Articles | Volume 22, issue 10
Research article
31 May 2022
Research article |  | 31 May 2022

Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals

Carmen Maria Tovar, Ian Barnes, Iustinian Gabriel Bejan, and Peter Wiesen

Related authors

Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO2 radicals using laser-induced fluorescence spectroscopy
Frank A. F. Winiberg, William J. Warman, Charlotte A. Brumby, Graham Boustead, Iustinian G. Bejan, Thomas H. Speak, Dwayne E. Heard, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 16, 4375–4390,,, 2023
Short summary
Atmospheric breakdown chemistry of the new “green” solvent 2,2,5,5-tetramethyloxolane via gas-phase reactions with OH and Cl radicals
Caterina Mapelli, Juliette V. Schleicher, Alex Hawtin, Conor D. Rankine, Fiona C. Whiting, Fergal Byrne, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 22, 14589–14602,,, 2022
Short summary
Investigations into the gas-phase photolysis and OH radical kinetics of nitrocatechols: implications of intramolecular interactions on their atmospheric behaviour
Claudiu Roman, Cecilia Arsene, Iustinian Gabriel Bejan, and Romeo Iulian Olariu
Atmos. Chem. Phys., 22, 2203–2219,,, 2022
Short summary
Biomass burning plume chemistry: OH-radical-initiated oxidation of 3-penten-2-one and its main oxidation product 2-hydroxypropanal
Niklas Illmann, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 18557–18572,,, 2021
Short summary
Atmospheric oxidation of α,β-unsaturated ketones: kinetics and mechanism of the OH radical reaction
Niklas Illmann, Rodrigo Gastón Gibilisco, Iustinian Gabriel Bejan, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 13667–13686,,, 2021
Short summary

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Carbonyl sulfide production during dimethyl sulfide oxidation in the atmospheric simulation chamber SAPHIR
Marc von Hobe, Domenico Taraborrelli, Sascha Alber, Birger Bohn, Hans-Peter Dorn, Hendrik Fuchs, Yun Li, Chenxi Qiu, Franz Rohrer, Roberto Sommariva, Fred Stroh, Zhaofeng Tan, Sergej Wedel, and Anna Novelli
Atmos. Chem. Phys., 23, 10609–10623,,, 2023
Short summary
An aldehyde as a rapid source of secondary aerosol precursors: theoretical and experimental study of hexanal autoxidation
Shawon Barua, Siddharth Iyer, Avinash Kumar, Prasenjit Seal, and Matti Rissanen
Atmos. Chem. Phys., 23, 10517–10532,,, 2023
Short summary
Measuring and modeling investigation of the net photochemical ozone production rate via an improved dual-channel reaction chamber technique
Yixin Hao, Jun Zhou, Jie-Ping Zhou, Yan Wang, Suxia Yang, Yibo Huangfu, Xiao-Bing Li, Chunsheng Zhang, Aiming Liu, Yanfeng Wu, Yaqing Zhou, Shuchun Yang, Yuwen Peng, Jipeng Qi, Xianjun He, Xin Song, Yubin Chen, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 23, 9891–9910,,, 2023
Short summary
Atmospheric impact of 2-methylpentanal emissions: Kinetics, photochemistry, and formation of secondary pollutants
María Asensio, Sergio Blázquez, María Antiñolo, José Albaladejo, and Elena Jiménez
EGUsphere,,, 2023
Short summary
Compilation of Henry's law constants (version 5.0.0-rc.0) for water as solvent
Rolf Sander
EGUsphere,,, 2023
Short summary

Cited articles

Almatarneh, M. H., Elayan, I. A., Altarawneh, M., and Hollett, J. W.: A computational study of the ozonolysis of sabinene, Theor. Chem. Acc., 138, 30,, 2019a. 
Almatarneh, M. H., Elayan, I. A., Abu-Saleh, A. A. A., Altarawneh, M., and Ariya, P. A.: The gas-phase ozonolysis reaction of methylbutenol: A mechanistic study, Int. J. Quantum Chem., 119, e25888,, 2019b. 
Alvarado, A., Tuazon, E. C., Aschmann, S. M., Atkinson, R., and Arey, J.: Products of the gas-phase reactions of O (3P) atoms and O3 with a-pinene and 1,2-dimethyl-1-cyclohexene, J. Geophys. Res.-Atmos., 103, 25541,, 1998. 
Andrea, K. A. and Kerton, F. M.: Iron-catalyzed reactions of CO2 and epoxides to yield cyclic and polycarbonates, Polym. J., 53, 29–46,, 2021. 
Appaturi, J., Ramalingam, R., Gnanamani, M., Periyasami, G., Arunachalam, P., Adnan, R., Adam, F., Wasmiah, M., and Al-Lohedan, H.: Review on Carbon Dioxide Utilization for Cycloaddition of Epoxides by Ionic Liquid-Modified Hybrid Catalysts: Effect of Influential Parameters and Mechanisms Insight, Catalysts, 11, 4,, 2021. 
Short summary
This work explores the kinetics and reactivity of epoxides towards the OH radical using two different simulation chambers. Estimation of the rate coefficients has also been made using different structure–activity relationship (SAR) approaches. The results indicate a direct influence of the structural and geometric properties of the epoxides not considered in SAR estimations, influencing the reactivity of these compounds. The outcomes of this work are in very good agreement with previous studies.
Final-revised paper