Articles | Volume 23, issue 21
https://doi.org/10.5194/acp-23-14065-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-14065-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of temporal scales in extracting dominant meteorological drivers of major airborne pollutants
Miaoqing Xu
Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing 100875, China
Hubei Provincial Academy of Eco-environmental Sciences (Hubei Eco-environmental Engineering Assessment Center), Wuhan 430070, China
Jing Yang
Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing 100875, China
Manchun Li
School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
Xiao Chen
Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing 100875, China
Qiancheng Lv
Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing 100875, China
Qi Yao
Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing 100875, China
Bingbo Gao
College of Land Science and Technology, China Agricultural University, Beijing 100083, China
Ziyue Chen
CORRESPONDING AUTHOR
Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing 100875, China
Related authors
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022, https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
Short summary
The potential degradation of mainstream global fire products leads to large uncertainty in the effective monitoring of wildfires and their influence. To fill this gap, we produced a Fengyun-3D (FY-3D) global active fire product with a similar spatial and temporal resolution to MODIS fire products, aiming to serve as continuity and a replacement for MODIS fire products. The FY-3D fire product is an ideal tool for global fire monitoring and can be preferably employed for fire monitoring in China.
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021, https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary
Short summary
We employed ground observations of ozone and satellite products of HCHO and NO2 to investigate spatiotemporal variations of ozone formation regimes across China. Two different models were employed for determining the crucial thresholds that separate three ozone formation regimes, including NOx-limited, VOC-limited, and transitional regimes. The close output from two different models provides a reliable reference for better understanding ozone formation regimes.
Bowen Niu, Quanlong Feng, Bingwen Qiu, Shuai Su, Xinmin Zhang, Rongji Cui, Xinhong Zhang, Fanli Sun, Wenhui Yan, Siyuan Zhao, Hanyu Shi, Cong Ou, Xiaolu Yan, Jianhua Gong, Gaofei Yin, Jianxi Huang, Jiantao Liu, Bingbo Gao, Xiaochuang Yao, Jianyu Yang, and Dehai Zhu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-538, https://doi.org/10.5194/essd-2024-538, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We have proposed a novel framework to generate the firstly publicly released 10-m global PCGs map in 2020 derived from Sentinel-2. Results show that the global PCGs area is approximately 14,259.85 km² in 2020, mainly distributed between 30° N and 40° N. China, not only has the largest area of PCGs in Asia but also ranks first worldwide, with a PCGs area of 8,224.90 km², making up 57.67 % of the global and 83.29 % of the Asia. The overall accuracy of our Global-PCG-10 is satisfactory of 92.08 %.
Jie Chen, Qiancheng Lv, Shuang Wu, Yelu Zeng, Manchun Li, Ziyue Chen, Enze Zhou, Wei Zheng, Cheng Liu, Xiao Chen, Jing Yang, and Bingbo Gao
Earth Syst. Sci. Data, 15, 1911–1931, https://doi.org/10.5194/essd-15-1911-2023, https://doi.org/10.5194/essd-15-1911-2023, 2023
Short summary
Short summary
The Himawari-8 fire product is the mainstream fire product with the highest temporal resolution, yet it presents large uncertainties and is not suitable for reliable real-time fire monitoring in China. To address this issue, we proposed an adaptive hourly NSMC (National Satellite Meteorological Center) Himawari-8 fire product for China; the overall accuracy increased from 54 % (original Himawari product) to 80 %. This product can largely enhance real-time fire monitoring and relevant research.
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022, https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
Short summary
The potential degradation of mainstream global fire products leads to large uncertainty in the effective monitoring of wildfires and their influence. To fill this gap, we produced a Fengyun-3D (FY-3D) global active fire product with a similar spatial and temporal resolution to MODIS fire products, aiming to serve as continuity and a replacement for MODIS fire products. The FY-3D fire product is an ideal tool for global fire monitoring and can be preferably employed for fire monitoring in China.
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021, https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary
Short summary
We employed ground observations of ozone and satellite products of HCHO and NO2 to investigate spatiotemporal variations of ozone formation regimes across China. Two different models were employed for determining the crucial thresholds that separate three ozone formation regimes, including NOx-limited, VOC-limited, and transitional regimes. The close output from two different models provides a reliable reference for better understanding ozone formation regimes.
Cited articles
Chen, Z., Xu, B., Cai, J., and Gao, B.: Understanding temporal patterns and characteristics of air quality in Beijing: A local and regional perspective, Atmos. Environ., 127, 303–315, 2016.
Chen, Z., Cai, J., Gao, B., Xu, B., Dai, S., and He, B.: Detecting the causality influence of individual meteorological factors on local PM2.5 concentration in the jing-jin-ji region, Sci. Rep.-UK, 7, 40735, https://doi.org/10.1038/srep40735, 2017.
Chen, Z., Xie, X., Cai, J., Chen, D., Gao, B., He, B., Cheng, N., and Xu, B.: Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective, Atmos. Chem. Phys., 18, 5343–5358, https://doi.org/10.5194/acp-18-5343-2018, 2018.
Chen, Z., Chen, D., Xie, X., Cai, J., Zhuang, Y., Cheng, N., He, B., and Gao, B.: Spatial self-aggregation effects and national division of city-level PM2.5 concentrations in china based on spatio-temporal clustering, J. Clean. Prod., 207, 875–881, https://doi.org/10.1016/j.jclepro.2018.10.080, 2019a.
Chen, Z., Zhuang, Y., Xie, X., Chen, D., Cheng, N., and Yang, L.: Understanding long-term variations of meteorological influences on ground ozone concentrations in beijing during 2006–2016, Environ. Pollut., 245, 29–37, https://doi.org/10.1016/j.envpol.2018.10.117, 2019b.
Chen, Z., Chen, D., Kwan, M.-P., Chen, B., Gao, B., Zhuang, Y., Li, R., and Xu, B.: The control of anthropogenic emissions contributed to 80 % of the decrease in PM2.5 concentrations in Beijing from 2013 to 2017, Atmos. Chem. Phys., 19, 13519–13533, https://doi.org/10.5194/acp-19-13519-2019, 2019c.
Chen, Z., Chen, D., Zhao, C., Kwan, M.P., Cai, J., Zhuang, Y., Zhao, B., Wang, X., Chen, B., Yang, J., Li, R., He, B., Gao, B., Wang, K., and Xu, B.: Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism, Environ. Int., 139, 105558, https://doi.org/10.1016/j.envint.2020.105558, 2020a.
Chen, Z., Li, R., Chen, D., Zhuang, Y., Gao, B., Yang, L., and Li, M.: Understanding the causal influence of major meteorological factors on ground ozone concentrations across china, J. Clean. Prod., 242, 118498, https://doi.org/10.1016/j.jclepro.2019.118498, 2020b.
Chen, Z., Xu, M., Gao, B., Sugihara, G., Shen, F., Cai, Y., Li, A., Wu, Q., Yang, L., Yao, Q., Chen, X., Yang, J., Zhou, C., and Li, M.: Causation inference in complicated atmospheric environment, Environ. Pollut., 303, 119057, https://doi.org/10.1016/j.envpol.2022.119057, 2022.
Cheng, N., Zhang, D., Li, Y., Xie, X., Chen, Z., Meng, F., Gao, B., and He, B.: Spatio-temporal variations of PM2.5 concentrations and the evaluation of emission reduction measures during two red air pollution alerts in beijing, Sci. Rep.-UK, 7, 8220, https://doi.org/10.1038/s41598-017-08895-x, 2017.
Cheng, N., Chen, Z., Sun, F., Sun, R., Dong, X., Xie, X., and Xu, C.: Ground ozone concentrations over Beijing from 2004 to 2015: Variation patterns, indicative precursors and effects of emission-reduction, Environ. Pollut., 237, 262–274, https://doi.org/10.1016/j.envpol.2018.02.051, 2018.
Cheng, N., Li, R., Xu, C., Chen, Z., Chen, D., Meng, F., Cheng, B., Ma, Z., Zhuang, Y., He, B., and Gao, B.: Ground ozone variations at an urban and a rural station in Beijing from 2006 to 2017: Trend, meteorological influences and formation regimes, J. Clean. Prod., 235, 11–20, https://doi.org/10.1016/j.jclepro.2019.06.204, 2019.
China Meteorological Administration: https://www.cma.gov.cn/en2014/, [data set], last access: 25 January 2023.
China National Environmental Monitoring Center: http://www.cnemc.cn/, [data set], last access: 25 January 2023.
Fu, H., Zhang, Y., Liao, C., Mao, L., Wang, Z., and Hong, N.: Investigating PM2.5 responses to other air pollutants and meteorological factors across multiple temporal scales, Sci. Rep.-UK, 10, 1–10, https://doi.org/10.1038/s41598-020-72722-z, 2020.
Gao, B., Li, M., Wang, J., and Chen, Z.: Temporally or spatially? Causation inference in Earth System Sciences, Sci. Bull., 67, 232–235, https://doi.org/10.1016/j.scib.2021.10.002, 2022.
Gao, J., Woodward, A., Vardoulakis, S., Kovats, S., Wilkinson, P., Li, L., Xu, L., Li, J., Yang, J., Li, J., Cao, L., Liu, X., Wu, H., and Liu, Q.: Haze, public health and mitigation measures in China: A review of the current evidence for further policy response, Sci. Total Environ., 578, 148–157, https://doi.org/10.1016/j.scitotenv.2016.10.231, 2017.
Guo, J., Chen, X., Su, T., Liu, L., Zheng, Y., Chen, D., Li, J., Xu, H., Lv, Y., He, B., Li, Y., Hu, X., Ding, A., and Zhai, P.: The climatology of lower tropospheric temperature inversions in China from radiosonde measurements: roles of black carbon, local meteorology, and large-scale subsidence, J. Climate., 33, 9327–9350, https://doi.org/10.1175/JCLI-D-19-0278.1, 2020.
Gong, X., Kaulfas, A., Nair, U., and Jaffe, D. A.: Quantifying O3 impacts in urban areas due to wildfires using a generalized additive model, Environ. Sci. Technol., 51, 13216, https://doi.org/10.1021/acs.est.7b03130, 2017.
Hu, C., Kang, P., Jaffe, D. A., Li, C., Zhang, X., Wu, K., and Zhou, M.: Understanding the impact of meteorology on ozone in 334 cities of China, Atmos. Environ., 248, 118221, https://doi.org/10.1016/j.atmosenv.2021.118221, 2021a.
Hu, M., Wang, Y., Wang, S., Jiao, M., Huang, G., and Xia, B.: Spatial-temporal heterogeneity of air pollution and its relationship with meteorological factors in the Pearl River Delta, China, Atmos. Environ., 254, 118415, https://doi.org/10.1016/j.atmosenv.2021.118415, 2021b.
Kelly, F. J. and Fussell, J. C.: Air pollution and public health: emerging hazards and improved understanding of risk, Environ. Geochem. Hlth., 37, 631–649, https://doi.org/10.1007/s10653-015-9720-1, 2015.
Li, X., Hu, X., Shi, S., Shen, L., Luan, L., and Ma, Y.: Spatiotemporal variations and regional transport of air pollutants in two urban agglomerations in northeast china plain, Chin. Geogr. Sci. 29, 917–933, https://doi.org/10.1007/s11769-019-1081-8, 2019.
Nelson, M.: Biosphere 2's Lessons about Living on Earth and in Space, Space Sci. Technol., 2021, 8067539, https://doi.org/10.34133/2021/8067539, 2021.
Sugihara, G., May, R., Ye, H., Hsieh, C. H., Deyle, E., Fogarty, M., and Munch, S.: Detecting causality in complex ecosystems, Science, 338, 496–500, https://doi.org/10.1126/science.1227079, 2012.
Tai, A. P., Mickley, L. J., and Jacob, D. J.: Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change, Atmos. Environ., 44, 3976–3984, https://doi.org/10.1016/j.atmosenv.2010.06.060, 2010.
Wang, B., Liu, S., Du, Q., and Yan, Y.: Long term causality analyses of industrial pollutants and meteorological factors on PM2.5 concentrations in Zhejiang Province, in: 2018 5th International Conference on Information Science and Control Engineering (ICISCE), IEEE, 301–305 https://doi.org/10.1109/ICISCE.2018.00070, 2018.
Wang, X., Zhang, R., Tan, Y., and Yu, W.: Dominant synoptic patterns associated with the decay process of PM2.5 pollution episodes around Beijing, Atmos. Chem. Phys., 21, 2491–2508, https://doi.org/10.5194/acp-21-2491-2021, 2021a.
Wang, N., Xu, J., Pei, C., Tang, R., Zhou, D., Chen, Y., Li, M., Deng, X., Deng, T., Huang, and Ding, A.: Air quality during COVID-19 lockdown in the Yangtze River Delta and the Pearl River Delta: Two different responsive mechanisms to emission reductions in China, Environ. Sci. Technol., 55, 5721–5730, https://doi.org/10.1021/acs.est.0c08383, 2021b.
Wang, Z., Li, R., Chen, Z., Yao, Q., Gao, B., Xu, M., Yang, L., Li, M., and Zhou, C.: The estimation of hourly PM2.5 concentrations across China based on a Spatial and Temporal Weighted Continuous Deep Neural Network (STWC-DNN), ISPRS J. Photogramm. Remote. Sens., 190, 38–55, https://doi.org/10.1016/j.isprsjprs.2022.05.011, 2021.
Xiao, Q., Geng, G., Liang, F., Wang, X., Lv, Z., Lei, Y., Huang, X., Zhang, Q., Liu, Y., and He, K.: Changes in spatial patterns of PM2.5 pollution in China 2000–2018: Impact of clean air policies, Environ. Int., 141, 105776, https://doi.org/10.1016/j.envint.2020.105776, 2020.
Xu, M., Yao, Q., Chen, D., Li, M., Li, R., Gao, B., Zhao, B., and Chen, Z.: Estimating the impact of ground ozone concentrations on crop yields across China from 2014 to 2018: A multi-model comparison, Environ. Pollut., 283, 117099, https://doi.org/10.1016/j.envpol.2021.117099, 2021.
Yang, Z., Yang, J., Li, M., Chen, J., and Ou, C. Q.: Nonlinear and lagged meteorological effects on daily levels of ambient PM2.5 and O3: Evidence from 284 Chinese cities, J. Clean. Prod., 278, 123931, https://doi.org/10.1016/j.jclepro.2020.123931, 2017.
Yin, P., Guo, J., Wang, L., Fan, W., Lu, F., Guo, M., Moreno, S. B. R., Wang, Y., Wang, H., Zhou, M., and Dong, Z.: Higher risk of cardiovascular disease associated with smaller size-fractioned particulate matter, Environ. Sci. Tech. Lett., 7, 95–101, https://doi.org/10.1021/acs.estlett.9b00735, 2020.
Yousefian, F., Faridi, S., Azimi, F., Aghaei, M., Shamsipour, M., Yaghmaeian K., and Hassanvand, M. S.: Temporal variations of ambient air pollutants and meteorological influences on their concentrations in tehran during 2012–2017, Sci. Rep.-UK, 10, 292, https://doi.org/10.1038/s41598-019-56578-6, 2021.
Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11031–11041, https://doi.org/10.5194/acp-19-11031-2019, 2019.
Zhan, D., Kwan, M. P., Zhang, W., Wang, S., and Yu, J.: Spatiotemporal variations and driving factors of air pollution in China, Int. J. Environ. Res., 14, 1538, https://doi.org/10.3390/ijerph14121538, 2017.
Zhang, Y., Guo, J., Yang, Y., Wang, Y., and Yim, S.: Vertical wind shear modulates particulate matter pollutions: A perspective from Radar wind profiler observations in Beijing, China, Remote Sens-Basel., 12, 546, https://doi.org/10.1127/0941-2948/2001/0010-0443, 2020.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zhong, Q., Tao, S., Ma, J., Liu, J., Shen, H., Shen, G., Guan, D., Yun, X., Meng, W., Yu, X., Cheng, H., Zhu, D., Wan, Y., and Hu, J.: PM2.5 reductions in Chinese cities from 2013 to 2019 remain significant despite the inflating effects of meteorological conditions, One Earth, 4, 448–458, https://doi.org/10.1016/j.oneear.2021.02.003, 2021.
Zhou, L., Chen, X., and Tian, X.: The impact of fine particulate matter (PM2.5) on China's agricultural production from 2001 to 2010, J. Clean. Prod., 178, 133–141, https://doi.org/10.1016/j.jclepro.2017.12.204, 2018.
Short summary
Although the temporal-scale effects on PM2.5–meteorology associations have been discussed, no quantitative evidence has proved this before. Based on rare 3 h meteorology data, we revealed that the dominant meteorological factor for PM2.5 concentrations across China extracted at the 3 h and 24 h scales presented large variations. This research suggests that data sources of different temporal scales should be comprehensively considered for better attribution and prevention of airborne pollution.
Although the temporal-scale effects on PM2.5–meteorology associations have been discussed, no...
Altmetrics
Final-revised paper
Preprint