Articles | Volume 23, issue 24
https://doi.org/10.5194/acp-23-15413-2023
https://doi.org/10.5194/acp-23-15413-2023
Opinion
 | Highlight paper
 | 
18 Dec 2023
Opinion | Highlight paper |  | 18 Dec 2023

Opinion: Tropical cirrus – from micro-scale processes to climate-scale impacts

Blaž Gasparini, Sylvia C. Sullivan, Adam B. Sokol, Bernd Kärcher, Eric Jensen, and Dennis L. Hartmann

Related authors

Atmospheric cloud-radiative heating in CMIP6 and observations and its response to surface warming
Aiko Voigt, Stefanie North, Blaž Gasparini, and Seung-Hee Ham
Atmos. Chem. Phys., 24, 9749–9775, https://doi.org/10.5194/acp-24-9749-2024,https://doi.org/10.5194/acp-24-9749-2024, 2024
Short summary
The impact of recent changes in Asian anthropogenic emissions of SO2 on sulfate loading in the upper troposphere and lower stratosphere and the associated radiative changes
Suvarna Fadnavis, Rolf Müller, Gayatry Kalita, Matthew Rowlinson, Alexandru Rap, Jui-Lin Frank Li, Blaž Gasparini, and Anton Laakso
Atmos. Chem. Phys., 19, 9989–10008, https://doi.org/10.5194/acp-19-9989-2019,https://doi.org/10.5194/acp-19-9989-2019, 2019
Short summary
Potential impact of carbonaceous aerosol on the upper troposphere and lower stratosphere (UTLS) and precipitation during Asian summer monsoon in a global model simulation
Suvarna Fadnavis, Gayatry Kalita, K. Ravi Kumar, Blaž Gasparini, and Jui-Lin Frank Li
Atmos. Chem. Phys., 17, 11637–11654, https://doi.org/10.5194/acp-17-11637-2017,https://doi.org/10.5194/acp-17-11637-2017, 2017
Short summary
Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding?
Blaž Gasparini, Steffen Münch, Laure Poncet, Monika Feldmann, and Ulrike Lohmann
Atmos. Chem. Phys., 17, 4871–4885, https://doi.org/10.5194/acp-17-4871-2017,https://doi.org/10.5194/acp-17-4871-2017, 2017
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024,https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
High ice water content in tropical mesoscale convective systems (a conceptual model)
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024,https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024,https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Effect of secondary ice production processes on the simulation of ice pellets using the Predicted Particle Properties microphysics scheme
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024,https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Simulated particle evolution within a winter storm: contributions of riming to radar moments and precipitation fallout
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024,https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary

Cited articles

Ackerman, T. P., Liou, K.-N., Valero, P. J. F., and Pfister, L.: Heating Rates in Tropical Anvils, J. Atmos. Sci., 45, 1606–1623, https://doi.org/10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2, 1988. a, b, c
Albern, N., Voigt, A., Buehler, S. A., and Grützun, V.: Robust and Nonrobust Impacts of Atmospheric Cloud-Radiative Interactions on the Tropical Circulation and Its Response to Surface Warming, Geophys. Res. Lett., 45, 8577–8585, https://doi.org/10.1029/2018GL079599, 2018. a, b
Alexander, M. J. and Pfister, L.: Gravity wave momentum flux in the lower stratosphere over convection, Geophys. Res. Lett., 22, 2029–2032, https://doi.org/10.1029/95GL01984, 1995. a
Amell, A., Eriksson, P., and Pfreundschuh, S.: Ice water path retrievals from Meteosat-9 using quantile regression neural networks, Atmos. Meas. Tech., 15, 5701–5717, https://doi.org/10.5194/amt-15-5701-2022, 2022. a
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds., Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013. a
Download
Executive editor
This article offers a wide ranging review of current understanding of the role various tropical cirrus cloud types play in the redistribution of water within the atmosphere and how they affect the changing Earth's energy balance by reflecting sunlight and preventing the escape of thermal energy to outer space. Improved understanding of these dynamics has been identified as critical for predicting whether such clouds may amplify or slow future global climate change. A clear exposition is provided of the various methods used to study tropical cirrus cloud characteristics and processes, including remote sensing, in situ measurements, modeling and laboratory work. Key questions include identifying how small-scale microphysical processes affect larger cloud structure, and how cirrus altitude and extent responds to changing radiation and thermodynamic profiles. A call is made not only for improved representations of cloud processes at finer scales, but also for a more holistic approach using a hierarchy of model detail. Such efforts would enable new knowledge obtained from studying even the smallest scales to be more readily placed within a broader context applicable to climate studies.
Short summary
Tropical cirrus clouds are essential for climate, but our understanding of these clouds is limited due to their dependence on a wide range of small- and large-scale climate processes. In this opinion paper, we review recent advances in the study of tropical cirrus clouds, point out remaining open questions, and suggest ways to resolve them.
Altmetrics
Final-revised paper
Preprint