Articles | Volume 23, issue 21
https://doi.org/10.5194/acp-23-14065-2023
https://doi.org/10.5194/acp-23-14065-2023
Research article
 | 
13 Nov 2023
Research article |  | 13 Nov 2023

The role of temporal scales in extracting dominant meteorological drivers of major airborne pollutants

Miaoqing Xu, Jing Yang, Manchun Li, Xiao Chen, Qiancheng Lv, Qi Yao, Bingbo Gao, and Ziyue Chen

Related authors

The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022,https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
Identifying the spatiotemporal variations in ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021,https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Regional variability of aerosol impacts on clouds and radiation in global kilometer-scale simulations
Ross J. Herbert, Andrew I. L. Williams, Philipp Weiss, Duncan Watson-Parris, Elisabeth Dingley, Daniel Klocke, and Philip Stier
Atmos. Chem. Phys., 25, 7789–7814, https://doi.org/10.5194/acp-25-7789-2025,https://doi.org/10.5194/acp-25-7789-2025, 2025
Short summary
A novel method to quantify the uncertainty contribution of aerosol–radiation interaction factors
Bishuo He and Chunsheng Zhao
Atmos. Chem. Phys., 25, 7765–7776, https://doi.org/10.5194/acp-25-7765-2025,https://doi.org/10.5194/acp-25-7765-2025, 2025
Short summary
Exploring the aerosol activation properties in coastal shallow convection using cloud- and particle-resolving models
Ge Yu, Yueya Wang, Zhe Wang, and Xiaoming Shi
Atmos. Chem. Phys., 25, 7527–7542, https://doi.org/10.5194/acp-25-7527-2025,https://doi.org/10.5194/acp-25-7527-2025, 2025
Short summary
Machine-learning-assisted inference of the particle charge fraction and the ion-induced nucleation rates during new particle formation events
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
Atmos. Chem. Phys., 25, 7431–7446, https://doi.org/10.5194/acp-25-7431-2025,https://doi.org/10.5194/acp-25-7431-2025, 2025
Short summary
Modeling CMAQ dry deposition treatment over the western Pacific: a distinct characteristic of mineral dust and anthropogenic aerosols
Steven Soon-Kai Kong, Joshua S. Fu, Neng-Huei Lin, Guey-Rong Sheu, and Wei-Syun Huang
Atmos. Chem. Phys., 25, 7245–7268, https://doi.org/10.5194/acp-25-7245-2025,https://doi.org/10.5194/acp-25-7245-2025, 2025
Short summary

Cited articles

Chen, Z., Xu, B., Cai, J., and Gao, B.: Understanding temporal patterns and characteristics of air quality in Beijing: A local and regional perspective, Atmos. Environ., 127, 303–315, 2016. 
Chen, Z., Cai, J., Gao, B., Xu, B., Dai, S., and He, B.: Detecting the causality influence of individual meteorological factors on local PM2.5 concentration in the jing-jin-ji region, Sci. Rep.-UK, 7, 40735, https://doi.org/10.1038/srep40735, 2017. 
Chen, Z., Xie, X., Cai, J., Chen, D., Gao, B., He, B., Cheng, N., and Xu, B.: Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective, Atmos. Chem. Phys., 18, 5343–5358, https://doi.org/10.5194/acp-18-5343-2018, 2018. 
Chen, Z., Chen, D., Xie, X., Cai, J., Zhuang, Y., Cheng, N., He, B., and Gao, B.: Spatial self-aggregation effects and national division of city-level PM2.5 concentrations in china based on spatio-temporal clustering, J. Clean. Prod., 207, 875–881, https://doi.org/10.1016/j.jclepro.2018.10.080, 2019a. 
Chen, Z., Zhuang, Y., Xie, X., Chen, D., Cheng, N., and Yang, L.: Understanding long-term variations of meteorological influences on ground ozone concentrations in beijing during 2006–2016, Environ. Pollut., 245, 29–37, https://doi.org/10.1016/j.envpol.2018.10.117, 2019b. 
Download
Short summary
Although the temporal-scale effects on PM2.5–meteorology associations have been discussed, no quantitative evidence has proved this before. Based on rare 3 h meteorology data, we revealed that the dominant meteorological factor for PM2.5 concentrations across China extracted at the 3 h and 24 h scales presented large variations. This research suggests that data sources of different temporal scales should be comprehensively considered for better attribution and prevention of airborne pollution.
Share
Altmetrics
Final-revised paper
Preprint