Articles | Volume 22, issue 14
https://doi.org/10.5194/acp-22-9499-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-9499-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The semi-annual oscillation (SAO) in the upper troposphere and lower stratosphere (UTLS)
Ming Shangguan
School of Geography and Information Engineering, China University of Geosciences, Wuhan, China
Department of Atmospheric Science, China University of Geosciences, Wuhan, China
Related authors
Wuke Wang, Jin Hong, Ming Shangguan, Hongyue Wang, Wei Jiang, and Shuyun Zhao
Atmos. Chem. Phys., 22, 13695–13711, https://doi.org/10.5194/acp-22-13695-2022, https://doi.org/10.5194/acp-22-13695-2022, 2022
Short summary
Short summary
The ozone layer protects the life on the Earth by absorbing the ultraviolet (UV) radiation. Beside the long-term trend, there are strong interannual fluctuations in stratospheric ozone. The quasi-biennial oscillation (QBO) is an important interannual mode in the stratosphere. We show some new zonally asymmetric features of its impacts on stratospheric ozone using satellite data, ERA5 reanalysis, and model simulations, which is helpful for predicting the regional UV radiation at the surface.
Yu Gou, Jian Zhang, Wuke Wang, Kaiming Huang, and Shaodong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3452, https://doi.org/10.5194/egusphere-2025-3452, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tropopause height is a key climate change indicator, with accurate long-term trends vital for climate research. Radiosonde data, while reliable, has limited coverage. ERA5 is a reanalysis dataset that provides global data, enabling comparisons of tropopause height estimates and then analyzed for long-term trends. Results show a 32 m mean difference (radiosonde – ERA5) with trends of +5 m/year (radiosonde) and +3 m/year (ERA5), crucial for characterizing tropopause changes under climate change.
Yu Gou, Jian Zhang, Wuke Wang, Kaiming Huang, and Shaodong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4198, https://doi.org/10.5194/egusphere-2024-4198, 2025
Preprint withdrawn
Short summary
Short summary
The most commonly used tropopause height detection algorithm is based on the World Meteorological Organization (WMO) definition from 1957. However, with the increasing vertical resolution of atmospheric data, this definition has been found to fail in high-resolution radiosonde data. Thus, we propose an improved method to address this issue. This method can effectively bypassing thin inversions while preserving the fine–scale structure of the tropopause.
Jia Shao, Jian Zhang, Wuke Wang, Shaodong Zhang, Tao Yu, and Wenjun Dong
Atmos. Chem. Phys., 23, 12589–12607, https://doi.org/10.5194/acp-23-12589-2023, https://doi.org/10.5194/acp-23-12589-2023, 2023
Short summary
Short summary
Kelvin–Helmholtz instability (KHI) is indicated by the critical value of the Richardson (Ri) number, which is usually predicted to be 1/4. Compared to high-resolution radiosondes, the threshold value of Ri could be approximated as 1 rather than 1/4 when using ERA5-based Ri as a proxy for KHI. The occurrence frequency of subcritical Ri exhibits significant seasonal cycles over all climate zones and is closely associated with gravity waves and background flows.
Wuke Wang, Jin Hong, Ming Shangguan, Hongyue Wang, Wei Jiang, and Shuyun Zhao
Atmos. Chem. Phys., 22, 13695–13711, https://doi.org/10.5194/acp-22-13695-2022, https://doi.org/10.5194/acp-22-13695-2022, 2022
Short summary
Short summary
The ozone layer protects the life on the Earth by absorbing the ultraviolet (UV) radiation. Beside the long-term trend, there are strong interannual fluctuations in stratospheric ozone. The quasi-biennial oscillation (QBO) is an important interannual mode in the stratosphere. We show some new zonally asymmetric features of its impacts on stratospheric ozone using satellite data, ERA5 reanalysis, and model simulations, which is helpful for predicting the regional UV radiation at the surface.
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411, https://doi.org/10.5194/acp-22-4393-2022, https://doi.org/10.5194/acp-22-4393-2022, 2022
Short summary
Short summary
We identify a significantly intensified upward motion over the tropical western Pacific (TWP) and an enhanced tropical upwelling in boreal winter during 1958–2017 due to the warming of global sea surface temperatures (SSTs). Our results suggest that more tropospheric trace gases over the TWP could be elevated to the lower stratosphere, which implies that the emission from the maritime continent plays a more important role in the stratospheric processes and the global climate.
Cited articles
Abalos, M., Randel, W. J., Kinnison, D. E., and Serrano, E.: Quantifying tracer transport in the tropical lower stratosphere using WACCM, Atmos. Chem. Phys., 13, 10591–10607, https://doi.org/10.5194/acp-13-10591-2013, 2013. a, b, c
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmopshere Dynamics,
edited by: Dmowska, R. and Holton, J. R., Academic Press, Orlando, Florida, p. 489, ISBN 0-12-0585575-8, 1987. a
Bracegirdle, T. J.: The seasonal cycle of stratosphere-troposphere coupling at
southern high latitudes associated with the semi-annual oscillation in
sea-level pressure, Clim. Dynam., 37, 2323–2333, 2011. a
Broeke, M. R. V. D.: The semiannual oscillation and Antarctic climate, part 5:
impact on the annual temperature cycle as derived from NCEP/NCAR re-analysis,
Clim. Dynam., 16, 369–377, 2000. a
Butterworth, S.: On the theory of filter amplifiers, Experimental Wireless and
the Wireless Engineer, 7, 536–541, 1930. a
CDAAC: COSMIC-1 wetPrf and CHAMP wetPf2, https://cdaac-www.cosmic.ucar.edu/cdaac/index.html, last access: 18 July 2022. a
Chen, T.-C. and Tsay, J.-D.: Development and maintenance mechanism for the
semiannual oscillation of the North Pacific upper-level circulation, J. Climate, 27, 3767–3783, 2014. a
Chen, T.-C. and Wu, K.-D.: Semi-annual oscillation of the global divergent
circulation, Tellus A, 44, 357–365,
https://doi.org/10.3402/tellusa.v44i5.14967, 1992. a
Chen, T. C., Yen, M. C., and Van Loon, H.: An Observational Study of the
Tropical-Subtropical Semiannual Oscillation, J. Climate, 9,
1993–2002, 1996. a
Ern, M., Preusse, P., and Riese, M.: Driving of the SAO by gravity waves as observed from satellite, Ann. Geophys., 33, 483–504, https://doi.org/10.5194/angeo-33-483-2015, 2015. a
Ern, M., Diallo, M., Preusse, P., Mlynczak, M. G., Schwartz, M. J., Wu, Q., and Riese, M.: The semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in reanalyses and satellite observations, Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021, 2021. a
Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and
Mote, P. W.: Tropical tropopause layer, Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267, 2009. a
Gao, P., Xu, X., and Zhang, X.: On the relationship between the QBO/ENSO and
atmospheric temperature using COSMIC radio occultation data, J.
Atmos. Sol.-Terr. Phy., 156, 103–110, 2017. a
Garcia, R. R., Dunkerton, T. J., Lieberman, R. S., and Vincent, R. A.:
Climatology of the semiannual oscillation of the tropical middle atmosphere,
J. Geophys. Res.-Atmos., 102, 26019–26032,
https://doi.org/10.1029/97JD00207, 1997. a, b
Gelaro, R., Mccarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., and Reichle, R.: The
Modern-Era Retrospective Analysis for Research and Applications, Version 2
(MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Gettelman, A. and Birner, T.: Insights into Tropical Tropopause Layer processes
using global models, J. Geophys. Res.-Atmos., 112, D23104,
https://doi.org/10.1029/2007JD008945, 2007. a, b
Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and Birner,
T.: The extratropical upper troposphere and lower stratosphere, Rev.
Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355, 2011. a
Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K.,
Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H.-L.,
Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J.-F., Richter,
J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B.,
Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The Whole
Atmosphere Community Climate Model Version 6 (WACCM6), J. Geophys.
Res.-Atmos., 124, 12380–12403, https://doi.org/10.1029/2019JD030943,
2019. a, b
GMAO: Global Modeling and Assimilation Office, instM_3d_asm_Np: MERRA2 3D IAU
State, Meteorology monthly mean (p-coord, 0.625x0.5L42), version 5.12.4,
Greenbelt, MD, USA, Goddard Space Flight Center Distributed Active Archive
Center (GSFC DAAC) [data set], https://doi.org/10.5067/2E096JV59PK7,
2015a. a, b
GMAO: Global Modeling and Assimilation Office, tavgM_3d_tdt_Np: MERRA2 3D IAU
State, Meteorology monthly mean (p-coord, 0.625x0.5L42), version 5.12.4,
Greenbelt, MD, USA, Goddard Space Flight Center Distributed Active Archive
Center (GSFC DAAC) [data set], https://doi.org/10.5067/VILT59HI2MOY,
2015b. a, b
Hamilton, K. and Mahlman, J. D.: General Circulation Model Simulation of the
Semiannual Oscillation of the Tropical Middle Atmosphere, J.
Atmos. Sci., 45, 3212–3235, 1988. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers,
D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly
averaged data on pressure levels from 1979 to present, Copernicus Climate
Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.6860a573, 2019. a, b, c
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Royal Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Ho, S.-P., Kirchengast, G., Leroy, S., Wickert, J., Mannucci, A. J., Steiner,
A., Hunt, D., Schreiner, W., Sokolovskiy, S., Ao, C., Borsche, M., Engeln,
A. v., Foelsche, U., Heise, S., Iijima, B., Kuo, Y., Kursinski, R., Pirscher,
B., Ringer, M., Rocken, C., and Schmidt, T.: Estimating the uncertainty of
using GPS radio occultation data for climate monitoring: Intercomparison of
CHAMP refractivity climate records from 2002 to 2006 from different data
centers, J. Geophys. Res.-Atmos., 114, D23107,
https://doi.org/10.1029/2009JD011969, 2009. a
Ho, S.-P., Hunt, D., Steiner, A. K., Mannucci, b. J., Kirchengast, G.,
Gleisner, H., Heise, S., Engeln, A. v., Marquardt, C., Sokolovskiy, S.,
Schreiner, W., Scherllin-Pirscher, B., Ao, C., Wickert, J., Syndergaard, S.,
Lauritsen, K. B., Leroy, S., Kursinski, E. R., Kuo, Y. H., Foelsche, U.,
Schmidt, T., and Gorbunov, M.: Reproducibility of GPS radio occultation data
for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate
records 2002 to 2008 from six data centers, J. Geophys. Res.-Atmos., 117, D18111, https://doi.org/10.1029/2012JD017665, 2012. a
Ho, S.-P., Yue, X., Zeng, Z., Ao, C. O., Huang, C., and Kursinski, E. R.:
Applications of COSMIC Radio Occultation Data from the Troposphere to
Ionosphere and Potential Impacts of COSMIC-2 Data, B. Am.
Meteorol. Soc., 95, 18–22, 2014. a
Ho, S.-P., Peng, L., and Vömel, H.: Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and Metop-A/GRAS data from 2006 to 2014, Atmos. Chem. Phys., 17, 4493–4511, https://doi.org/10.5194/acp-17-4493-2017, 2017. a
Hu, R., Liu, Q., Meng, X., and Godfrey, J. S.: On the Mechanism of the Seasonal
Variability of SST in the Tropical Indian Ocean, Adv. Atmos. Sci., 22, 451,
https://doi.org/10.1007/BF02918758, 2005. a
Kursinski, E. R., Healy, S. B., and Romans, L. J.: Initial results of combining
GPS occultations with ECMWF global analyses within a 1DVar framework, Earth
Planets Space, 52, 885–892, 2000. a
Lilly, J. M. and Olhede, S. C.: Higher-Order Properties of Analytic Wavelets,
IEEE T. Signal Proces., 57, 146–160,
https://doi.org/10.1109/TSP.2008.2007607, 2009. a, b
Lilly, J. M. and Olhede, S. C.: Generalized Morse Wavelets as a Superfamily of
Analytic Wavelets, IEEE T. Signal Proces., 60, 6036–6041,
https://doi.org/10.1109/TSP.2012.2210890, 2012. a, b
Lomb, N. R.: Least-squares frequency analysis of unequally spaced data,
Astrophys. Space Sci., 39, 447–462, 1976. a
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and
Polvani, L. M.: Climate change from 1850 to 2005 simulated in CESM1 (WACCM),
J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013. a
Meehl, G. A., Hurrell, J. W., and Loon, H. V.: A modulation of the mechanism of
the semiannual oscillation in the Southern Hemisphere, Tellus A, 50, 442–450,
https://doi.org/10.3402/tellusa.v50i4.14537, 1998. a, b, c, d
Merryfield, W. J., Baehr, J., Batté, L., Becker, E. J., Butler, A. H.,
Coelho, C. A. S., Danabasoglu, G., Dirmeyer, P. A., Doblas-Reyes, F. J.,
Domeisen, D. I. V., Ferranti, L., Ilynia, T., Kumar, A., Müller, W. A.,
Rixen, M., Robertson, A. W., Smith, D. M., Takaya, Y., Tuma, M., Vitart, F.,
White, C. J., Alvarez, M. S., Ardilouze, C., Attard, H., Baggett, C.,
Balmaseda, M. A., Beraki, A. F., Bhattacharjee, P. S., Bilbao, R.,
de Andrade, F. M., DeFlorio, M. J., Díaz, L. B., Ehsan, M. A.,
Fragkoulidis, G., Grainger, S., Green, B. W., Hell, M. C., Infanti, J. M.,
Isensee, K., Kataoka, T., Kirtman, B. P., Klingaman, N. P., Lee, J.-Y.,
Mayer, K., McKay, R., Mecking, J. V., Miller, D. E., Neddermann, N., Ng, C.
H. J., Ossó, A., Pankatz, K., Peatman, S., Pegion, K., Perlwitz, J.,
Recalde-Coronel, G. C., Reintges, A., Renkl, C., Solaraju-Murali, B., Spring,
A., Stan, C., Sun, Y. Q., Tozer, C. R., Vigaud, N., Woolnough, S., and
Yeager, S.: Current and Emerging Developments in Subseasonal to Decadal
Prediction, B. Am. Meteorol. Soc., 101, E869–E896,
https://doi.org/10.1175/BAMS-D-19-0037.1, 2020. a
Park, K.-A. and Lee, E.-Y.: Semi-annual cycle of sea-surface temperature in the
East/Japan Sea and cooling process, Int. J. Remote Sens.,
35, 4287–4314, https://doi.org/10.1080/01431161.2014.916437, 2014. a
Press, W. H. and Rybicki, G. B.: Fast Algorithm for Spectral Analysis of
Unevenly Sampled Data, Astrophys. J., 338, 277–280, 1989. a
Randel, W. J. and Wu, F.: Variability of zonal mean tropical temperatures
derived from a decade of GPS radio occultation data, J. Atmos. Sci., 72,
1261–1275, https://doi.org/10.1175/JAS-D-14-0216.1, 2015. a
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V.,
Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface
temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res.-Atmos., 108, 4007,
https://doi.org/10.1029/2002JD002670, 2003. a, b
Read, P. L. and Castrejón‐Pita, A. A.: Phase synchronization between
stratospheric and tropospheric quasi‐biennial and semi‐annual
oscillations, Q. J. Roy. Meteor. Soc., 138, 1338–1349, 2012. a
Read, R.: Some features of the annual temperature regime in the tropical
stratosphere, Mon. Weather Rev., 90, 211–215, 1962. a
Richter, J. H. and Garcia, R. R.: On the forcing of the Mesospheric Semi-Annual
Oscillation in the Whole Atmosphere Community Climate Model, Geophys.
Res. Lett., 33, L01806, https://doi.org/10.1029/2005GL024378, 2006. a
Scargle, J. D.: Studies in astronomical time series analysis.II.Statistical
aspects of spectral analysis of unevenly spaced data, Astrophys. J.,
263, 835–835, 1982. a
Schmidt, T., Wickert, J., Beyerle, G., König, R., Galas, R., and Reigber, C.:
The CHAMP Atmospheric Processing System for Radio Occultation Measurements, edited by: Reigber, C., Lühr, H., Schwintzer, P., and Wickert, J.,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/3-540-26800-6_95, 2005. a
Schmidt, T., Wickert, J., and Haser, A.: Variability of the upper troposphere
and lower stratosphere observed with GPS radio occultation bending angles and
temperatures, Adv. Space Res., 46, 150–161, 2010. a
Schott, F. A., Xie, S.-P., and McCreary Jr., J. P.: Indian Ocean circulation
and climate variability, Rev. Geophys., 47, RG1002,
https://doi.org/10.1029/2007RG000245, 2009. a
Shangguan, M., Wang, W., and Jin, S.: Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data, Atmos. Chem. Phys., 19, 6659–6679, https://doi.org/10.5194/acp-19-6659-2019, 2019. a
Simmonds, I. and Jones, D. A.: The mean structure and temporal variability of
the semiannual oscillation in the southern extratropics, Int. J. Climatol.,
18, 473–504, 1998. a
Walland, D. and Simmonds, I.: Baroclinicity, Meridional Temperature Gradients,
and the Southern Semiannual Oscillation, J. Climate, 12, 3376–3382,
1998. a
Wang, W., Matthes, K., Omrani, N. E., and Mojib, M.: Decadal variability of
tropical tropopause temperature and its relationship to the Pacific decadal
oscillation, Sci. Rep.-UK, 6, 29537, https://doi.org/10.1038/srep29537, 2016. a
Wang, W., Shangguan, M., Tian, W., Schmidt, T., and Ding, A.: Large
Uncertainties in Estimation of Tropical Tropopause Temperature Variabilities
Due to Model Vertical Resolution, Geophys. Res. Lett., 46,
10043–10052, https://doi.org/10.1029/2019GL084112, 2019. a
Wee, T.-K. and Kuo, Y.-H.: Advanced stratospheric data processing of radio
occultation with a variational combination for multifrequency GNSS signals,
J. Geophys. Res.-Atmos., 119, 11011–11039, 2015. a
Wickert, J., Michalak, G., Schmidt, T., Beyerle, G., Cheng, C., Healy, S. B.,
Heise, S., Huang, C., Jakowski, N., and Köhler, W.: GPS radio occultation:
results from CHAMP, GRACE and FORMOSAT-3/COSMIC, Terr. Atmos.
Ocean. Sci., 20, 35–50, 2009. a
Xu, G., Yue, X., Zhang, W., and Wan, X.: Assessment of Atmospheric Wet Profiles
Obtained from COSMIC Radio Occultation Observations over China, Atmosphere,
8, 208–208, 2017. a
Yan, Y., Wang, G., Chen, C., and Ling, Z.: Annual and Semiannual Cycles of
Diurnal Warming of Sea Surface Temperature in the South China Sea, J.
Geophys. Res.-Oceans, 123, 5797–5807, https://doi.org/10.1029/2017JC013657,
2018. a
Yang, F. and Wu, Z.: On the physical origin of the semiannual component of
surface air temperature over oceans, Clim. Dynam., 1–13, https://doi.org/10.1007/s00382-022-06199-z, 2022. a
Yashayaev, I. M. and Zveryaev, I. I.: Climate of the seasonal cycle in the
North Pacific and the North Atlantic oceans, Int. J.
Climatol., 21, 401–417, https://doi.org/10.1002/joc.585, 2001. a
Short summary
Skilful predictions of weather and climate on subseasonal to seasonal scales are valuable for decision makers. Here we show the global spatiotemporal variation of the temperature SAO in the UTLS with GNSS RO and reanalysis data. The formation of the SAO is explained by an energy budget analysis. The results show that the SAO in the UTLS is partly modified by the SSTs according to model simulations. The results may provide an important source for seasonal predictions of the surface weather.
Skilful predictions of weather and climate on subseasonal to seasonal scales are valuable for...
Altmetrics
Final-revised paper
Preprint