Articles | Volume 23, issue 19
https://doi.org/10.5194/acp-23-12557-2023
https://doi.org/10.5194/acp-23-12557-2023
Research article
 | 
09 Oct 2023
Research article |  | 09 Oct 2023

Short- and long-term stratospheric impact of smoke from the 2019–2020 Australian wildfires

Johan Friberg, Bengt G. Martinsson, and Moa K. Sporre

Related authors

Stratospheric aerosol formed by intense volcanism–sea interaction during the 2022 Hunga Ha'apai eruption
Bengt G. Martinsson, Johan Friberg, and Moa K. Sporre
Atmos. Chem. Phys., 25, 10677–10690, https://doi.org/10.5194/acp-25-10677-2025,https://doi.org/10.5194/acp-25-10677-2025, 2025
Short summary
Impact of SO2 injection profiles on simulated volcanic forcing for the 2009 Sarychev eruptions – investigating the importance of using high-vertical-resolution methods when compiling SO2 data
Emma Axebrink, Moa K. Sporre, and Johan Friberg
Atmos. Chem. Phys., 25, 2047–2059, https://doi.org/10.5194/acp-25-2047-2025,https://doi.org/10.5194/acp-25-2047-2025, 2025
Short summary
Five-satellite-sensor study of the rapid decline of wildfire smoke in the stratosphere
Bengt G. Martinsson, Johan Friberg, Oscar S. Sandvik, and Moa K. Sporre
Atmos. Chem. Phys., 22, 3967–3984, https://doi.org/10.5194/acp-22-3967-2022,https://doi.org/10.5194/acp-22-3967-2022, 2022
Short summary
Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models
Oscar S. Sandvik, Johan Friberg, Moa K. Sporre, and Bengt G. Martinsson
Atmos. Meas. Tech., 14, 7153–7165, https://doi.org/10.5194/amt-14-7153-2021,https://doi.org/10.5194/amt-14-7153-2021, 2021
Short summary

Cited articles

Abram, N. J., Henley, B. J., Gupta, A. sen, Lippmann, T. J. R., Clarke, H., Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T., Wooster, M. J., Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy, B. P., Tapper, N. J., and Boer, M. M.: Connections of climate change and variability to large and extreme forest fires in southeast Australia, Comm. Earth Environ., 2, 8, https://doi.org/10.1038/s43247-020-00065-8, 2021. 
Andersson, S. M., Martinsson, B. G., Friberg, J., Brenninkmeijer, C. A. M., Rauthe-Schöch, A., Hermann, M., van Velthoven, P. F. J., and Zahn, A.: Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008–2010 based on CARIBIC observations, Atmos. Chem. Phys., 13, 1781–1796, https://doi.org/10.5194/acp-13-1781-2013, 2013. 
Andersson, S. M., Martinsson, B. G., Vernier, J. P., Friberg, J., Brenninkmeijer, C. A. M., Hermann, M., van Velthoven, P. F. J., and Zahn, A.: Significant radiative impact of volcanic aerosol in the lowermost stratosphere, Nat. Commun., 6, 1–8, https://doi.org/10.1038/ncomms8692, 2015. 
Boer, M. M., Resco de Dios, V., and Bradstock, R. A.: Unprecedented burn area of Australian mega forest fires, Nat. Clim. Change, 10, 171–172, https://doi.org/10.1038/s41558-020-0716-1, 2020. 
Download
Short summary
We study the short- and long-term stratospheric impact of smoke from the massive Australian wildfires in Dec 2019–Jan 2020 using four satellite sensors. Smoke entered the stratosphere rapidly via transport by firestorms, as well as weeks after the fires. The smoke particle properties evolved over time together with rapidly decreasing stratospheric aerosol load, suggesting photolytic loss of organics in the smoke particles. The depletion rate was estimated to a half-life (e folding) of 10 (14) d.
Share
Altmetrics
Final-revised paper
Preprint