Articles | Volume 23, issue 19
https://doi.org/10.5194/acp-23-10823-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10823-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ground-based noontime D-region electron density climatology over northern Norway
Leibniz Institute of Atmospheric Physics at the University of Rostock, Schloss-Str. 6, 18225 Kühlungsborn, Germany
Mani Sivakandan
Leibniz Institute of Atmospheric Physics at the University of Rostock, Schloss-Str. 6, 18225 Kühlungsborn, Germany
Faculty of Mathematics and Natural Sciences, University of Rostock, 18051 Rostock, Germany
Juliana Jaen
Leibniz Institute of Atmospheric Physics at the University of Rostock, Schloss-Str. 6, 18225 Kühlungsborn, Germany
Werner Singer
Leibniz Institute of Atmospheric Physics at the University of Rostock, Schloss-Str. 6, 18225 Kühlungsborn, Germany
Related authors
Devin Huyghebaert, Juha Vierinen, Björn Gustavsson, Ralph Latteck, Toralf Renkwitz, Marius Zecha, Claudia C. Stephan, J. Federico Conte, Daniel Kastinen, Johan Kero, and Jorge L. Chau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2323, https://doi.org/10.5194/egusphere-2025-2323, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The phenomena of meteors occurs at altitudes of 60–120 km and can be used to measure the neutral atmosphere. We use a large high power radar system in Norway (MAARSY) to determine changes to the atmospheric density between the years of 2016–2023 at altitudes of 85–115 km. The same day-of-year is compared, minimizing changes to the measurements due to factors other than the atmosphere. This presents a novel method by which to obtain atmospheric neutral density variations.
J. Federico Conte, Jorge L. Chau, Toralf Renkwitz, Ralph Latteck, Masaki Tsutsumi, Christoph Jacobi, Njål Gulbrandsen, and Satonori Nozawa
EGUsphere, https://doi.org/10.5194/egusphere-2025-1996, https://doi.org/10.5194/egusphere-2025-1996, 2025
Short summary
Short summary
Analysis of 10 years of continuous measurements provided MMARIA/SIMONe Norway and MMARIA/SIMONe Germany reveals that the divergent and vortical motions in the mesosphere and lower thermosphere exchange the dominant role depending on the height and the time of the year. At summer mesopause altitudes over middle latitudes, the horizontal divergence and the relative vorticity contribute approximately the same, indicating an energetic balance between mesoscale divergent and vortical motions.
Christoph Jacobi, Khalil Karami, Ales Kuchar, Manfred Ern, Toralf Renkwitz, Ralph Latteck, and Jorge L. Chau
Adv. Radio Sci., 23, 21–31, https://doi.org/10.5194/ars-23-21-2025, https://doi.org/10.5194/ars-23-21-2025, 2025
Short summary
Short summary
Half-hourly mean winds have been obtained using ground-based low-frequency and very high frequency radio observations of the mesopause region at Collm, Germany, since 1984. Long-term changes of wind variances, which are proxies for short-period atmospheric gravity waves, have been analysed. Gravity wave amplitudes increase with time in winter, but mainly decrease in summer. The trends are consistent with mean wind changes according to wave theory.
Jennifer Hartisch, Jorge L. Chau, Ralph Latteck, Toralf Renkwitz, and Marius Zecha
Ann. Geophys., 42, 29–43, https://doi.org/10.5194/angeo-42-29-2024, https://doi.org/10.5194/angeo-42-29-2024, 2024
Short summary
Short summary
Scientists are studying the mesosphere and lower thermosphere using radar in northern Norway. They found peculiar events with strong upward and downward air movements, happening frequently (up to 2.5 % per month) from 2015 to 2021. Over 700 such events were noted, lasting around 20 min and expanding the studied layer. A total of 17 % of these events had extreme vertical speeds, showing their unique nature.
Christoph Jacobi, Ales Kuchar, Toralf Renkwitz, and Juliana Jaen
Adv. Radio Sci., 21, 111–121, https://doi.org/10.5194/ars-21-111-2023, https://doi.org/10.5194/ars-21-111-2023, 2023
Short summary
Short summary
Middle atmosphere long-term changes show the signature of climate change. We analyse 43 years of mesopause region horizontal winds obtained at two sites in Germany. We observe mainly positive trends of the zonal prevailing wind throughout the year, while the meridional winds tend to decrease in magnitude in both summer and winter. Furthermore, there is a change in long-term trends around the late 1990s, which is most clearly visible in summer winds.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Juliana Jaen, Toralf Renkwitz, Jorge L. Chau, Maosheng He, Peter Hoffmann, Yosuke Yamazaki, Christoph Jacobi, Masaki Tsutsumi, Vivien Matthias, and Chris Hall
Ann. Geophys., 40, 23–35, https://doi.org/10.5194/angeo-40-23-2022, https://doi.org/10.5194/angeo-40-23-2022, 2022
Short summary
Short summary
To study long-term trends in the mesosphere and lower thermosphere (70–100 km), we established two summer length definitions and analyzed the variability over the years (2004–2020). After the analysis, we found significant trends in the summer beginning of one definition. Furthermore, we were able to extend one of the time series up to 31 years and obtained evidence of non-uniform trends and periodicities similar to those known for the quasi-biennial oscillation and El Niño–Southern Oscillation.
Devin Huyghebaert, Juha Vierinen, Björn Gustavsson, Ralph Latteck, Toralf Renkwitz, Marius Zecha, Claudia C. Stephan, J. Federico Conte, Daniel Kastinen, Johan Kero, and Jorge L. Chau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2323, https://doi.org/10.5194/egusphere-2025-2323, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The phenomena of meteors occurs at altitudes of 60–120 km and can be used to measure the neutral atmosphere. We use a large high power radar system in Norway (MAARSY) to determine changes to the atmospheric density between the years of 2016–2023 at altitudes of 85–115 km. The same day-of-year is compared, minimizing changes to the measurements due to factors other than the atmosphere. This presents a novel method by which to obtain atmospheric neutral density variations.
J. Federico Conte, Jorge L. Chau, Toralf Renkwitz, Ralph Latteck, Masaki Tsutsumi, Christoph Jacobi, Njål Gulbrandsen, and Satonori Nozawa
EGUsphere, https://doi.org/10.5194/egusphere-2025-1996, https://doi.org/10.5194/egusphere-2025-1996, 2025
Short summary
Short summary
Analysis of 10 years of continuous measurements provided MMARIA/SIMONe Norway and MMARIA/SIMONe Germany reveals that the divergent and vortical motions in the mesosphere and lower thermosphere exchange the dominant role depending on the height and the time of the year. At summer mesopause altitudes over middle latitudes, the horizontal divergence and the relative vorticity contribute approximately the same, indicating an energetic balance between mesoscale divergent and vortical motions.
Christoph Jacobi, Khalil Karami, Ales Kuchar, Manfred Ern, Toralf Renkwitz, Ralph Latteck, and Jorge L. Chau
Adv. Radio Sci., 23, 21–31, https://doi.org/10.5194/ars-23-21-2025, https://doi.org/10.5194/ars-23-21-2025, 2025
Short summary
Short summary
Half-hourly mean winds have been obtained using ground-based low-frequency and very high frequency radio observations of the mesopause region at Collm, Germany, since 1984. Long-term changes of wind variances, which are proxies for short-period atmospheric gravity waves, have been analysed. Gravity wave amplitudes increase with time in winter, but mainly decrease in summer. The trends are consistent with mean wind changes according to wave theory.
Jennifer Hartisch, Jorge L. Chau, Ralph Latteck, Toralf Renkwitz, and Marius Zecha
Ann. Geophys., 42, 29–43, https://doi.org/10.5194/angeo-42-29-2024, https://doi.org/10.5194/angeo-42-29-2024, 2024
Short summary
Short summary
Scientists are studying the mesosphere and lower thermosphere using radar in northern Norway. They found peculiar events with strong upward and downward air movements, happening frequently (up to 2.5 % per month) from 2015 to 2021. Over 700 such events were noted, lasting around 20 min and expanding the studied layer. A total of 17 % of these events had extreme vertical speeds, showing their unique nature.
Christoph Jacobi, Ales Kuchar, Toralf Renkwitz, and Juliana Jaen
Adv. Radio Sci., 21, 111–121, https://doi.org/10.5194/ars-21-111-2023, https://doi.org/10.5194/ars-21-111-2023, 2023
Short summary
Short summary
Middle atmosphere long-term changes show the signature of climate change. We analyse 43 years of mesopause region horizontal winds obtained at two sites in Germany. We observe mainly positive trends of the zonal prevailing wind throughout the year, while the meridional winds tend to decrease in magnitude in both summer and winter. Furthermore, there is a change in long-term trends around the late 1990s, which is most clearly visible in summer winds.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Juliana Jaen, Toralf Renkwitz, Jorge L. Chau, Maosheng He, Peter Hoffmann, Yosuke Yamazaki, Christoph Jacobi, Masaki Tsutsumi, Vivien Matthias, and Chris Hall
Ann. Geophys., 40, 23–35, https://doi.org/10.5194/angeo-40-23-2022, https://doi.org/10.5194/angeo-40-23-2022, 2022
Short summary
Short summary
To study long-term trends in the mesosphere and lower thermosphere (70–100 km), we established two summer length definitions and analyzed the variability over the years (2004–2020). After the analysis, we found significant trends in the summer beginning of one definition. Furthermore, we were able to extend one of the time series up to 31 years and obtained evidence of non-uniform trends and periodicities similar to those known for the quasi-biennial oscillation and El Niño–Southern Oscillation.
Cited articles
Alken, P., Thébault, E., Beggan, C. D., Amit, H., ubert, J., Baerenzung,
J., Bondar, T. N., Brown, W. J., aliff, S., Chambodut, A., Chulliat, A., Cox,
G. A., Finlay, C. C., Fournier, A., Gillet, N., Grayver, A., Hammer, M. D.,
Holschneider, M., Huder, L., Hulot, G., Jager, T., Kloss, C., Korte, M.,
Kuang, W., Kuvshinov, A., Langlais, B., Léger, J.-M., Lesur, V.,
Livermore, P. W., Lowes, F. J., Macmillan, S., Magnes, W., Mandea, M.,
Marsal, S., Matzka, J., Metman, M. C., Minami, T., Morschhauser, A., Mound,
J. E., Nair, M., Nakano, S., Olsen, N., Pavón-Carrasco, F. J., Petrov,
V. G., Ropp, G., Rother, M., Sabaka, T. J., Sanchez, S., Saturnino, D.,
Schnepf, N. R., Shen, X., Stolle, C., Tangborn, A., Tøffner-Clausen, L.,
Toh, H., Torta, J. M., Varner, J., Vervelidou, F., Vigneron, P., Wardinski,
I., Wicht, J., Woods, A., Yang, Y., Zeren, Z., and Zhou, B.: International
Geomagnetic Reference Field: the thirteenth generation, Earth Planet. Space, 73, 49, https://doi.org/10.1186/s40623-020-01288-x, 2021. a
Baumann, C., Kero, A., Raizada, S., Rapp, M., Sulzer, M. P., Verronen, P. T., and Vierinen, J.: Arecibo measurements of D-region electron densities during sunset and sunrise: implications for atmospheric composition, Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022, 2022. a, b
Belrose, J. S.: Radio wave probing of the ionosphere by the partial reflection
of radio waves (from heights below 100 km), J. Atmos.
Terrest. Phys., 32, 567–596, https://doi.org/10.1016/0021-9169(70)90209-6,
1970. a, b
Briggs, B. H.: The analysis of spaced sensor records by correlation techniques,
MAP Handbook, 13, 166–186, 1984. a
Budden, K.: Approximations in magnetoionic theory, J. Atmos.
Terrest. Phys., 45, 213–218, https://doi.org/10.1016/S0021-9169(83)80043-9,
1983. a
Burns, C., Turunen, E., Matveinen, H., Ranta, H., and Hargreaves, J.: Chemical
modelling of the quiet summer D- andE-regions using EISCAT electron
density profiles, J. Atmosp. Terrest. Phys., 53,
115–134, https://doi.org/10.1016/0021-9169(91)90026-4, 1991. a, b
Chau, J. L. and Woodman, R. F.: D and E region incoherent scatter radar
density measurements over Jicamarca, J. Geophys. Res.-Space
Phys., 110, A12314, https://doi.org/10.1029/2005JA011438, 2005. a
Clilverd, M. A., Duthie, R., Rodger, C. J., Hardman, R. L., and Yearby, K. H.:
Long-term climate change in the D-region, Sci. Rep., 7, 16683,
https://doi.org/10.1038/s41598-017-16891-4, 2017. a
Conte, J. F., Chau, J. L., Laskar, F. I., Stober, G., Schmidt, H., and Brown, P.: Semidiurnal solar tide differences between fall and spring transition times in the Northern Hemisphere, Ann. Geophys., 36, 999–1008, https://doi.org/10.5194/angeo-36-999-2018, 2018. a, b
del Pozo, C. F., Turunen, E., and Ulich, T.: Negative ions in the auroral mesosphere during a PCA event around sunset, Ann. Geophys., 17, 782–793, https://doi.org/10.1007/s00585-999-0782-1, 1999. a
Flood, W. A.: A D region mid- and high-latitude approximation to the
Sen-Wyller refractive index equations, Radio Sci., 15, 797–799,
https://doi.org/10.1029/RS015i004p00797, 1980.
a
Friedrich, M. and Rapp, M.: News from the Lower Ionosphere: A Review of Recent
Developments, Surv. Geophys., 30, 525–559,
https://doi.org/10.1007/s10712-009-9074-2, 2009. a
Friedrich, M. and Torkar, K. M.: An empirical model of the nonauroral D
Region, Radio Sci., 27, 945–953, https://doi.org/10.1029/92RS01929, 1992. a
Friedrich, M. and Torkar, K. M.: FIRI: A semiempirical model of the lower
ionosphere, J. Geophys. Res-.Space Phys., 106,
21409–21418, https://doi.org/10.1029/2001JA900070, 2001. a, b
Friedrich, M., Harrich, M., Torkar, K., and Stauning, P.: Quantitative
measurements with wide-beam riometers, J. Atmos.
Solar-Terrest. Phys., 64, 359–365, 2002. a
Friedrich, M., Harrich, M., Steiner, R., Torkar, K., and Lübken, F.-J.: The
quiet auroral ionosphere and its neutral background, Adv. Space
Res., 33, 943–948, https://doi.org/10.1016/j.asr.2003.08.006, 2004. a
Friedrich, M., Rapp, M., Plane, J. M., and Torkar, K. M.: Bite-outs and other
depletions of mesospheric electrons, J. Atmos.
Solar-Terrest. Phys., 73, 2201–2211, https://doi.org/10.1016/j.jastp.2010.10.018,
2011. a
Friedrich, M., Pock, C., and Torkar, K.: FIRI-2018, an Updated Empirical
Model of the Lower Ionosphere, J. Geophys. Res.-Space
Phys., 123, 6737–6751, https://doi.org/10.1029/2018JA025437, 2018a. a, b
Friedrich, M., Pock, C., and Torkar, K.: FIRI-2018, an Updated Empirical Model
of the Lower Ionosphere, J. Geophys. Res.-Space Phys.,
123, 6737–6751, https://doi.org/10.1029/2018JA025437, 2018b. a
Garcia, R. R., Solomon, S., Avery, S. K., and Reid, G. C.: Transport of nitric
oxide and the D region winter anomaly, J. Geophys. Res.-Atmos., 92, 977–994, https://doi.org/10.1029/JD092iD01p00977, 1987. a
Grant, J., Grainger, R., Lawrence, B., Fraser, G., von Biel, H., Heuff, D.,
and Plank, G.: Retrieval of mesospheric electron densities using an optimal
estimation inverse method, J. Atmos. Solar-Terrest.
Phys., 66, 381–392, https://doi.org/10.1016/j.jastp.2003.12.006, 2004. a
Hall, C. M., Manson, A. H., Meek, C. E., and Nozawa, S.: Isolated lower mesospheric echoes seen by medium frequency radar at 70∘ N, 19∘ E, Atmos. Chem. Phys., 6, 5307–5314, https://doi.org/10.5194/acp-6-5307-2006, 2006. a
Hoffmann, P., Becker, E., Singer, W., and Placke, M.: Seasonal variation of
mesospheric waves at northern middle and high latitudes, J.
Atmos. Solar-Terrest. Phys., 72, 1068–1079,
https://doi.org/10.1016/j.jastp.2010.07.002, 2010. a, b
Holdsworth, D., Vuthaluru, R., Reid, I. M., and Vincent, R. A.: Differential
absorption measurements of mesospheric and lower thermospheric electron
densities using the Buckland Park MF radar, J. Atmos.
Solar-Terrest. Phys., 64, 2029–2042,
https://doi.org/10.1016/S1364-6826(02)00232-8, 2002. a
Igarashi, K., Murayama, Y., Nagayama, M., and Kawana, S.: D-region electron
density measurements by MF radar in the middle and high latitudes, Adv. Space Res., 25, 25–32, https://doi.org/10.1016/S0273-1177(99)00893-5, 2000. a
Iimura, H., Fritts, D. C., Lieberman, R. S., Janches, D., Mitchell, N. J.,
Franke, S. J., Singer, W., Hocking, W. K., Taylor, M. J., and Moffat-Griffin,
T.: Climatology of quasi-2-day wave structure and variability at middle
latitudes in the northern and southern hemispheres, J. Atmos.
Solar-Terrest. Phys., 221, 105690,
https://doi.org/10.1016/j.jastp.2021.105690, 2021. a
Jaen, J., Renkwitz, T., Chau, J. L., He, M., Hoffmann, P., Yamazaki, Y., Jacobi, C., Tsutsumi, M., Matthias, V., and Hall, C.: Long-term studies of mesosphere and lower-thermosphere summer length definitions based on mean zonal wind features observed for more than one solar cycle at middle and high latitudes in the Northern Hemisphere, Ann. Geophys., 40, 23–35, https://doi.org/10.5194/angeo-40-23-2022, 2022. a, b
Kawahira, K.: The D region winter anomaly at high and middle latitudes
induced by planetary waves, Radio Sci., 20, 795–802,
https://doi.org/10.1029/RS020i004p00795, 1985. a
Keuer, D., Hoffmann, P., Singer, W., and Bremer, J.: Long-term variations of the mesospheric wind field at mid-latitudes, Ann. Geophys., 25, 1779–1790, https://doi.org/10.5194/angeo-25-1779-2007, 2007. a
Liu, T., Yang, G., Zhao, Z., Liu, Y., Zhou, C., Jiang, C., Ni, B., Hu, Y., and
Zhu, P.: Design of Multifunctional Mesosphere-Ionosphere Sounding System and
Preliminary Results, Sensors, 20, 2664, https://doi.org/10.3390/s20092664, 2020. a
Lübken, F.-J.: Thermal structure of the Arctic summer mesosphere, J.
Geophys. Res.-Atmos., 104, 9135–9149,
https://doi.org/10.1029/1999JD900076, 1999. a
McKinnell, L.-A. and Friedrich, M.: A neural network-based ionospheric model
for the auroral zone, J. Atmos. Solar-Terrest. Phys.,
69, 1459–1470, https://doi.org/10.1016/j.jastp.2007.05.003, 2007. a, b
McNamara, L. F.: Statistical model of the D region, Radio Sci., 14,
1165–1173, https://doi.org/10.1029/RS014i006p01165, 1979. a
Mechtly, E. A.: Accuracy of rocket measurements of lower ionosphere electron
concentrations, Radio Sci., 9, 373–378, https://doi.org/10.1029/RS009i003p00373,
1974. a
Mitra, A.: A review of D-region processes in non-polar latitudes, J.
Atmos. Terrest. Phys., 30, 1065–1114,
https://doi.org/10.1016/S0021-9169(68)80001-7, 1968. a
Moro, J., Denardini, C. M., Correia, E., Abdu, M. A., Schuch, N. J., and Makita, K.: A comparison of two different techniques for deriving the quiet day curve from SARINET riometer data, Ann. Geophys., 30, 1159–1168, https://doi.org/10.5194/angeo-30-1159-2012, 2012. a
NOAA: Space weather conditions – solar cycle progression,
https://www.swpc.noaa.gov/products/solar-cycle-progression (last access: 15 August 2023),
2023. a
Offermann, D.: An integrated GBR campaign for the study of the D-region
winter anomaly in western Europe 1975/76, J. Atmos.
Terrest. Phys., 41, 1047–1050, https://doi.org/10.1016/0021-9169(79)90080-1,
1979a. a
Offermann, D.: Recent advances in the study of the D-region winter anomaly,
J. Atmos. Terrest. Phys., 41, 735–752,
https://doi.org/10.1016/0021-9169(79)90121-1, 1979b. a
Offermann, D.: A Winter Anomaly Campaign in Western Europe,
Philos. T. R. Soc. A, 296, 261–268, 1980. a
Osepian, A., Tereschenko, V., Dalin, P., and Kirkwood, S.: The role of atomic oxygen concentration in the ionization balance of the lower ionosphere during solar proton events, Ann. Geophys., 26, 131–143, https://doi.org/10.5194/angeo-26-131-2008, 2008. a
Palmer, R. D., Huang, X., Fukao, S., Yamamoto, M., and Nakamura, T.:
High-resolution wind profiling using combined spatial and frequency domain
interferometry, Radio Sci., 30, 1665–1679, https://doi.org/10.1029/95RS02594, 1995. a
Pancheva, D. V. and Mukhtarov, P. Y.: Modelling of the electron density height
profiles in the mid-latitude ionospheric D-region, Annals of Geophysics,
http://hdl.handle.net/2122/1713 (last access: 10 July 2023), 1996. a
Rapp, M. and Lübken, F.-J.: Polar mesosphere summer echoes (PMSE): Review of observations and current understanding, Atmos. Chem. Phys., 4, 2601–2633, https://doi.org/10.5194/acp-4-2601-2004, 2004. a
Rapp, M., Lübken, F.-J., and Blix, T.: The role of charged ice particles for
the creation of PMSE: A review of recent developments, Adv. Space
Res., 31, 2033–2043, https://doi.org/10.1016/S0273-1177(03)00226-6, 2003. a
Renkwitz, T.: RenkwitzACP2023. Leibniz Institute of Atmospheric Physics at the University of Rostock, RADAR [data set], https://doi.org/10.22000/993, 2023. a
Renkwitz, T. and Latteck, R.: Variability of virtual layered phenomena in the
mesosphere observed with medium frequency radars at 69∘ N, J.
Atmos. Solar-Terrest. Phys., 163, 38–45,
https://doi.org/10.1016/j.jastp.2017.05.009, 2017. a, b
Renkwitz, T. and Latteck, R.: Angle of Arrival study of atmospheric high
frequency radar echoes, in: 2019 6th International Conference on Space
Science and Communication (IconSpace), 230–234,
https://doi.org/10.1109/IconSpace.2019.8905934, 2019. a
Renkwitz, T., Singer, W., Latteck, R., and Rapp, M.: Multi beam observations of
cosmic radio noise using a VHF radar with beam forming by a Butler
matrix, Adv. Radio Sci., 9, 1–9, https://doi.org/10.5194/ars-9-349-2011,
2011. a
Renkwitz, T., Tsutsumi, M., Laskar, F. I., Chau, J. L., and Latteck, R.: On the
role of anisotropic MF/HF scattering in mesospheric wind estimation, Earth,
Planet. Space, 70, 158, https://doi.org/10.1186/s40623-018-0927-0, 2018. a, b, c
Renkwitz, T., Latteck, R., Strelnikova, I., Johnsen, M. G., and Chau, J. L.:
Characterization of polar mesospheric VHF radar echoes during solar minimum
winter 2019/2020. Part I: Ionisation, J. Atmos.
Solar-Terrest. Phys., 221, 105684, https://doi.org/10.1016/j.jastp.2021.105684,
2021. a, b
Roper, R. G. and Brosnahan, J. W.: Imaging Doppler interferometry and the
measurement of atmospheric turbulence, Radio Sci., 32, 1137–1148,
https://doi.org/10.1029/97RS00089, 1997. a
Russell, C. T. and McPherron, R. L.: Semiannual variation of geomagnetic
activity, J. Geophys. Res., 78, 92,
https://doi.org/10.1029/JA078i001p00092, 1973. a
Sen, H. K. and Wyller, A. A.: On the generalization of the Appleton-Hartree
magnetoionic formulas, J. Geophys. Res. (1896–1977), 65,
3931–3950, https://doi.org/10.1029/JZ065i012p03931, 1960. a
Silber, I. and Price, C.: On the Use of VLF Narrowband Measurements to
Study the Lower Ionosphere and the Mesosphere–Lower
Thermosphere, Surv. Geophys., 38, 407–441,
https://doi.org/10.1007/s10712-016-9396-9, 2017. a
Singer, W., Latteck, R., and Holdsworth, D. A.: A new narrow beam Doppler
radar at 3 MHz for studies of the high-latitude middle atmosphere, Adv. Space Res., 41, 1488–1494, https://doi.org/10.1016/j.asr.2007.10.006, 2008. a, b
Singer, W., Latteck, R., Friedrich, M., Wakabayashi, M., and Rapp, M.: Seasonal
and solar activity variability of D-region electron density at
69∘ N, J. Atmos. Solar-Terrest. Phys., 73,
925–935, https://doi.org/10.1016/j.jastp.2010.09.012, 2011. a, b
Siskind, D. E., Zawdie, K. A., Sassi, F., Drob, D. P., and Friedrich, M.: An
Intercomparison of VLF and Sounding Rocket Techniques for
Measuring the Daytime D Region Ionosphere: Theoretical
Implications, J. Geophys. Res.-Space Phys., 123,
8688–8697, https://doi.org/10.1029/2018JA025807, 2018. a
Staszak, T., Strelnikov, B., Latteck, R., Renkwitz, T., Friedrich, M.,
Baumgarten, G., and Lübken, F.-J.: Turbulence generated small-scale
structures as PMWE formation mechanism: Results from a rocket campaign,
J. Atmos. Solar-Terrest. Phys., 217, 105559,
https://doi.org/10.1016/j.jastp.2021.105559, 2021. a
Strelnikov, B., Staszak, T., Latteck, R., Renkwitz, T., Strelnikova, I.,
Lübken, F.-J., Baumgarten, G., Fiedler, J., Chau, J. L., Stude, J., Rapp,
M., Friedrich, M., Gumbel, J., Hedin, J., Belova, E., Hörschgen-Eggers, M.,
Giono, G., Hörner, I., Löhle, S., Eberhart, M., and Fasoulas, S.: Sounding
rocket project ”PMWE” for investigation of polar mesosphere winter echoes,
J. Atmos. Solar-Terrest. Phys., 218, 105596,
https://doi.org/10.1016/j.jastp.2021.105596, 2021.
a
Verronen, P. T., Seppälä, A., Clilverd, M. A., Rodger, C. J., Kyrölä, E.,
Enell, C.-F., Ulich, T., and Turunen, E.: Diurnal variation of ozone
depletion during the October-November 2003 solar proton events, J. Geophys. Res.-Space Phys., 110, A09S32, https://doi.org/10.1029/2004JA010932,
2005. a
Verronen, P. T., Andersson, M. E., Marsh, D. R., Kovács, T., and Plane, J.
M. C.: WACCM-D—Whole Atmosphere Community Climate Model with
D-region ion chemistry, J. Adv. Model. Earth Syst., 8,
954–975, https://doi.org/10.1002/2015MS000592, 2016. a
Vuthaluru, R.: MF radar observations of D-region electron densities at
Adelaide, PhD thesis, University Adelaide, 2003. a
Worthington, E. R. and Cohen, M. B.: The Estimation of D-Region Electron
Densities From Trans-Ionospheric Very Low Frequency Signals,
J. Geophys. Res.-Space Phys., 126, e2021JA029256,
https://doi.org/10.1029/2021JA029256, 2021. a
Zhu, M., Xu, T., Sun, S., Zhou, C., Hu, Y., Ge, S., Li, N., Deng, Z., Zhang,
Y., and Liu, X.: Physical Model of D-Region Ionosphere and
Preliminary Comparison with IRI and Data of MF Radar at Kunming,
Atmosphere, 14, 235, https://doi.org/10.3390/atmos14020235, 2023. a, b
Short summary
The paper focuses on remote sensing of the lowermost part of the ionosphere (D region) between ca. 50 and 90 km altitude, which overlaps widely with the mesosphere. We present a climatology of electron density over northern Norway, covering solar-maximum and solar-minimum conditions (2014–2022). Excluding detected energetic particle precipitation events, we derived a quiet-profile climatology. We also found a spring–fall asymmetry, while a symmetric solar zenith angle dependence was expected.
The paper focuses on remote sensing of the lowermost part of the ionosphere (D region) between...
Altmetrics
Final-revised paper
Preprint