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Abstract. The influence of individual meteorological factors on different airborne pollutants has been widely
studied. However, few studies have considered the effect of temporal scales on the extracted pollutant–
meteorology association. Based on convergent cross mapping (CCM), we compared the influence of major
meteorological factors on PM2.5, PM10 and O3 concentrations in 2020 at the 3 and 24 h scales respectively.
In terms of the extracted dominant meteorological factor, the consistence between the analysis at the 3 and
24 h scales was relatively low, suggesting a large difference even from a qualitative perspective. In terms of the
mean p value, the effect of temporal scale on PM (PM2.5 and PM10)–meteorology association was consistent,
yet largely different from the temporal-scale effect on O3. Temperature was the most important meteorological
factor for PM2.5, PM10 and O3 across China at both the 3 and 24 h scales. For PM2.5 and PM10, the extracted
PM–temperature association at the 24 h scale was stronger than that at the 3 h scale. Meanwhile, for summer
O3, due to strong reactions between precursors, the extracted O3–temperature association at the 3 h scale was
much stronger. Due to the discrete distribution, the extracted association between all pollutants and precipita-
tion was much weaker at the 3 h scale. Similarly, the extracted PM–wind association was notably weaker at
the 3 h scale. Due to precursor transport, summertime O3–wind association was stronger at the 3 h scale. For
atmospheric pressure, the pollutant–pressure association was weaker at the 3 h scale except for summer, when
interactions between atmospheric pressure and other meteorological factors were strong. From the spatial per-
spective, pollutant–meteorology associations at 3 and 24 h were more consistent in the heavily polluted regions,
while extracted dominant meteorological factors for pollutants demonstrated more difference at 3 and 24 h in the
less polluted regions. This research suggests that temporal scales should be carefully considered when extracting
natural and anthropogenic drivers for airborne pollution.
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1 Introduction

Since 2013, PM2.5-induced haze events have increased dra-
matically across China (Chen et al., 2020a; Wang et al.,
2021a). To address this issue, a series of emission-cut poli-
cies were released and strictly implemented, leading to sig-
nificantly reduced PM2.5 concentrations at the national scale
(Wang et al., 2021b, 2022; Xiao et al., 2020). Conversely,
with the improvement of PM2.5 pollution, a soaring ground
ozone level has been observed since 2013, making compos-
ite airborne pollution a rising challenge (Gong et al., 2017;
Zheng et al., 2018; Nelson et al., 2021). Against this back-
ground, a comprehensive understanding of their composite
airborne pollution characteristics and driving factors is key
for effectively predicting and managing composite airborne
pollutants (Chen et al., 2018, 2019a, c, 2020a).

The major influential factors for airborne pollutants are hu-
man factors, which closely relate to their compositions and
formation (Cheng et al., 2017; Zhan et al., 2017), and me-
teorological factors, which closely relate to their dispersion
(Chen et al., 2020; Guo et al., 2020; Zhang et al., 2020).
Given the strong negative effects of airborne pollution on
public health (Kelly et al., 2015; Gao et al., 2017; Yin et al.,
2020) and crop yields (Zhou et al., 2018; Xu et al., 2021),
massive studies have been conducted on the human and me-
teorological attribution of composite airborne pollution. For
meteorological influencing factors, Yang et al. (2021) stud-
ied 284 major cities in China on daily scales and found that
PM2.5 was mainly affected by wind, temperature and rain-
fall, while O3 was mainly affected by temperature, relative
humidity and sunshine duration. Wang et al. (2018) estab-
lished 12 joint regression models and found that the lead-
ing meteorological factors of PM2.5 pollution in Zhejiang,
based on hour-scale data, were temperature and wind speed.
Wang et al. (2018) also found that the emission influencing
factor of PM2.5 pollution in Zhejiang, based on the analy-
sis of hour-scale data, was NO2. Zhai et al. (2019) estimated
the correlation between PM2.5 concentration and meteoro-
logical factors at the 10 d scale and found that the variation
trend of PM2.5 and SO2, NO2 and CO was consistent, and
SO2 emission control was the main driving factor for PM2.5
variations. In addition to the variation of seasons and geo-
graphical locations, the temporal resolutions of data sources
can be major reasons for the distinct outputs. Fu et al. (2020)
used integrated empirical mode decomposition (EEMD) to
decompose the time series data of PM2.5, five other atmo-
spheric pollutants and six meteorological types. On the daily
scale, PM2.5 was positively correlated with O3 and the daily
maximum and minimum temperatures and negatively corre-
lated with air pressure, while PM2.5 presented an opposite
association with these factors at the monthly scale.

Despite many studies having been conducted, notable in-
consistence of dominant meteorological and anthropogenic
drivers for airborne pollutants was observed between the
findings from previous studies. Even if some studies re-

vealed different pollutant–meteorology associations at mul-
tiple temporal scales, such research conducted in isolated
cities cannot reflect the spatiotemporal variations of tempo-
ral effects across China. More importantly, due to the lack of
high-temporal-resolution data, previous studies were mainly
conducted at the daily scale, while many scholars believe that
the application of high-temporal-resolution data leads to a
better extraction of pollutant–meteorology association.

To fill this gap, we employed the data of major airborne
pollutants, including PM2.5, PM10 and O3; meteorological
factors; and some precursors across China with a tempo-
ral resolution of 3 and 24 h respectively. By comparing the
major drivers for airborne pollutants extracted using data
sources with different temporal resolutions, the role of tem-
poral scales in the attribution of composite airborne pollution
can be comprehensively understood. This research aims to
improve the understanding of how mechanisms and different
factors may affect airborne pollutants under various temporal
scales and shed useful light on a better management of com-
posite airborne pollution through more effective emission-cut
measures.

2 Methodology

2.1 Data sources

We obtained 3-hourly meteorological data across China for
January–December 2020 from the China Meteorological Ad-
ministration. The meteorological variables used in this study
included temperature, precipitation, wind direction, wind
speed and atmospheric pressure, which were closely related
to PM2.5, PM10 (Chen et al., 2020a) and O3 concentrations
(Chen et al., 2020b). For cities with more than one obser-
vation station, the average of records from multiple stations
was employed. For a multi-scale comparison, the 24 h mete-
orological data were produced by conducting an average op-
eration on the 3 h meteorological data. Previous studies have
proved that the pollutant–meteorology association presented
notable seasonal variations, and if convergent cross mapping
(CCM) were conducted based on a whole year’s data, the
p value would not be significant in many cases and thus
the comparison cannot be made. Therefore, in this research,
we considered the experiments based on the respective sea-
sonal data. For analysing seasonal variations of pollutant–
meteorology association, December, January and February
were set as winter; March, April and May as spring; June,
July and August as summer and September, October and
November as autumn.

Hourly concentration data of PM2.5, PM10 and O3 during
the same period were obtained from China National Envi-
ronmental Monitoring Centre, CNEMC. The meteorological
data were matched according to cities and air pollutant sta-
tions, and the pollution monitoring station nearest the city
was selected as its surrounding meteorological conditions. A
total of 101 cities were successfully matched. For cities with

Atmos. Chem. Phys., 23, 14065–14076, 2023 https://doi.org/10.5194/acp-23-14065-2023



M. Xu et al.: The role of temporal scales in extracting dominant meteorological drivers 14067

more than one observation station, the average of records
from multiple stations was employed. To match the temporal
scale of meteorological data, the per-3 and per-24 h pollutant
data were produced by conducting an average operation on
the hourly concentration data.

2.2 Advanced causation model

Since 2013, when PM2.5 pollution was observed across
China, research on airborne pollution has been widely con-
ducted. Amongst a diversity of topics, research on the me-
teorological influences on major airborne pollutants (e.g.
PM2.5 and O3) has received growing emphasis. However,
the major challenge for extracting and comparing the influ-
ence of individual meteorological factors lies in the complex
interactions between multiple meteorological factors, which
cause large uncertainties when applying traditional correla-
tion analysis (Chen et al., 2020a). To address this issue, we
employed an advanced causation model, convergent cross
mapping (CCM), to quantify the influence of each meteoro-
logical factor on PM2.5, PM10 and O3. By removing the in-
fluence of disturbing factors, CCM (Sugihara et al., 2012) is
capable of extracting reliable coupling between two variables
in complex ecosystems. CCM calculates the causal influence
of variable A on the target variable B as the p value, ranging
from 0 to 1. Like the correlation coefficient, the p value can
be used for comparing the influence of multiple variables on
the target variable.

Thanks to its advantage in effectively extracting the asym-
metric, bidirectional association between two variables and
identifying mirage correlation in complex ecosystems with
a diversity of variables, we have widely employed CCM to
evaluate the influence of multiple meteorological factors on
PM2.5 (Chen et al., 2017, 2018), O3 (Cheng et al., 2019;
Chen et al., 2020b) and net primary production (NPP) (Gao
et al., 2022) and achieved reliable outputs. Based on a multi-
model comparison experiment, our recent research (Chen et
al., 2022) proved that CCM was the most suitable model for
causation inference in complex atmospheric environments.
CCM is specifically designed to deal with the nonlinear rela-
tionship between two variables and is fully suitable for the
nonlinear relationship between atmospheric factors. Com-
pared to other mainstream statistical models, CCM was ad-
vantageous in identifying unique pollutant–meteorology as-
sociation in local areas while maintaining general charac-
teristics of pollutant–meteorology association across China.
Furthermore, CCM-generated meteorology–pollutant associ-
ations were highly consistent with prior knowledge. For this
research we also employed CCM to quantify and compare
the influence of temperature, precipitation, wind speed, wind
direction and atmospheric pressure on PM2.5, PM10 and O3
concentrations. CCM automatically considers all possible in-
teraction forms and lag effects between the time series of
two variables, which effectively reduces the influence of in-
terference and avoids the influence of other factors. CCM is

largely automatic in removing the uncertainty of manual set-
tings, and only the setting of three parameters is required: τ
(time lag), E (number of dimensions) and b (number of near-
est neighbours). For this research, τ , E and b were set as 2,
3 and 4 d, as per previous studies (Chen et al., 2018, 2020b).

Based on rarely employed 3 h meteorological data sources,
we compared the effects of temporal scales on the extracted
pollutant–meteorology causation. Due to the data limitation
at the 3 h scale, which did not include humidity and sunshine
duration, we could only consider a limited number of me-
teorological factors (temperature, precipitation, wind speed,
wind direction and atmospheric pressure). This is fewer than
in our previous studies based on meteorological data at the
24 h scale and why some meteorological factors (e.g. humid-
ity and sunshine duration) were missed in this research. How-
ever, since we compared the same set of these major meteo-
rological factors at both 3 and 24 h scales, the calculated con-
sistence and difference could effectively reveal the potential
effects of different temporal scales on the quantitative (the
detailed p value) and qualitative (the dominant meteorolog-
ical factor) findings of pollutant–meteorology association.
The limited number of meteorological factors had limited in-
fluence on the temporal effects on pollutant–meteorology as-
sociation. This is because CCM simply considers the causal-
ity between the target variable and one influencing variable
and removes the influence from other variables (Sugihara et
al., 2012; Chen et al., 2020). Another limitation of these data
was that this data set only included 1 year’s data and thus
the inter-annual variation of temporal effects on pollutant–
meteorology association could not be revealed. In this re-
search, we revealed the existence of strong temporal effects
on pollutant–meteorology association, which can be fully
supported by the 1-year data with four seasons (four com-
plete time series with more than 90 records at 24 h scale and
720 records at 3 h scale). Meanwhile, the temporal variation
of temporal effects on pollutant–meteorology association and
its influencing factors should be further investigated in future
studies, when the long-time-series data sets of 3 h meteoro-
logical data become available.

3 Results

3.1 The comparison of dominant meteorological factors
for PM2.5, PM10 and O3 across China at 3 and 24 h
scales

Based on CCM, we calculated the dominant meteorological
factors for seasonal O3 (Table 1), PM2.5 (Table 2) and PM10
(Table 3) concentrations at the 3 and 24 h scales respectively.
By comparing the extracted pollutant–meteorology associa-
tion, we calculated the number of cities with the same me-
teorological factor at different temporal scales (Table 4). As
shown in Table 4, the consistence between dominant mete-
orological factors for PM2.5, PM10 and O3 at two temporal
scales varied significantly (ranging from 31.68 %–61.29 %),
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Figure 1. The violin chart of the p value of individual meteorological factors for PM2.5, PM10 and O3 across China at 3 and 24 h scales.

Table 1. The number of cities with this meteorological factor as the dominant meteorological factor for O3.

O3 3 h 24 h

Spring Summer Autumn Winter Spring Summer Autumn Winter

Temperature 64 78 75 42 59 38 58 33
Precipitation 15 9 8 43 21 18 15 47
Atmospheric pressure 7 5 4 3 8 8 4 3
Wind direction 6 4 5 1 8 23 14 7
Wind speed 9 5 9 12 5 14 10 11

indicating the temporal scale played a large role in the anal-
ysis of pollutant–meteorology association. As can be seen
from Tables 1, 2 and 3, the consistence between dominant
meteorological factors extracted at 3 and 24 h in autumn and
winter was higher than that in spring and summer. For exam-
ple, temperature, precipitation etc. for O3, PM2.5 and PM10
were mostly more dominant in autumn and winter than in
spring and summer. This phenomenon indirectly suggests
that meteorological influences on airborne pollutants were
stronger in autumn and winter, and thus the role of the dom-
inant meteorological factor was highlighted.

As can be seen from Table 1, at the 3 h scale for O3, the
number of cities with precipitation as the dominant influenc-
ing factor was largest in winter, with 43 cities, while the num-
ber of cities with temperature was largest in spring, summer
and autumn, with 64 cities, 78 cities and 75 cities respec-
tively. As one can see from Tables 2 and 3, for PM2.5 and
PM10, the number of cities with temperature as the dominant
meteorological factor was largest in all seasons. As a com-
parison, at the 24 h scale for O3, the number of cities with
temperature as the dominant influencing factor was largest
in spring, with 59 cities, and for PM2.5 and PM10, the num-

ber of cities with temperature as the dominant influencing
factor was largest in autumn, with 61 and 55 cities respec-
tively, which was consistent with previous studies (Wang et
al., 2018; Yang et al., 2021), while the number of cities with
precipitation was largest in winter, with 47, 35 and 36 cities
respectively.

However, the consistence of dominant factors between two
temporal scales remained less than 50 %. The study identified
the dominant meteorological factors through CCM according
to the p value. While the p value of the dominant meteoro-
logical factor was largest, it may be only slightly larger than
the p value of other meteorological factors at the 24 h (3 h)
scale and may be smaller than the p value of another fac-
tor, which led to the change of dominant factor, at the 3 h
(24 h) scale. In this case, if we simply consider the differ-
ence between the dominant meteorological factor (with the
largest p) at 3 and 24 h scales, the analysis was qualitative
and not sufficient, which cannot comprehensively reveal the
difference of pollutant–meteorology association at different
temporal scales. Therefore, we further analysed the detailed
p values for all meteorological factors acting on O3, PM2.5
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Table 2. The number of cities with this meteorological factor as the dominant meteorological factor for PM2.5.

PM2.5 3 h 24 h

Spring Summer Autumn Winter Spring Summer Autumn Winter

Temperature 62 60 79 59 44 43 61 30
Precipitation 7 9 8 19 22 19 14 35
Atmospheric pressure 12 8 4 2 3 8 6 5
Wind direction 12 12 8 6 22 16 13 13
Wind speed 8 12 2 15 10 15 7 18

and PM10 at two temporal scales to present a quantitative and
comprehensive comparison.

3.2 The comparison of quantified influence of different
meteorological factors on PM2.5, PM10 and O3
across China at 3 and 24 h scales

The detailed distribution of influence of individual meteo-
rological factors on O3, PM2.5 and PM10 concentrations is
presented in Fig. 1. Generally, meteorological influences on
airborne pollutants presented a consistent trend between the
3 and 24 h scales, characterised with a generally similar vi-
olin shape. According to Fig. 1, the violin shape and range
of 3 h pollutant–meteorology is much sharper than the 24 h
pollutant–meteorology, indicating that the 3 h temporal scale
was more sensitive to revealing the variation of pollutant–
meteorology interactions. As shown in Table 5, similarly to
the number of dominant meteorological factors, the mean of
calculated p values across China also proved that tempera-
ture exerted a much stronger influence on PM2.5, PM10 and
O3 than other factors. Furthermore, according to the violin
shape of different pollutants, we found that the pattern of
PM2.5 between meteorology and PM10 between meteorol-
ogy was generally consistent and largely different from the
pattern of O3 meteorology, indicating that meteorological in-
fluences on particulate matters and gaseous pollutants were
different. The major differences of pollutant–meteorology in-
teractions at 3 and 24 h are explained in this section.

For all three airborne pollutants, temperature exerted the
strongest influence across China in all seasons in terms of
the largest mean p. High temperature promotes photochemi-
cal reactions and produces more PM2.5, PM10 and other pre-
cursors of secondary pollutants, leading to higher concentra-
tions of PM2.5 and PM10. High temperature may also lead
to increased evaporation loss of PM2.5 and PM10, including
NO3− salt and other volatile or semi-volatile components,
resulting in decreased concentrations of PM2.5 and PM10.
For PM2.5 and PM10, the calculated influence of temperature
at the 24 h scale was consistently larger than that at the 3 h
scale. This may be attributed to the fact that the secondary
reactions of the precursors of PM were less intensive (Chen
et al., 2016, 2020) and thus the temperature variation within
24 h exerted a stronger influence than 3 h temperature vari-

ation. Meanwhile, the influence of temperature on O3 pre-
sented a notable seasonal pattern. For the relatively cold sea-
sons of winter and spring, when O3 concentrations were rel-
atively low, the influence of temperature at the 24 h scale was
larger than that at the 3 h scale. For summer, when O3 con-
centrations were the highest, the influence of temperature at
3 h scale was much larger than that at the 24 h scale. This
is mainly attributed to the fact that the high temperature in
summer was the major trigger for quick reactions between
precursors and high O3 concentrations. Therefore, short-term
variations of temperature could strongly influence O3 con-
centrations in summer (Cheng et al., 2018, 2019).

For precipitation, since the distribution of precipitation in
a day’s time is not unified, and there may be no precipitation
in many 3 h slots, the mean p of precipitation across China at
the 3 h scale was weaker than that at the 24 h scale. As a com-
parison, at the 24 h scale the occurrence of precipitation was
significantly enhanced and thus the influence of precipitation
on airborne pollutants was much stronger. Across China, the
precipitation intensity showed obvious seasonal variations,
and most regions may have the maximum value in summer
and minimum value in winter. The eastern region of China
is affected by monsoons in summer and autumn, and there is
a lot of precipitation. In winter, China receives less precipi-
tation due to the influence of winter winds. Accordingly, the
calculated p of summer precipitation for PM2.5, PM10 and
O3 at 24 h scale was remarkably larger than that at 3 h scale.

Previous studies (Chen et al., 2017, 2018, 2020) proved
that wind had a notable influence on PM. Similarly to pre-
cipitation, the daily distribution of wind is not unified, and
there may be calm wind conditions in many 3 h slots. There-
fore, the mean p of wind direction and wind speed on PM2.5
and PM10 at the 24 h scale was notably larger than that at the
3 h scale. Wind–O3 interactions presented notable seasonal
patterns. In the less polluted spring and winter, the mean p
of wind direction and wind speed at the 24 h scale was larger
than that at the 3 h scale. In summer, when O3 concentrations
were relatively high, the mean p of wind direction and wind
speed at the 3 h scale was larger.

Atmospheric pressure mainly affects the transport and ac-
cumulation of pollutants by indirectly influencing other me-
teorological factors (e.g. wind and precipitation). Therefore,
large uncertainties existed in the extracted pressure–pollutant
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Table 3. The number of cities with this meteorological factor as the dominant meteorological factor for PM10.

PM10 3 h 24 h

Spring Summer Autumn Winter Spring Summer Autumn Winter

Temperature 65 53 73 56 45 34 55 31
Precipitation 19 11 13 24 20 34 20 36
Atmospheric pressure 9 10 4 2 10 8 7 4
Wind direction 4 13 7 4 13 14 10 14
Wind speed 4 14 4 15 13 11 9 16

Table 4. The number of cities with the same dominant factor at both 3 and 24 h scales.

Spring Summer Autumn Winter

O3-meteorological elements 32 42 58 53
PM2.5-meteorological elements 36 42 62 42
PM10-meteorological elements 42 29 56 43

Figure 2. The location of all mentioned regions. Publisher’s re-
mark: please note that the above figure contains disputed territories.

causation. Generally, for PM2.5, PM10 and O3, the mean p
of atmospheric pressure across China at the 3 h scale was
weaker than that at the 24 h scale, except for summer, when
the interactions between atmospheric pressure and other me-
teorological factors were strong.

3.3 The spatial patterns of dominant meteorological
factors for PM2.5, PM10 and O3 across China at 3
and 24 h scales

All the locations of the mentioned regions have been marked
in Fig. 2. As shown in Figs. 3, 4 and 5, the influence of meteo-
rological factors on airborne pollutants has obvious seasonal
variations and presented some regional similarity. The sea-
sonal concentration of air pollutant data for each city is cal-
culated using the average of hourly concentration data mea-
sured by all available local observation stations. For PM2.5
(Fig. 3) and PM10 (Fig. 4), the dominant meteorological fac-
tor for northeast China was mainly wind, especially the heav-
ily polluted winter, while the dominant meteorological factor
for the Yangtze River Delta was mainly precipitation at both
the 3 and 24 h scales. The dominant meteorological factor
for Shandong Peninsula in spring and autumn, for southern
China in summer, for northern and coastal areas in autumn
and for northeast China in winter is also consistent at dif-
ferent temporal scales. For O3 (Fig. 5), especially the heav-
ily polluted summer, temperature presented a prevailing role
across the nation and was the dominant role for most cities.
This output was consistent with our previous studies (Chen et
al., 2018, 2019a), suggesting that the general national trend
of pollutant–meteorology association varied limitedly across
temporal scales of research data, especially in those heavily
polluted regions. Meanwhile, for those regions where the air-
borne pollution was not severe and homogeneous, the tempo-
ral issues of meteorological influences on PM were notable
and thus the dominant meteorological factor in these regions
presented notable differences at 3 and 24 h scales.

Based on the extracted pollutant–meteorology associa-
tions at the 3 h scale, which have rarely been discussed, we
found some interesting differences between 3 and 24 h in
some major regions across China. For the heavily polluted
Beijing–Tianjin–Hebei region, the dominant meteorological
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Table 5. The mean p of individual meteorological factors for PM2.5, PM10 and O3 across China.

Temperature Precipitation Atmospheric pressure Wind direction Wind speed

3 h 24 h 3 h 24 h 3 h 24 h 3 h 24 h 3 h 24 h

O3 Spring 0.213 0.283 0.050 0.140 0.058 0.070 0.028 0.048 0.030 0.042
Summer 0.238 0.114 0.013 0.042 0.055 0.017 0.049 0.049 0.065 0.037
Autumn 0.218 0.210 0.013 0.032 0.032 0.032 0.038 0.034 0.039 0.034
Winter 0.133 0.198 0.100 0.191 0.058 0.035 0.045 0.058 0.052 0.062

PM2.5 Spring 0.095 0.128 0.027 0.059 0.030 0.034 0.018 0.048 0.015 0.030
Summer 0.079 0.108 0.012 0.040 0.016 0.013 0.018 0.036 0.018 0.032
Autumn 0.143 0.182 0.016 0.029 0.018 0.025 0.019 0.045 0.017 0.028
Winter 0.120 0.140 0.045 0.090 0.020 0.035 0.027 0.044 0.045 0.064

PM10 Spring 0.106 0.129 0.031 0.068 0.030 0.034 0.014 0.039 0.015 0.036
Summer 0.081 0.125 0.012 0.049 0.022 0.016 0.019 0.030 0.016 0.028
Autumn 0.158 0.220 0.016 0.041 0.022 0.045 0.021 0.040 0.021 0.041
Winter 0.109 0.127 0.046 0.082 0.020 0.029 0.028 0.050 0.043 0.063

Figure 3. The dominant meteorological factor for PM2.5 concentrations across China at 3 and 24 h scales. Publisher’s remark: please note
that the above figure contains disputed territories.

factor for O3 in spring was temperature at the 3 h scale.
Meanwhile, the dominant factor was wind speed at the 24 h
scale. For PM2.5, the dominant factor for PM2.5 in spring was
temperature at the 3 h scale and wind speed at the 24 h scale.
The dominant meteorological factor for PM10 in summer was
temperature at the 3 h scale and precipitation at the 24 h scale.

For the Yangtze River Delta, the dominant meteorological
factor for O3 in spring was temperature at the 3 h scale and
the combination of temperature and precipitation at the 24 h

scale. In summer, the dominant meteorological factor for O3
was temperature at the 3 h scale and wind speed at the 24 h
scale. The dominant factor of PM2.5 in spring was tempera-
ture at the 3 h scale and the combination of temperature and
precipitation at the 24 h scale. The dominant factor of PM10
in spring was mainly temperature at the 3 h scale and wind
speed at the 24 h scale. For the Pearl River Delta, the domi-
nant meteorological factor for O3 in winter was temperature
at the 3 h scale and precipitation at the 24 h scale.
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Figure 4. The dominant meteorological factor for PM10 concentrations across China at 3 and 24 h scales. Publisher’s remark: please note
that the above figure contains disputed territories.

For the Sichuan Basin, the dominant meteorological fac-
tor for O3 in all four seasons was temperature at the 3 h
scale, while it was precipitation, atmospheric pressure and
wind speed in summer, autumn and winter respectively at the
24 h scale. The dominant meteorological element for PM2.5
was temperature in all four seasons at the 3 h scale, while
it was precipitation in summer and winter at the 24 h scale.
The dominant meteorological element for PM10 in spring
and winter was temperature at the 3 h scale, while it was at-
mospheric pressure for spring and winter at the 24 h scale.
Compared with other regions, the unique basin terrain led to
stronger temporal effects on extracted pollutant–meteorology
associations.

Our previous studies (Chen et al., 2018, 2020) revealed
that meteorological influences exerted a stronger influence on
PM pollutants when PM concentration is higher. This might
be the reason that the difference of PM–meteorology associ-
ations between 3 and 24 h was relatively small in the heavily
polluted winter and large in less polluted spring. Meanwhile,
we found that the role of wind speed and precipitation may
be largely underestimated at the 3 h scale. Compared with
the generally consistent pollutant–meteorology associations
in these heavily polluted regions, the dominant factor for PM
and O3 demonstrated significant variations in those coastal
cities, such as Shenzhen, Zhuhai and Zhanjiang.

4 Discussion

Although previous studies (Tai et al., 2010; Hu et al., 2021b;
Yousefian et al., 2021; Zhong et al., 2021) pointed out the
notable differences of pollutant–meteorology associations at
different temporal scales and the great importance of bet-
ter understanding the temporal effects, few studies actually
conducted a comparative analysis due to the lack of data,
especially the high-temporal-resolution meteorological data.
This research suggests that the temporal effects on pollutant–
meteorology association are significantly strong. While there
is an obvious quantitative difference in the influence of indi-
vidual factors on PM2.5, PM10 and O3 (as shown in Fig. 1),
we found a very low consistence between extracted domi-
nant meteorological factors (the consistence was less than
50 % for all pollutants), indicating strong temporal effects
even from a qualitative perspective. Based on the compari-
son of extracted pollutant–meteorology association at the 3
and 24 h scales, there were no fixed spatiotemporal patterns
of pollutant–meteorology association across temporal scales.
However, we came to some major conclusions. Firstly, we
found the temporal effects of meteorological influences on
different PM (e.g. PM2.5 and PM) were similar, yet no-
tably different from that on gaseous pollutants (e.g. O3).
Secondly, there were notable differences in the temporal ef-
fects between different meteorological factors. The variation
of pollutant–meteorology association for those factors with
a continuous observation record (e.g. temperature) was no-
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Figure 5. The dominant meteorological factor for O3 concentrations across China at 3 and 24 h scales. Publisher’s remark: please note that
the above figure contains disputed territories.

tably different from those factors with a discrete observation
record (e.g. precipitation) at the 3 and 24 h scales. The role
of wind speed and precipitation, which may be recognised
as dominant meteorological factors at the 24 h scale, can be
largely underestimated at the 3 h scale. Thirdly, the effects of
temporal scales on pollutant–meteorology association varied
significantly across seasons, characterised by notable differ-
ences between heavily polluted and less polluted seasons (i.e.
the heavily polluted season for O3 was summer and for PM
was winter). Despite a complicated pattern, we found that the
heavier the pollution, the stronger the pollutant–meteorology
association was. Consequently, in the heavily polluted sea-
son, the short-term (e.g. 3 h) variation of specific meteorolog-
ical factors (e.g. temperature, wind speed) exerted a stronger
influence on PM and O3 than the daily variation. The concen-
trations of PM and O3 largely depend on wind conditions.
High O3 concentrations in different cities usually occur in
the presence of strong wind speed but are independent of
wind direction, while high PM is often accompanied by weak
wind speed and poor dispersion conditions, and it sometimes
occurs in strong northerly or southerly winds. The regional
transport of air pollutants between cities is common (Li et
al., 2019). As a comparison, in the less polluted season, the
daily accumulation of specific meteorological factors exerted
a stronger influence on airborne pollutants than short-term
(e.g. 3 h) accumulation. While the general trend of pollutant–
meteorology association was consistent with previous stud-
ies, the general p value was slightly smaller for this research.

The underlying reason may be the reduced PM2.5 concentra-
tion in 2020 caused by the emission cut during COVID-19.
As explained in our previous study (Chen et al., 2018), the
higher the PM2.5 concentration, the stronger the meteorologi-
cal influence on PM2.5 concentrations. Similarly to our previ-
ous studies (Chen et al., 2017, 2018, 2022), we conducted the
CCM analysis at the seasonal scale. This is because the large
seasonal variation of pollutant–meteorology association may
cause an insignificant output of CCM for an entire-year anal-
ysis and cause large uncertainties.

This research suggests that the temporal scale played a
complex role and higher temporal resolution did not guar-
antee a stronger pollutant–meteorology association. For in-
stance, for hot seasons (e.g. summertime O3) the reaction be-
tween O3 precursors was strong and quick, and thus the 3 h
resolution could better feature the influence of temperature
on O3 concentrations. Meanwhile, the secondary reaction for
PM2.5 was relatively slow (Chen et al., 2016), and the daily
variation of temperature and PM2.5 concentrations presented
a stronger association than the hourly variation of tempera-
ture and PM2.5 concentrations. Similarly, due to the discrete
distribution, the daily influence of daily total precipitation on
daily PM2.5 concentrations was also notably stronger than
the influence of 3 h precipitation on 3 h PM2.5 concentrations.
Furthermore, this type of uncertainty was not predictable
across regions. Given the complex effects of temporal scales
on pollutant–meteorology association, scholars should prop-
erly choose the temporal resolution of research data accord-
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ing to the aims, study sites, pollutant types and seasons. With
the growing availability of long-term meteorological and pol-
lutant data, multi-scale, instead of high-temporal-resolution,
research is recommended to comprehensively understand the
short- and long-term meteorological influences on different
airborne pollutants.

For future research, the temporal effects of influence of
meteorological factors (e.g. humidity, boundary layer height)
on airborne pollutants should also be explored with the avail-
ability of new data sources. On the other hand, this research
proved the important role of temporal scales in quantifying
the influence of meteorological factors on airborne pollu-
tants. Similarly, when inferring the association between pre-
cursors (e.g. NO2, volatile organic compounds – VOCs) and
airborne pollutants, the temporal scales, which were rarely
considered in previous studies, should also be comprehen-
sively taken into account. The reaction rate between differ-
ent precursors and the target pollutants in different regions
and seasons could be better understood through multi-scale
causation analysis. CCM is an ideal tool for quantifying the
influence of individual meteorological factors on PM2.5 con-
centrations, as it can effectively remove the influence of other
meteorological factors. Therefore, this research revealed a
strong temporal effect on pollutant–meteorology association,
from the perspective of the association of individual me-
teorological factors. However, admittedly, CCM is limited
in establishing the overall effects of multiple meteorologi-
cal factors on PM2.5 concentrations. Instead, other models
such as GAM (generalised additive model), which are lim-
ited in extracting the association between PM2.5 and individ-
ual meteorological factors, are advantageous in extracting the
overall influence of multiple meteorological factors on air-
borne pollutants (Gong et al., 2017; Zheng et al., 2018; Hu et
al., 2021a). When such 3 h meteorological data sets become
more easily available and include a complete set of mete-
orological factors, we could also employ GAMs or chemi-
cal transport models (CTMs) to investigate the temporal ef-
fects on the combined effects of meteorological factors on
airborne pollutants.

5 Conclusions

We employed CCM to compare the influence of major me-
teorological factors (temperature, precipitation, wind speed,
wind direction and atmospheric pressure) on PM2.5, PM10
and O3 concentrations in 101 cities across China at the 3 and
24 h scales in 2020. Results revealed a strong effect of tempo-
ral scales on the pollutant–meteorology association from dif-
ferent perspectives. In terms of the extracted dominant me-
teorological factor, the consistence between the analysis at
3 and 24 h scales was relatively low (the consistence for all
pollutants was less than 50 %), suggesting a large difference
even from a qualitative perspective. In terms of the mean
p value, the effect of temporal scale on the influence of in-

dividual meteorological factors on particulate matter (PM2.5
and PM10) was consistent, which was largely different from
the temporal-scale effect on gaseous pollutants. Tempera-
ture was the most important meteorological factor for PM2.5,
PM10 and O3 across China at both the 3 and 24 h scales.
For PM2.5 and PM10, the secondary reaction was less in-
tense and the extracted PM–temperature association at the
24 h scale was stronger than that at the 3 h scale. Meanwhile,
for summer O3, due to the quick and strong reactions be-
tween precursors, the extracted O3–temperature association
at the 3 h scale was much stronger than that at the 24 h scale.
Due to the discrete distribution, the extracted association be-
tween all pollutants and precipitation was much weaker at
the 3 h scale. Similarly, the extracted PM–wind association
was notably weaker at the 3 h scale. Due to the transport of
precursors, summertime O3–wind association was stronger
at the 3 h scale. For atmospheric pressure, the pollutant–
pressure association was weaker at the 3 h scale except for
summer, when the interactions between atmospheric pressure
and other meteorological factors were strong. From the spa-
tial perspective, pollutant–meteorology associations at 3 and
24 h were more consistent in those heavily polluted regions,
while extracted dominant meteorological factors for pollu-
tants demonstrated more differences at 3 and 24 h in the less
polluted regions. This research provides a comprehensive un-
derstanding of the effect of temporal scales on pollutant–
meteorology association and sheds useful light on better ex-
tracting the natural and anthropogenic drivers for airborne
pollution.
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