Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7443-2022
https://doi.org/10.5194/acp-22-7443-2022
Research article
 | 
10 Jun 2022
Research article |  | 10 Jun 2022

Future projections of daily haze-conducive and clear weather conditions over the North China Plain using a perturbed parameter ensemble

Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei

Data sets

A High-resolution Air Quality Reanalysis Dataset over China (CAQRA)[DS/OL] Xiao Tang, Lei Kong, Jiang Zhu, Zifa Wang, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Tao Song, Fei Li, Haitao Zheng, Guanglin Jia, Miaomiao Lu, Lin Wu, and Gregory R. Carmichael https://doi.org/10.11922/sciencedb.00053

ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut https://doi.org/10.24381/cds.bd0915c6

Download
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ˜3.5 times higher than the number of clear days over the NCP.
Altmetrics
Final-revised paper
Preprint