://doi.org/10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2, 2000.
Fuentes, J. D., Wang, D., Bowling, D. R., Potosnak, M., Monson, R. K.,
Goliff, W. S., and Stockwell, W. R.: Biogenic hydrocarbon chemistry within
and above a mixed deciduous forest, J. Atmos. Chem., 56, 165–185,
https://doi.org/10.1007/s10874-006-9048-4, 2007.
Gardner, A., Ellsworth, D. S., Crous, K. Y., Pritchard, J., and MacKenzie, A.
R.: Is photosynthetic enhancement sustained through three years of elevated
CO2 exposure in 175-year old Quercus robur?, Tree Physiol., tpab090,
https://doi.org/10.1093/treephys/tpab090, 2021.
Gerken, T., Chamecki, M., and Fuentes, J. D.: Air-Parcel Residence Times
Within Forest Canopies, Bound.-Lay. Meteorol., 165, 29–54,
https://doi.org/10.1007/s10546-017-0269-7, 2017.
Gon Seo, Y. and Kook Lee, W.: Single-eddy model for random surface renewal,
Chem. Eng. Sci., 43, 1395–1402, https://doi.org/10.1016/0009-2509(88)85112-1, 1988.
Grylls, T., Suter, I., and van Reeuwijk, M.: Steady-State Large-Eddy
Simulations of Convective and Stable Urban Boundary Layers, Bound.-Lay.
Meteorol., 175, 309–341, https://doi.org/10.1007/s10546-020-00508-x, 2020.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Haghighi, E. and Or, D.: Evaporation from porous surfaces into turbulent
airflows: Coupling eddy characteristics with pore scale vapor diffusion,
Water Resour. Res., 49, 8432–8442, https://doi.org/10.1002/2012WR013324, 2013.
Haghighi, E. and Or, D.: Thermal signatures of turbulent airflows
interacting with evaporating thin porous surfaces, Int. J. Heat Mass
Transf., 87, 429–446, https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.026, 2015.
Hakola, H., Hellén, H., Hemmilä, M., Rinne, J., and Kulmala, M.: In situ measurements of volatile organic compounds in a boreal forest, Atmos. Chem. Phys., 12, 11665–11678, https://doi.org/10.5194/acp-12-11665-2012, 2012.
Hart, K. M., Curioni, G., Blaen, P., Harper, N. J., Miles, P., Lewin, K. F.,
Nagy, J., Bannister, E. J., Cai, X., Thomas, R. M., Krause, S., Tausz, M.,
and MacKenzie, A. R.: Characteristics of free air carbon dioxide enrichment
of a northern temperate mature forest, Global Chang. Biol., 26,
1023–1037, https://doi.org/10.1111/gcb.14786, 2020.
Haverd, V., Leuning, R., Griffith, D., van Gorsel, E., and Cuntz, M.: The
turbulent lagrangian time scale in forest canopies constrained by fluxes,
concentrations and source distributions, Bound.-Lay. Meteorol., 130,
209–228, https://doi.org/10.1007/s10546-008-9344-4, 2009.
Jobst, N. J. and Zenios, S. A.: The Tail that Wags the Dog: Integrating Credit Risk in Asset
Portfolios, J. Risk Finance, 3 No. 1, 31–43, https://doi.org/10.1108/eb043481, 2001.
Kaimal, J. C. and Gaynor, J. E.: Another look at sonic thermometry,
Bound.-Lay. Meteorol., 56, 401–410, https://doi.org/10.1007/BF00119215, 1991.
Karl, T., Misztal, P. K., Jonsson, H. H., Shertz, S., Goldstein, A. H., and
Guenther, A. B.: Airborne flux measurements of bvocs above californian oak
forests: Experimental investigation of surface and entrainment fluxes, OH
densities, and damköhler numbers, J. Atmos. Sci., 70, 3277–3287,
https://doi.org/10.1175/JAS-D-13-054.1, 2013.
Katul, G. and Liu, H.: Evaporation Into a Turbulent Atmosphere, Water, 53,
3635–3644, https://doi.org/10.1002/2016WR020006, 2017.
Katul, G., Hsieh, C. I., Oren, R., Ellsworth, D. S., and Phillips, N.: Latent
and sensible heat flux predictions from a uniform pine forest using surface
renewal and flux variance methods, Bound.-Lay. Meteorol., 80,
249–282, https://doi.org/10.1007/bf00119545, 1996.
Katul, G. G., Porporato, A., Nathan, R., Siqueira, M., Soons, M. B., Poggi,
D., Horn, H. S., and Levin, S. A.: Mechanistic analytical models for
long-distance seed dispersal by wind, Am. Nat., 166, 368–381,
https://doi.org/10.1086/432589, 2005.
Katul, G. G., Cava, D., Siqueira, M. and Poggi, D.: Scalar Turbulence within the Canopy
Sublayer, in Coherent flow structures at Earth's surface, edited by: Venditti, J. G., Best, J. L., and Church,
M. A., Wiley Blackwell, Chichester, West Sussex, https://doi.org/10.1002/9781118527221.ch6, 2013.
Kesselmeier, J. and Staudt, M.: Biogenic Volatile Organic Compounds (VOC):
An Overview on Emission, Physiology and Ecology, J. Atmos. Chem., 33, 23–88,
1999.
Larcher, W.: Physiological Plant Ecology, Third., Springer-Verlag, Berlin, 506 pp., https://doi.org/10.1007/978-3-642-87851-0, 1995.
Lau, G. E., Ngan, K., and Hon, K. K.: Residence times of airborne pollutants
in the urban environment, Urban Clim., 34, 100711,
https://doi.org/10.1016/j.uclim.2020.100711, 2020.
Lin, M., Hang, J., Li, Y., Luo, Z., and Sandberg, M.: Quantitative
ventilation assessments of idealized urban canopy layers with various urban
layouts and the same building packing density, Build. Environ., 79,
152–167, https://doi.org/10.1016/j.buildenv.2014.05.008, 2014.
Lo, K. W. and Ngan, K.: Characterizing ventilation and exposure in street
canyons using Lagrangian particles, J. Appl. Meteorol. Climatol., 56,
1177–1194, https://doi.org/10.1175/JAMC-D-16-0168.1, 2017.
MacKenzie, A. R., Langford, B., Pugh, T. A. M., Robinson, N., Misztal, P.
K., Heard, D. E., Lee, J. D., Lewis, A. C., Jones, C. E., Hopkins, J. R.,
Phillips, G., Monks, P. S., Karunaharan, A., Hornsby, K. E., Nicolas-Perea,
V., Coe, H., Gabey, A. M., Gallagher, M. W., Whalley, L. K., Edwards, P. M.,
Evans, M. J., Stone, D., Ingham, T., Commane, R., Furneaux, K. L., McQuaid,
J. B., Nemitz, E., Seng, Y., Fowler, D., Pyle, J. A., and Hewitt, C. N.: The
atmospheric chemistry of trace gases and particulate matter emitted by
different land uses in Borneo, Philos. Trans. R. Soc. B Biol. Sci.,
366, 3177–3195, https://doi.org/10.1098/rstb.2011.0053, 2011.
MacKenzie, A. R., Krause, S., Hart, K. M., Thomas, R. M., Blaen, P. J.,
Hamilton, R. L., Curioni, G., Quick, S. E., Kourmouli, A., Hannah, D. M.,
Comer-Warner, S. A., Brekenfeld, N., Ullah, S., and Press, M. C.: BIFoR FACE:
Water–soil–vegetation–atmosphere data from a temperate deciduous forest
catchment, including under elevated CO2, Hydrol. Process., 35, 1–8,
https://doi.org/10.1002/hyp.14096, 2021.
Mahrt, L.: Stably stratified atmospheric boundary layers, Annu. Rev. Fluid
Mech., 46, 23–45, https://doi.org/10.1146/annurev-fluid-010313-141354, 2014.
Mahrt, L.: Microfronts in the nocturnal boundary layer, Q. J. Roy. Meteorol.
Soc., 145, 546–562, https://doi.org/10.1002/qj.3451, 2019.
Mahrt, L., Sun, J., Blumen, W., Delany, T., and Oncley, S.: Nocturnal
boundary-layer regimes, Bound.-Lay. Meteorol., 88, 255–278,
https://doi.org/10.1023/A:1001171313493, 1998.
Martens, C. S., Shay, T. J., Mendlovitz, H. P., Matross, D. M., Saleska, S.
R., Wofsy, S. C., Woodward, W. S., Menton, M. C., De Moura, J. M. S., Crill,
P. M., De Moraes, O. L. L., and Lima, R. L.: Radon fluxes in tropical forest
ecosystems of Brazilian Amazonia: Night-time CO2 net ecosystem exchange
derived from radon and eddy covariance methods, Global Chang. Biol., 10,
618–629, https://doi.org/10.1111/j.1365-2486.2004.00764.x, 2004.
Met Office: RAF Shawbury from Met Office Integrated Data Archive System (MIDAS) Land
and Marine Surface Stations Data (1853–current), NCAS British Atmospheric Data Centre
[data], https://doi.org/10.5285/fa83484e57854d6fbde16ff945ff6dc0, 2022.
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the
surface layer of the atmosphere, Akad. Nauk SSSR Geofiz. Inst. Tr., 24,
163–187, 1954.
Monteith, J. L. and Unsworth, M. H.: Principles of Environmental Physics,
Fourth, Academic Press, Oxford, 4th Edn., https://doi.org/10.1016/C2010-0-66393-0, 422 pp., 2013.
Patton, E. G., Sullivan, P. P., Shaw, R. H., Finnigan, J. J., and Weil, J.
C.: Atmospheric stability influences on coupled boundary layer and canopy
turbulence, J. Atmos. Sci., 73, 1621–1647, https://doi.org/10.1175/JAS-D-15-0068.1,
2016.
Paw U, K. T., Qiu, J., Su, Hong-bing, Watanabe, T., and Brunet, Y.: Surface
renewal analysis: a new method to obtain scalar fluxes, Agr. Forest
Meteorol., 74, 119–137, 1995.
Peñuelas, J. and Staudt, M.: BVOCs and global change, Trends Plant Sci.,
15, 133–144, https://doi.org/10.1016/j.tplants.2009.12.005, 2010.
Pyle, J. A., Warwick, N. J., Harris, N. R. P., Abas, M. R., Archibald, A.
T., Ashfold, M. J., Ashworth, K., Barkley, M. P., Carver, G. D., Chance, K.,
Dorsey, J. R., Fowler, D., Gonzi, S., Gostlow, B., Hewitt, C. N., Kurosu, T.
P., Lee, J. D., Langford, S. B., Mills, G., Moller, S., MacKenzie, A. R.,
Manning, A. J., Misztal, P., Nadzir, M. S. M., Nemitz, E., Newton, H. M.,
O'Brien, L. M., Ong, S., Oram, D., Palmer, P. I., Peng, L. K., Phang, S. M.,
Pike, R., Pugh, T. A. M., Rahman, N. A., Robinson, A. D., Sentian, J.,
Samah, A. A., Skiba, U., Ung, H. E., Yong, S. E., and Young, P. J.: The
impact of local surface changes in Borneo on atmospheric composition at
wider spatial scales: Coastal processes, land-use change and air quality,
Philos. Trans. R. Soc. B Biol. Sci., 366, 3210–3224,
https://doi.org/10.1098/rstb.2011.0060, 2011.
R Core Team: R: A language and environment for statistical computing,
https://www.r-project.org/ (last access:1 December 2022), 2021.
Rap, A., Scott, C. E., Reddington, C. L., Mercado, L., Ellis, R. J.,
Garraway, S., Evans, M. J., Beerling, D. J., MacKenzie, A. R., Hewitt, C. N.,
and Spracklen, D. V.: Enhanced global primary production by biogenic aerosol
via diffuse radiation fertilization, Nat. Geosci., 11, 640–644,
https://doi.org/10.1038/s41561-018-0208-3, 2018.
Raupach, M. R.: Applying Lagrangian fluid mechanics to infer scalar source
distributions from concentration profiles in plant canopies, Agr. Forest
Meteorol., 47, 85–108, https://doi.org/10.1016/0168-1923(89)90089-0, 1989.
Raupach, M. R., Finnigan, J. J., and Brunet, Y.: Coherent Eddies and
Turbulence in Vegetation Canopies: The Mixing-Layer Analogy, Bound.-Lay.
Meteorol., 25th Anniv., Vol. 1970–1995, 351–382,
https://doi.org/10.1007/978-94-017-0944-6_15, 1996.
Ross, A. N.: Scalar Transport over Forested Hills, Bound.-Lay. Meteorol.,
141, 179–199, https://doi.org/10.1007/s10546-011-9628-y, 2011.
Rummel, U.: Turbulent exchange of ozone and nitrogen oxides between an
amazonian rain forest and the atmosphere, University of Bayreuth, urn: nbn:de:bvb:703-opus-2434, 164 pp., 2005.
Rummel, U., Ammann, C., and Meixner, F. X.: Characterizing turbulent trace
gas exchange above a dense tropical rain forest using wavelet and surface
renewal analysis, 15th AMS Symp. Bound. Layers Turbul., 1, 602–605, 2002.
Schmidt, M., Jochheim, H., Kersebaum, K. C., Lischeid, G., and Nendel, C.:
Gradients of microclimate, carbon and nitrogen in transition zones of
fragmented landscapes – a review, Agr. Forest Meteorol., 232, 659–671,
https://doi.org/10.1016/j.agrformet.2016.10.022, 2017.
Simon, E., Lehmann, B. E., Ammann, C., Ganzeveld, L., Rummel, U., Meixner,
F. X., Nobre, A. D., Araújo, A., and Kesselmeier, J.: Lagrangian
dispersion of 222Rn, H2O and CO2 within Amazonian rain forest, Agr. Forest
Meteorol., 132, 286–304, https://doi.org/10.1016/j.agrformet.2005.08.004, 2005.
Sterk, H. A. M., Steeneveld, G. J., Bosveld, F. C., Vihma, T., Anderson, P.
S., and Holtslag, A. A. M.: Clear-sky stable boundary layers with low winds
over snow-covered surfaces. Part 2: Process sensitivity, Q. J. Roy. Meteorol.
Soc., 142, 821–835, https://doi.org/10.1002/qj.2684, 2016.
Strong, C., Fuentes, J. D., and Baldocchi, D. D.: Reactive hydrocarbon flux
footprints during canopy senescence, Agr. Forest Meteorol., 127,
159–173, https://doi.org/10.1016/j.agrformet.2004.07.011, 2004.
Toomey, M., Friedl, M. A., Frolking, S., Hufkens, K., Klosterman, S.,
Sonnentag, O., Baldocchi, D. D., Bernacchi, C. J., Biraud, S. C., Bohrer,
G., Brzostek, E., Burns, S. P., Coursolle, C., Hollinger, D. Y., Margolis,
H. A., McCaughey, H., Monson, R. K., Munger, J. W., Pallardy, S., Phillips,
R. P., Torn, M. S., Wharton, S., Zeri, M., and Richardson, A. D.: Greenness
indices from digital cameras predict the timing and seasonal dynamics of
canopy-scale photosynthesis, Ecol. Appl., 25, 99–115,
https://doi.org/10.1890/14-0005.1, 2015.
Trumbore, S., Keller, M., Wofsy, S. C., and Da Costa, J. M.: Measurements of
Soil and Canopy Exchange Rates in the Amazon Rain Forest using 222Rn, J.
Geophys. Res., 95, 16865–16873,
doi:https://doi.org/10.1029/JD095iD10p16865, 1990.
Von Arnold, K., Nilsson, M., Hånell, B., Weslien, P., and Klemedtsson,
L.: Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous
forests, Soil Biol. Biochem., 37, 1059–1071,
https://doi.org/10.1016/j.soilbio.2004.11.004, 2005.
von Hippel, P. T.: Mean, median, and skew: Correcting a textbook rule, J.
Stat. Educ., 13, 1–13, https://doi.org/10.1080/10691898.2005.11910556, 2005.
Wharton, S., Ma, S., Baldocchi, D. D., Falk, M., Newman, J. F., Osuna, J. L.,
and Bible, K.: Influence of regional nighttime atmospheric regimes on canopy
turbulence and gradients at a closed and open forest in mountain-valley
terrain, Agr. Forest Meteorol., 237–238, 18–29,
https://doi.org/10.1016/j.agrformet.2017.01.020, 2017.
Woebbecke, D. M., Meyer, G. E., Von Bargen, K., and Mortensen, D. A.: Color
indices for weed identification under various soil, residue, and lighting
conditions, Trans. Am. Soc. Agr. Eng., 38, 259–269,
https://doi.org/10.13031/2013.27838, 1995.
Wolfe, G. M., Thornton, J. A., McKay, M., and Goldstein, A. H.: Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry, Atmos. Chem. Phys., 11, 7875–7891, https://doi.org/10.5194/acp-11-7875-2011, 2011.
Yaglom, M.: Similarity laws for constant-pressure and pressure-gradient
turbulent wall flows, Annu. Rev. Fluid Mech., 11, 505–540, 1979.
Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., Xie, D., and Zhang,
W.: Review of indirect optical measurements of leaf area index: Recent
advances, challenges, and perspectives, Agr. Forest Meteorol., 265, 390–411, https://doi.org/10.1016/j.agrformet.2018.11.033, 2019.
Zorzetto, E., Peltola, O., Grönholm, T., and Katul, G. G.: Intermittent
Surface Renewals and Methane Hotspots in Natural Peatlands, Bound.-Lay.
Meteorol., 180, 407–433, https://doi.org/10.1007/s10546-021-00637-x, 2021.
Short summary
In forests, the residence time of air influences canopy chemistry and atmospheric exchange. However, there have been few field observations. We use long-term open-air CO2 enrichment measurements to show median daytime residence times are twice as long when the trees are in leaf versus when they are not. Residence times increase with increasing atmospheric stability and scale inversely with turbulence. Robust parametrisations for large-scale models are available using common distributions.
In forests, the residence time of air influences canopy chemistry and atmospheric exchange....
Altmetrics
Final-revised paper
Preprint