Articles | Volume 23, issue 23
https://doi.org/10.5194/acp-23-14735-2023
https://doi.org/10.5194/acp-23-14735-2023
Research article
 | 
29 Nov 2023
Research article |  | 29 Nov 2023

Development, intercomparison, and evaluation of an improved mechanism for the oxidation of dimethyl sulfide in the UKCA model

Ben A. Cala, Scott Archer-Nicholls, James Weber, N. Luke Abraham, Paul T. Griffiths, Lorrie Jacob, Y. Matthew Shin, Laura E. Revell, Matthew Woodhouse, and Alexander T. Archibald

Model code and software

BOXMOX files for Cala et al. acp-2023-42 (Version 1) A. Archibald, B. Cala, S. Archer-Nicholls, J. Weber, N. L. Abraham, P. T. Griffiths, L. Jacob, Y. M. Shin, L. E. Revell, and M. Woodhouse https://doi.org/10.5281/zenodo.10114476

Download
Short summary
Dimethyl sulfide (DMS)  is an important trace gas emitted from the ocean recognised as setting the sulfate aerosol background, but its oxidation is complex. As a result representation in chemistry-climate models is greatly simplified. We develop and compare a new mechanism to existing mechanisms via a series of global and box model experiments. Our studies show our updated DMS scheme is a significant improvement but significant variance exists between mechanisms.
Altmetrics
Final-revised paper
Preprint