Articles | Volume 23, issue 19
https://doi.org/10.5194/acp-23-12557-2023
https://doi.org/10.5194/acp-23-12557-2023
Research article
 | 
09 Oct 2023
Research article |  | 09 Oct 2023

Short- and long-term stratospheric impact of smoke from the 2019–2020 Australian wildfires

Johan Friberg, Bengt G. Martinsson, and Moa K. Sporre

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Johan Friberg on behalf of the Authors (13 Jun 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (14 Jun 2023) by Matthias Tesche
RR by Anonymous Referee #1 (14 Jun 2023)
RR by Michael Fromm (02 Jul 2023)
ED: Reconsider after major revisions (05 Jul 2023) by Matthias Tesche
AR by Johan Friberg on behalf of the Authors (15 Aug 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (22 Aug 2023) by Matthias Tesche
AR by Johan Friberg on behalf of the Authors (24 Aug 2023)
Download
Short summary
We study the short- and long-term stratospheric impact of smoke from the massive Australian wildfires in Dec 2019–Jan 2020 using four satellite sensors. Smoke entered the stratosphere rapidly via transport by firestorms, as well as weeks after the fires. The smoke particle properties evolved over time together with rapidly decreasing stratospheric aerosol load, suggesting photolytic loss of organics in the smoke particles. The depletion rate was estimated to a half-life (e folding) of 10 (14) d.
Altmetrics
Final-revised paper
Preprint