Articles | Volume 23, issue 21
https://doi.org/10.5194/acp-23-13973-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-23-13973-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating F2-region long-term trends using the International Reference Ionosphere (IRI) model: is this a feasible approximation for experimental trends?
Bruno S. Zossi
INFINOA, CONICET-UNT, Tucumán, 4000, Argentina
Laboratorio de Ionosfera, Atmosfera Neutra y Magnetosfera (LIANM), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), Tucumán, 4000, Argentina
Trinidad Duran
Departamento de Física, Universidad Nacional del Sur (UNS), Bahía Blanca, 8000, Argentina
Instituto de Física del Sur (CONICET-UNS), Bahía Blanca, 8000, Argentina
Franco D. Medina
INFINOA, CONICET-UNT, Tucumán, 4000, Argentina
Laboratorio de Ionosfera, Atmosfera Neutra y Magnetosfera (LIANM), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), Tucumán, 4000, Argentina
Blas F. de Haro Barbas
INFINOA, CONICET-UNT, Tucumán, 4000, Argentina
Laboratorio de Ionosfera, Atmosfera Neutra y Magnetosfera (LIANM), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), Tucumán, 4000, Argentina
Yamila Melendi
Departamento de Física, Universidad Nacional del Sur (UNS), Bahía Blanca, 8000, Argentina
Instituto de Física del Sur (CONICET-UNS), Bahía Blanca, 8000, Argentina
Ana G. Elias
CORRESPONDING AUTHOR
INFINOA, CONICET-UNT, Tucumán, 4000, Argentina
Laboratorio de Ionosfera, Atmosfera Neutra y Magnetosfera (LIANM), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), Tucumán, 4000, Argentina
Related authors
Bruno S. Zossi, Franco D. Medina, Trinidad Duran, Blas F. de Haro Barbas, and Ana G. Elias
EGUsphere, https://doi.org/10.5194/egusphere-2024-2828, https://doi.org/10.5194/egusphere-2024-2828, 2024
Short summary
Short summary
This study explores how the solar Sunspot Number (Sn) compares with other solar indicators like solar radio fluxes in predicting changes in Earth's ionosphere, particularly its critical frequency, over more than 60 years. The work finds that Sn, despite recent fluctuations in other proxies, remains the most stable predictor across all time periods. When adjusting for potential data saturation, Sn outperforms other proxies, providing a more accurate forecast of long-term ionospheric trends.
Trinidad Duran, Bruno S. Zossi, Yamila D. Melendi, Blas F. de Haro Barbas, Fernando S. Buezas, and Ana G. Elías
EGUsphere, https://doi.org/10.5194/egusphere-2024-2479, https://doi.org/10.5194/egusphere-2024-2479, 2024
Short summary
Short summary
Our research investigates how different proxies of solar activity influence long-term trends in the Earth's ionosphere. By analyzing data from two mid-latitude stations up to 2022, we found that the choice of solar activity measures significantly affects trends in ionospheric electron density, while trends in ionospheric height remain more stable. Selecting the correct solar activity measure is crucial for accurate density trend predictions and improving space weather forecasting models.
Mariano Fagre, Bruno S. Zossi, Erdal Yiğit, Hagay Amit, and Ana G. Elias
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-27, https://doi.org/10.5194/angeo-2019-27, 2019
Preprint retracted
Short summary
Short summary
Some systems, such as Over the Horizon Radars, use the ionosphere as a reflector for HF radio signals. In this work, HF propagation through the ionosphere is studied for different Earth’s magnetic field configurations during reversals using a numerical ray tracing technique. Our purpose is to highlight possible effects of dipole decrease, which is currently ongoing, on electromagnetic wave propagation through the ionosphere.
Bruno S. Zossi, Franco D. Medina, Trinidad Duran, Blas F. de Haro Barbas, and Ana G. Elias
EGUsphere, https://doi.org/10.5194/egusphere-2024-2828, https://doi.org/10.5194/egusphere-2024-2828, 2024
Short summary
Short summary
This study explores how the solar Sunspot Number (Sn) compares with other solar indicators like solar radio fluxes in predicting changes in Earth's ionosphere, particularly its critical frequency, over more than 60 years. The work finds that Sn, despite recent fluctuations in other proxies, remains the most stable predictor across all time periods. When adjusting for potential data saturation, Sn outperforms other proxies, providing a more accurate forecast of long-term ionospheric trends.
Trinidad Duran, Bruno S. Zossi, Yamila D. Melendi, Blas F. de Haro Barbas, Fernando S. Buezas, and Ana G. Elías
EGUsphere, https://doi.org/10.5194/egusphere-2024-2479, https://doi.org/10.5194/egusphere-2024-2479, 2024
Short summary
Short summary
Our research investigates how different proxies of solar activity influence long-term trends in the Earth's ionosphere. By analyzing data from two mid-latitude stations up to 2022, we found that the choice of solar activity measures significantly affects trends in ionospheric electron density, while trends in ionospheric height remain more stable. Selecting the correct solar activity measure is crucial for accurate density trend predictions and improving space weather forecasting models.
Mariano Fagre, Bruno S. Zossi, Erdal Yiğit, Hagay Amit, and Ana G. Elias
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-27, https://doi.org/10.5194/angeo-2019-27, 2019
Preprint retracted
Short summary
Short summary
Some systems, such as Over the Horizon Radars, use the ionosphere as a reflector for HF radio signals. In this work, HF propagation through the ionosphere is studied for different Earth’s magnetic field configurations during reversals using a numerical ray tracing technique. Our purpose is to highlight possible effects of dipole decrease, which is currently ongoing, on electromagnetic wave propagation through the ionosphere.
Related subject area
Subject: Climate and Earth System | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Trends in the high-latitude mesosphere temperature and mesopause revealed by SABER
Xiao Liu, Jiyao Xu, Jia Yue, Yangkun Liu, and Vania F. Andrioli
Atmos. Chem. Phys., 24, 10143–10157, https://doi.org/10.5194/acp-24-10143-2024, https://doi.org/10.5194/acp-24-10143-2024, 2024
Short summary
Short summary
Disagreement in long-term trends in the high-latitude mesosphere temperature should be elucidated using one coherent measurement over a long period. Using SABER measurements at high latitudes and binning the data based on yaw cycle, we focus on long-term trends in the mean temperature and mesopause in the high-latitude mesosphere–lower-thermosphere region, which has been rarely studied via observations but is more sensitive to dynamic changes.
Cited articles
Altadill, D., Magdaleno, S., Torta, J. M., and Blanch, E.: Global empirical models of the density peak height and of the equivalent scale height for quiet conditions, Adv. Space Res., 52, 1756–1769, https://doi.org/10.1016/j.asr.2012.11.018, 2013.
Australian Space Weather Forecasting Centre: Index of /wdc/iondata/au, [data set], https://downloads.sws.bom.gov.au/wdc/iondata/au/ (last access: 12 September 2023), 2023a.
Australian Space Weather Forecasting Centre: Index of /wdc/iondata/medians, [data set], https://downloads.sws.bom.gov.au/wdc/iondata/medians/ (last access: 12 September 2023), 2023b.
Bilitza, D., Pezzopane, M., Truhlik, V., Altadill, D., Reinisch, B. W., and Pignalberi, A.: The International Reference Ionosphere model: A review and description of an ionospheric benchmark, Rev. Geophys., 60, e2022RG000792, https://doi.org/10.1029/2022RG000792, 2022.
Brown, S., Bilitza, D., and Yigit, E.: Ionosonde-based indices for improved representation of solar cycle variation in the International Reference Ionosphere model, J. Atmos. Sol.-Terr. Phy., 171, 137–146, https://doi.org/10.1016/j.jastp.2017.08.022, 2018.
Bruevich, E. and Bruevich, V.: Long-term trends in solar activity. Variations of solar indices in the last 40 years, Res. Astron. Astrophys., 19, 090, https://doi.org/10.1088/1674-4527/19/7/90, 2019.
Cander, L. R.: Space Weather Causes and Effects, in: Ionospheric Space Weather, L.R. Cander, Springer Geophysics, Springer, Cham, 29–58, https://doi.org/10.1007/978-3-319-99331-7_3, 2019.
CCIR Atlas of Ionospheric Characteristics: Report 340-6, International Telecommunication Union (ITU), Geneve, http://handle.itu.int/11.1004/020.1000/4.283.43.en.1039 (last access: 12 September 2023), 1991.
Chen, Y. D., Liu, L. B., and Wan, W. X.: Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009?, J. Geophys. Res.-Space, 116, A04304, https://doi.org/10.1029/2010JA016301, 2011.
Chicco, D., Warrens, M. J., and Jurman, G.: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Computer Science, 7, e623, https://doi.org/10.7717/peerj-cs.623, 2021.
Cnossen, I.: Analysis and attribution of climate change in the upper atmosphere from 1950 to 2015 simulated by WACCM-X, J. Geophys. Res., 125, e2020JA028623, https://doi.org/10.1029/2020JA028623, 2020.
Cnossen, I. and Richmond, A. D.: How changes in the tilt angle of the geomagnetic dipole affect the coupled magnetosphere-ionosphere-thermosphere system, J. Geophys. Res., 117, A10317, https://doi.org/10.1029/2012JA018056, 2012.
Damboldt, T. and Suessmann, P.: Consolidated Database of Worldwide Measured Monthly Medians of Ionospheric Characteristics foF2 and M(3000)F2, INAG (Ionosonde Network Advisory Group) Bulletin 73, https://www.ursi.org/files/CommissionWebsites/INAG/web-73/2012/damboldt_consolidated_database.pdf (last access: 12 September 2023), 2012.
de Haro Barbas, B. F., Elias, A. G., Venchiarutti, J. V., Fagre, M., Zossi, B. S., Tan Jun, G., and Medina, F. D.: MgII as a Solar Proxy to Filter F2-Region Ionospheric Parameters, Pure Appl. Geophys., 178, 4605–4618, https://doi.org/10.1007/s00024-021-02884-y, 2021.
Elias, A. G., de Haro Barbas, B. F., Zossi, B. S., Medina, F. D., Fagre, M., and Venchiarutti, J. V.: Review of Long-Term Trends in the Equatorial Ionosphere Due the Geomagnetic Field Secular Variations and Its Relevance to Space Weather, Atmosphere, 13, 40, https://doi.org/10.3390/atmos13010040, 2022.
Elias, A. G., Martinis, C. R., de Haro Barbas, B. F., Medina, F. D., Zossi, B. S., Fagre, M., and Duran, T.: Comparative analysis of extreme ultraviolet solar radiation proxies during minimum activity levels, Earth Planet. Phys., 7, 1–8, https://doi.org/10.26464/epp2023050, 2023.
Emmert, J. T., Lean, J. L., and Picone, J. M.: Record-low thermospheric density during the 2008 solar minimum, Geophys. Res. Lett., 37, L12102, https://doi.org/10.1029/2010GL043671, 2010.
Gulyaeva, T. and Bilitza, D.: Towards ISO Standard Earth Ionosphere and Plasmasphere Model, New Developments in the Standard Model, edited by: Larsen, R. J., Nova Science Publishers, New York, ISBN 978-1-61209-989-7, 2012.
Gulyaeva, T. L., Arikan, F., and Stanislawska, I.: Inter-hemispheric imaging of the ionosphere with the upgraded IRI-Plas model during the space weather storms, Earth Planets Space, 63, 929–939, https://doi.org/10.5047/eps.2011.04.007, 2011.
Gulyaeva, T. L., Arikan, F., Sezen, U., and Poustovalova, L. V.: Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model, J. Atmos. Sol.-Terr. Phy., 172, 122–128, https://doi.org/10.1016/j.jastp.2018.03.025, 2018.
Laštovička, J.: A review of recent progress in trends in the upper atmosphere, J. Atmos. Sol.-Terr. Phy., 163, 2–13, https://doi.org/10.1016/j.jastp.2017.03.009, 2017.
Lastovicka, J.: Long-Term Trends in the Upper Atmosphere, in: Upper Atmosphere Dynamics and Energetics, edited by: Wang, W., Zhang, Y., and Paxton, L. J., American Geophysical Union, Washington D. C., USA, 325–344, https://doi.org/10.1002/9781119815631.ch17, 2021a.
Laštovička, J.: The best solar activity proxy for long-term ionospheric investigations, Adv. Space Res., 68, 2354–2360, https://doi.org/10.1016/j.asr.2021.06.032, 2021b.
Laštovička, J.: What is the optimum solar proxy for long-term ionospheric investigations?, Adv. Space Res., 67, 2–8, https://doi.org/10.1016/j.asr.2020.07.025, 2021c.
Laštovička, J. and Burešová, D.: Relationships between foF2 and various solar activity proxies, Space Weather, 21, e2022SW003359, https://doi.org/10.1029/2022SW003359, 2023.
Laštovička, J., Mikhailov, A. V., Ulich, T., Bremer, J., Elias, A. G., Ortiz de Adler, N., Jara, V., Abarca del Rio, R., Foppiano, A. J., Ovalle, E., and Danilov, A. D.: Long-term trends in foF2: A comparison of various methods, J. Atmos. Sol.-Terr. Phy., 68, 1854–1870, https://doi.org/10.1016/j.jastp.2006.02.009, 2006.
Leibniz Institute of Atmospheric Physics at the University of Rostock (IAP): Monthly table of Juliusruh foF2 data, [data set], https://www.ionosonde.iap-kborn.de/mon_fof2.htm (last access: 12 September 2023), 2023.
Liu, R., Smith, P., and King, J.: A new solar index which leads to improved foF2 predictions using the CCIR Atlas, ITU Telecommun. J., 50, 408–414, 1983.
Lukianova, R. and Mursula, K.: Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23, J. Atmos. Sol.-Terr. Phy., 73, 235–240, https://doi.org/10.1016/j.jastp.2010.04.002, 2011.
Mielich, J. and Bremer, J.: Long-term trends in the ionospheric F2 region with different solar activity indices, Ann. Geophys., 31, 291–303, https://doi.org/10.5194/angeo-31-291-2013, 2013.
Pignalberi, A., Pezzopane, M., Rizzi, R., and Galkin, I.: Effective Solar Indices for Ionospheric Modeling: A Review and a Proposal for a Real-Time Regional IRI, Surv. Geophys., 39, 125–167, https://doi.org/10.1007/s10712-017-9438-y, 2018.
Reinisch, B. W. and Galkin, I. A.: Global ionospheric radio observatory (GIRO), Earth Planets Space, 63, 377–381, https://doi.org/10.5047/eps.2011.03.001, 2011.
Snow, M., Weber, M., Machol, J., Viereck, R., and Richard, E.: Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24, J. Space Weather Spac., 4, A04, https://doi.org/10.1051/swsc/2014001, 2014.
Solomon, S. C., Liu, H.-L., Marsh, D. R., McInerney, J. M., Qian, L., and Vitt, F. M.: Whole atmosphere simulation of anthropogenic climate change, Geophys. Res. Lett., 45, 1567–1576, https://doi.org/10.1002/2017GL076950, 2018.
UK Solar System Data Centre: UKSSDC, [data set], https://www.ukssdc.ac.uk/cgi-bin/wdcc1/secure/geophysical_parameters.pl, (last access: 12 September 2023), 2023.
Viereck, R. A., Snow, M., DeLand, M. T., Weber, M., Puga, L., and Bouwer, D.: Trends in solar UV and EUV irradiance: An update to the Mg II Index and a comparison of proxies and data to evaluate trends of the last 11 year solar cycle, 2010 Fall Meeting, AGU, San Francisco, CA, 13–17 December, Abstract number GC21B-0877, 2010.
WDC-SILSO: Royal Observatory of Belgium, Brussels, Monthly mean total sunspot number, https://www.sidc.be/SILSO/datafiles (last access: 12 September 2023), 2023.
WDC for Ionosphere and Space Weather: Tokyo, National Institute of Information and Communications Technology, [data set], https://wdc.nict.go.jp/IONO/index_E.html (last access: 12 September 2023), 2023.
Willmott, C. J. and Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Clim. Res., 30, 79–82, https://doi.org/10.3354/cr030079, 2005.
Zossi, B. S., Medina, F. D., Tan Jun, G., Laštovička, J., Duran, T., Fagre, M., de Haro Barbas, B. F., and Elias, A. G.: Extending the analysis on the best solar activity proxy for long-term ionospheric investigations, P. R. Soc. A, 479, 202302252, https://doi.org/10.1098/rspa.2023.0225, 2023.
Short summary
The International Reference Ionosphere (IRI) is a widely used ionospheric empirical model based on observations from a worldwide network of ionospheric stations. It is reasonable, then, to expect that it captures long-term changes in ionospheric parameters linked to trend forcings like greenhouse gases increasing concentration and the Earth's magnetic field secular variation. We show that the IRI model can be a valuable tool for obtaining preliminary approximations of experimental trends.
The International Reference Ionosphere (IRI) is a widely used ionospheric empirical model based...
Special issue
Altmetrics
Final-revised paper
Preprint