Articles | Volume 22, issue 10
https://doi.org/10.5194/acp-22-6989-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-6989-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals
Carmen Maria Tovar
CORRESPONDING AUTHOR
Institute for Atmospheric and Environmental Research, University of
Wuppertal, 42097 Wuppertal, Germany
Ian Barnes
Institute for Atmospheric and Environmental Research, University of
Wuppertal, 42097 Wuppertal, Germany
deceased, 1 January 2018
Iustinian Gabriel Bejan
CORRESPONDING AUTHOR
Faculty of Chemistry and Integrated Center of Environmental Science Studies in the North-Eastern Region – CERNESIM, “Alexandru Ioan Cuza” University of Iasi, Iasi, 700506, Romania
Peter Wiesen
Institute for Atmospheric and Environmental Research, University of
Wuppertal, 42097 Wuppertal, Germany
Related authors
No articles found.
James D'Souza Metcalf, Ruth K. Winkless, Caterina Mapelli, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 25, 9169–9181, https://doi.org/10.5194/acp-25-9169-2025, https://doi.org/10.5194/acp-25-9169-2025, 2025
Short summary
Short summary
Oxymethylene ethers are a class of sustainable compounds that could be used to replace harmful organic solvents in a range of applications. In this work, we use lab-based experiments to identify the main breakdown routes of these compounds in the atmosphere. We have determined that they likely contribute less to air pollution than the compounds that they replace.
Frank A. F. Winiberg, William J. Warman, Charlotte A. Brumby, Graham Boustead, Iustinian G. Bejan, Thomas H. Speak, Dwayne E. Heard, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 16, 4375–4390, https://doi.org/10.5194/amt-16-4375-2023, https://doi.org/10.5194/amt-16-4375-2023, 2023
Short summary
Short summary
OH and HO2 are key reactive intermediates in the Earth's atmosphere. Accurate measurements in either the field or simulation chambers provide a good test for chemical mechanisms. Fluorescence techniques have the appropriate sensitivity for detection but require calibration. This paper compares different methods of calibration and specifically how calibration factors vary across a temperature range relevant to atmospheric and chamber determinations.
Caterina Mapelli, Juliette V. Schleicher, Alex Hawtin, Conor D. Rankine, Fiona C. Whiting, Fergal Byrne, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 22, 14589–14602, https://doi.org/10.5194/acp-22-14589-2022, https://doi.org/10.5194/acp-22-14589-2022, 2022
Short summary
Short summary
Solvents represent an important source of pollution from the chemical industry. New "green" solvents aim to replace toxic solvents with new molecules made from renewable sources and designed to be less harmful. Whilst these new molecules are selected according to toxicity and other characteristics, no consideration has yet been included on air quality. Studying the solvent breakdown in air, we found that TMO has a lower impact on air quality than traditional solvents with similar properties.
Claudiu Roman, Cecilia Arsene, Iustinian Gabriel Bejan, and Romeo Iulian Olariu
Atmos. Chem. Phys., 22, 2203–2219, https://doi.org/10.5194/acp-22-2203-2022, https://doi.org/10.5194/acp-22-2203-2022, 2022
Short summary
Short summary
Gas-phase reaction rate coefficients of OH radicals with four nitrocatechols have been investigated for the first time by using ESC-Q-UAIC chamber facilities. The reactivity of all investigated nitrocatechols is influenced by the formation of the intramolecular H-bonds that are connected to the deactivating electromeric effect of the NO2 group. For the 3-nitrocatechol compounds, the electromeric effect of the
freeOH group is diminished by the deactivating E-effect of the NO2 group.
Niklas Illmann, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 18557–18572, https://doi.org/10.5194/acp-21-18557-2021, https://doi.org/10.5194/acp-21-18557-2021, 2021
Short summary
Short summary
Understanding the chemistry of biomass burning plumes is of global interest. Within this work we investigated the OH radical reaction of 3-penten-2-one, which has been identified in biomass burning emissions. We observed the primary formation of peroxyacetyl nitrate (PAN), a key NOx reservoir species. Besides, PAN precursors were also identified as main oxidation products. 3-Penten-2-one is shown to be an example explaining rapid PAN formation within young biomass burning plumes.
Niklas Illmann, Rodrigo Gastón Gibilisco, Iustinian Gabriel Bejan, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 13667–13686, https://doi.org/10.5194/acp-21-13667-2021, https://doi.org/10.5194/acp-21-13667-2021, 2021
Short summary
Short summary
Within this work we determined the rate coefficients and products of the reaction of unsaturated ketones with OH radicals in an effort to complete the gaps in the knowledge needed for modelling chemistry in the atmosphere. Both substances are potentially emitted by biomass burning, industrial activities or formed in the troposphere by oxidation of terpenes. As products we identified aldehydes and ketones which in turn are known to be responsible for the transportation of NOx species.
Cited articles
Almatarneh, M. H., Elayan, I. A., Altarawneh, M., and Hollett, J. W.: A computational study of the ozonolysis of sabinene, Theor. Chem. Acc., 138, 30, https://doi.org/10.1007/s00214-019-2420-7, 2019a.
Almatarneh, M. H., Elayan, I. A., Abu-Saleh, A. A. A., Altarawneh, M., and Ariya, P. A.: The gas-phase ozonolysis reaction of methylbutenol: A mechanistic study, Int. J. Quantum Chem., 119, e25888,
https://doi.org/10.1002/qua.25888, 2019b.
Alvarado, A., Tuazon, E. C., Aschmann, S. M., Atkinson, R., and Arey, J.:
Products of the gas-phase reactions of O (3P) atoms and O3 with
a-pinene and 1,2-dimethyl-1-cyclohexene, J. Geophys. Res.-Atmos., 103, 25541, https://doi.org/10.1029/98JD00524, 1998.
Andrea, K. A. and Kerton, F. M.: Iron-catalyzed reactions of CO2 and
epoxides to yield cyclic and polycarbonates, Polym. J., 53, 29–46,
https://doi.org/10.1038/s41428-020-00395-6, 2021.
Appaturi, J., Ramalingam, R., Gnanamani, M., Periyasami, G., Arunachalam,
P., Adnan, R., Adam, F., Wasmiah, M., and Al-Lohedan, H.: Review on Carbon
Dioxide Utilization for Cycloaddition of Epoxides by Ionic Liquid-Modified
Hybrid Catalysts: Effect of Influential Parameters and Mechanisms Insight,
Catalysts, 11, 4, https://doi.org/10.3390/catal11010004, 2021.
Atkinson, R.: Estimations of OH radical rate constants from H-atom
abstraction from C-H and O-H bonds over the temperature range 250–1000 K,
Int. J. Chem. Kinet., 18, 555–568, https://doi.org/10.1002/kin.550180506, 1986a.
Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the
hydroxyl radical with organic compounds under atmospheric conditions,
Chem. Rev., 86, 69–201, https://doi.org/10.1021/cr00071a004, 1986b.
Atkinson, R.: A structure-activity relationship for the estimation of rate
constants for the gas-phase reactions of OH radicals with organic compounds,
Int. J. Chem. Kinet., 19, 799–828,
https://doi.org/10.1002/kin.550190903, 1987.
Atkinson, R., Arey, J., Aschmann, S. M., and Tuazon, E. C.: Formation of O
(3P) atoms and epoxides from the gas- phase reaction of O3 with
isoprene, Res. Chem. Intermediat., 20, 385–394,
https://doi.org/10.1163/156856794X00388, 1994a.
Atkinson, R., Aschmann, S. M., Arey, J., and Tuazon, E. C.: Formation yields
of epoxides and O (3P) atoms from the gas-phase reactions of O3
with a series of alkenes, Int. J. Chem. Kinet., 26,
945–950, https://doi.org/10.1002/kin.550260908, 1994b.
Bader, R. F. W., Popelier, P. L. A., and Keith, T. A.: Theoretical
Definition of a Functional Group and the Molecular Orbital Paradigm, Angew. Chem. Int. Ed., 33, 620–631, https://doi.org/10.1002/anie.199406201, 1994.
Barnes, I., Becker, K. H., and Mihalopoulos, N.: An FTIR product study of
the photooxidation of dimethyl disulfide, J. Atmos. Chem.,
18, 267–289, https://doi.org/10.1007/BF00696783, 1994.
Calvert, G., Atkinson, R., Kerr, A., Madronich, S., Moortgat, G.,
Wallington, J., and Yarwood, G.: The Mechanisms of Atmospheric Oxidation of
the Alkenes, Oxford University Press, http://n2t.net/ark:/85065/d7cc11x7 (last access: 24 May 2022), 2000.
Calvert, J., Mellouki, A., Orlando, J., Pilling, M., and Wallington, T.:
Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University
Press, https://doi.org/10.1093/oso/9780199767076.001.0001, 2011.
Calvert, J. G., Orlando, J. J., Stockwell, W. R., and Wallington, T. J.: The
Mechanisms of Reactions Influencing Atmospheric Ozone, Oxford University
Press, https://doi.org/10.1093/oso/9780190233020.001.0001, 2015.
Christianson, M. G., Doner, A. C., Davis, M. M., Koritzke, A. L., Turney, J.
M., Schaefer III, H. F., Sheps, L., Osborn, D. L., Taatjes, C. A., and
Rotavera, B.: Reaction mechanisms of a cyclic ether intermediate:
Ethyloxirane, Int. J. Chem. Kinet., 53, 43–59, https://doi.org/10.1002/kin.21423, 2021.
Coppens, P.: Charge Densities Come of Age, Angew. Chem. Int. Ed., 44, 6810–6811, https://doi.org/10.1002/anie.200501734, 2005.
Coulson, C. A. and Moffitt, W. E.: Strain in Non-Tetrahedral Carbon Atoms,
J. Chem. Phys., 15, 151, https://doi.org/10.1063/1.1746450, 1947.
Coulson, C. A. and Moffitt, W. E.: I. The properties of certain strained
hydrocarbons, The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 40, 1–35, https://doi.org/10.1080/14786444908561208,
1949.
Cromwell, N. H. and Graff, M. A.: Three-Ring carbonyl hyperconjugation in
cis and trans aryl-aroyl ethylene imines and related compounds, J. Org.
Chem., 17, 414–425, https://doi.org/10.1021/jo01137a014, 1952.
Doner, A. C., Davis, M. M., Koritzke, A. L., Christianson, M. G., Turney, J.
M., Schaefer III, H. F., Sheps, L., Osborn, D. L., Taatjes, C. A., and
Rotavera, B.: Isomer-dependent reaction mechanisms of cyclic ether
intermediates: cis-2,3-dimethyloxirane and trans-2,3-dimethyloxirane, Int. J. Chem. Kinet., 53, 127–145, https://doi.org/10.1002/kin.21429, 2021.
Ehrenberg, L. and Hussain, S.: Genetic toxicity of some important epoxides,
Mutation Research/Reviews in Genetic Toxicology, Mutat. Res./Reviews in Genetic Toxicology, 86, 1–113, https://doi.org/10.1016/0165-1110(81)90034-8, 1981.
El Othmani, H., Ren, Y., Mellouki, A., Daële, V., and McGillen, M. R.:
Gas-phase rate coefficient of OH + cyclohexene oxide measured from 251 to
373 K, Chem. Phys. Lett., 783, 139056,
https://doi.org/10.1016/j.cplett.2021.139056, 2021a.
El Othmani, H., Ren, Y., Bedjanian, Y., El Hajjaji, S., Tovar, C., Wiesen,
P., Mellouki, A., McGillen, M. R., and Daële, V.: Gas-Phase Rate
Coefficient of OH + 1,2-Epoxybutane Determined between 220 and 950 K, ACS Earth and Space Chemistry, 5, 960–968,
https://doi.org/10.1021/acsearthspacechem.1c00050, 2021b.
Fokin, V. V. and Wu, P.: Epoxides and Aziridines in Click Chemistry, in:
Aziridines and Epoxides in Organic Synthesis, John Wiley & Sons, Ltd,
443–477, https://doi.org/10.1002/3527607862.ch12, 2006.
Förster, T.: Die gegenseitige Beeinflussung der Valenzen im
Kohlenstoffatom, Z. Phys. Chem., 43B, 58–78, https://doi.org/10.1515/zpch-1939-4306, 1939.
Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M. C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M., Williams, M., and Gilardoni, S.: Particulate matter, air quality and climate: lessons learned and future needs, Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, 2015.
Gao, S., Ng, N. L., Keywood, M., Varutbangkul, V., Bahreini, R., Nenes, A.,
He, J., Yoo, K. Y., Beauchamp, J. L., Hodyss, R. P., Flagan, R. C., and
Seinfeld, J. H.: Particle Phase Acidity and Oligomer Formation in Secondary
Organic Aerosol, Environ. Sci. Technol., 38, 6582–6589,
https://doi.org/10.1021/es049125k, 2004.
Grabowsky, S., Jayatilaka, D., Mebs, S., and Luger, P.: The Electron
Localizability Indicator from X-Ray Diffraction Data – A First Application
to a Series of Epoxide Derivatives, Chem.-Eur. J., 16,
12818–12821, https://doi.org/10.1002/chem.201002061, 2010.
Guo, L., Lamb, K. J., and North, M.: Recent developments in organocatalysed
transformations of epoxides and carbon dioxide into cyclic carbonates, Green
Chem., 23, 77–118, https://doi.org/10.1039/D0GC03465G, 2021.
Hereijgers, B. P. C., Parton, R. F., and Weckhuysen, B. M.: Mechanistic
insights in the olefin epoxidation with cyclohexyl hydroperoxide, Catal.
Sci. Technol., 2, 951–960, https://doi.org/10.1039/C2CY00455K, 2012.
IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation:
https://iupac-aeris.ipsl.fr/, last access: 26 October 2021.
Jacobs, M. I., Darer, A. I., and Elrod, M. J.: Rate Constants and Products
of the OH Reaction with Isoprene-Derived Epoxides, Environ. Sci. Technol., 47, 12868–12876, https://doi.org/10.1021/es403340g, 2013.
Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015.
Jenkin, M. E., Valorso, R., Aumont, B., Rickard, A. R., and Wallington, T. J.: Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aliphatic organic compounds for use in automated mechanism construction, Atmos. Chem. Phys., 18, 9297–9328, https://doi.org/10.5194/acp-18-9297-2018, 2018.
Jiang, X., Tsona, N. T., Jia, L., Liu, S., Zhang, H., Xu, Y., and Du, L.: Secondary organic aerosol formation from photooxidation of furan: effects of NOx and humidity, Atmos. Chem. Phys., 19, 13591–13609, https://doi.org/10.5194/acp-19-13591-2019, 2019.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Klotz, B., Barnes, I., Becker, K. H., and Golding, B. T.: Atmospheric
chemistry of benzeneoxide/oxepin, J. Chem. Soc. Faraday T., 93, 1507–1516, https://doi.org/10.1039/A606152D, 1997.
Klotz, B., Barnes, I., Golding, B. T., and Becker, K.-H.: Atmospheric
chemistry of toluene-1,2-oxide/2-methyloxepin, Phys. Chem. Chem. Phys., 2, 227–235, https://doi.org/10.1039/A908365K, 2000.
Kohout, M.: A measure of electron localizability, Int. J. Quantum Chem., 97, 651–658, https://doi.org/10.1002/qua.10768, 2004.
Kolb, H. C., Finn, M. G., and Sharpless, K. B.: Click Chemistry: Diverse
Chemical Function from a Few Good Reactions, Angew. Chem. Int. Edit., 40, 2004–2021, https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5, 2001.
Koritsanszky, T. S. and Coppens, P.: Chemical Applications of X-ray
Charge-Density Analysis, Chem. Rev., 101, 1583–1628,
https://doi.org/10.1021/cr990112c, 2001.
Kutzelnigg, W.: Book Review: Atoms in Molecules. A Quantum Theory (International Series Monographs on Chemistry, Vol. 22). By R. F. W. Bader, Angew. Chem. Int. Ed., 32, 128–129, https://doi.org/10.1002/anie.199301282, 1993.
Kwok, E. S. C. and Atkinson, R.: Estimation of hydroxyl radical reaction
rate constants for gas-phase organic compounds using a structure-reactivity
relationship: An update, Atmos. Environ., 29, 1685–1695,
https://doi.org/10.1016/1352-2310(95)00069-B, 1995.
Lal, V., Khalizov, A. F., Lin, Y., Galvan, M. D., Connell, B. T., and Zhang,
R.: Heterogeneous Reactions of Epoxides in Acidic Media, J. Phys. Chem. A, 116, 6078–6090, https://doi.org/10.1021/jp2112704, 2012.
Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and reactivity, Atmos. Chem. Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016, 2016.
Li, M., Liu, Y., and Wang, L.: Gas-phase ozonolysis of furans, methylfurans,
and dimethylfurans in the atmosphere, Phys. Chem. Chem. Phys.,
20, 24735–24743, https://doi.org/10.1039/C8CP04947E, 2018.
Lin, Y.-H., Zhang, H., Pye, H. O. T., Zhang, Z., Marth, W. J., Park, S.,
Arashiro, M., Cui, T., Budisulistiorini, S. H., Sexton, K. G., Vizuete, W.,
Xie, Y., Luecken, D. J., Piletic, I. R., Edney, E. O., Bartolotti, L. J.,
Gold, A., and Surratt, J. D.: Epoxide as a precursor to secondary organic
aerosol formation from isoprene photooxidation in the presence of nitrogen
oxides, P. Natl. Acad. Sci. USA, 110, 6718–6723,
https://doi.org/10.1073/pnas.1221150110, 2013.
McGillen, M. R., Carter, W. P. L., Mellouki, A., Orlando, J. J., Picquet-Varrault, B., and Wallington, T. J.: Database for the kinetics of the gas-phase atmospheric reactions of organic compounds, Earth Syst. Sci. Data, 12, 1203–1216, https://doi.org/10.5194/essd-12-1203-2020, 2020.
Middala, S., Campbell, S., Olea, C., Scruggs, A., and Hasson, A. S.:
Kinetics and mechanism of the reaction of propylene oxide with chlorine
atoms and hydroxy radicals, Int. J. Chem. Kinet., 43,
507–521, https://doi.org/10.1002/kin.20580, 2011.
Minerath, E. C. and Elrod, M. J.: Assessing the Potential for Diol and
Hydroxy Sulfate Ester Formation from the Reaction of Epoxides in
Tropospheric Aerosols, Environ. Sci. Technol., 43, 1386–1392, https://doi.org/10.1021/es8029076, 2009.
Minerath, E. C., Schultz, M. P., and Elrod, M. J.: Kinetics of the Reactions
of Isoprene-Derived Epoxides in Model Tropospheric Aerosol Solutions,
Environ. Sci. Technol., 43, 8133–8139, https://doi.org/10.1021/es902304p, 2009.
Oshima, T., Asahara, H., Kubo, E., Miyamoto, S., and Togaya, K.:
Conformational Effects in Acid-Mediated Ring Opening of Epoxides: A
Prominent Role of the Oxirane Walsh Orbital, Org. Lett., 10,
2413–2416, https://doi.org/10.1021/ol800535c, 2008.
Otto, H.-H. and Schirmeister, T.: Cysteine Proteases and Their Inhibitors,
Chem. Rev., 97, 133–172, https://doi.org/10.1021/cr950025u, 1997.
Parker, R. E. and Isaacs, N. S.: Mechanisms Of Epoxide Reactions, Chem.
Rev., 59, 737–799, https://doi.org/10.1021/cr50028a006, 1959.
Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten, A., St Clair, J.
M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected epoxide formation in
the gas-phase photooxidation of isoprene, Science, 325,
730—733, https://doi.org/10.1126/science.1172910, 2009.
Paulson, S. E., Flagan, R. C., and Seinfeld, J. H.: Atmospheric
photooxidation of isoprene part I: The hydroxyl radical and ground state
atomic oxygen reactions, Int. J. Chem. Kinet., 24,
79–101, https://doi.org/10.1002/kin.550240109, 1992.
Piletic, I. R., Edney, E. O., and Bartolotti, L. J.: Barrierless Reactions
with Loose Transition States Govern the Yields and Lifetimes of Organic
Nitrates Derived from Isoprene, J. Phys. Chem. A, 121, 8306–8321,
https://doi.org/10.1021/acs.jpca.7b08229, 2017.
Powers, J. C., Asgian, J. L., Ekici, Ö. D., and James, K. E.:
Irreversible Inhibitors of Serine, Cysteine, and Threonine Proteases,
Chem. Rev., 102, 4639–4750, https://doi.org/10.1021/cr010182v, 2002.
Rogers, M. T.: The Electric Moments and Ultraviolet Absorption Spectra of
Some Derivatives of Cyclopropane and of Ethylene Oxide, J. Am. Chem. Soc., 69, 2544–2548, https://doi.org/10.1021/ja01202a081, 1947.
Sandhiya, L., Kolandaivel, P., and Senthilkumar, K.: Mechanism and Kinetics
of the Atmospheric Oxidative Degradation of Dimethylphenol Isomers Initiated
by OH Radical, J. Phys. Chem. A, 117, 4611–4626,
https://doi.org/10.1021/jp3120868, 2013.
Schirmeister, T. and Klockow, A.: Cysteine Protease Inhibitors Containing
Small Rings, Mini-Rev. Med. Chem., 3, 585–596, 2003.
Searles, S. and Tamres, M.: Hydrogen Bond Formation with Saturated Cyclic
Ethers1, J. Am. Chem. Soc., 73, 3704–3706,
https://doi.org/10.1021/ja01152a041, 1951.
Searles, S., Tamres, M., and Lippincott, E. R.: Hydrogen Bonding Ability and
Structure of Ethylene Oxides, J. Am. Chem. Soc., 75,
2775–2777, https://doi.org/10.1021/ja01107a517, 1953.
Shrivastava, M., Andreae, M. O., Artaxo, P., Barbosa, H. M. J., Berg, L. K.,
Brito, J., Ching, J., Easter, R. C., Fan, J., Fast, J. D., Feng, Z.,
Fuentes, J. D., Glasius, M., Goldstein, A. H., Alves, E. G., Gomes, H., Gu,
D., Guenther, A., Jathar, S. H., Kim, S., Liu, Y., Lou, S., Martin, S. T.,
McNeill, V. F., Medeiros, A., de Sá, S. S., Shilling, J. E., Springston,
S. R., Souza, R. a. F., Thornton, J. A., Isaacman-VanWertz, G., Yee, L. D.,
Ynoue, R., Zaveri, R. A., Zelenyuk, A., and Zhao, C.: Urban pollution
greatly enhances formation of natural aerosols over the Amazon rainforest,
Nat. Commun., 10, 1046, https://doi.org/10.1038/s41467-019-08909-4, 2019.
Skov, H., Benter, T., Schindler, R. N., Hjorth, J., and Restelli, G.:
Epoxide formation in the reactions of the nitrate radical with
2,3-dimethyl-2-butene, cis- and trans-2-butene and isoprene, Atmos. Environ., 28, 1583–1592, https://doi.org/10.1016/1352-2310(94)90304-2, 1994.
Starit, L. A., Ketcham, Roger., Jambotkar, D., and Shah, V. P.:
Three-Membered Rings. I. Conjugative Properties and Electrinic Spectra of
Arylcyclopropanes, Oxiranes, and Thiiranes, J. Am. Chem. Soc., 86,
4628–4630, https://doi.org/10.1021/ja01075a022, 1964.
Stropoli, S. J., Miner, C. R., Hill, D. R., and Elrod, M. J.: Assessing
Potential Oligomerization Reaction Mechanisms of Isoprene Epoxydiols on
Secondary Organic Aerosol, Environ. Sci. Technol., 53, 176–184, https://doi.org/10.1021/acs.est.8b05247, 2019.
Tamres, M., Searles, S., Leighly, E. M., and Mohrman, D. W.: Hydrogen Bond
Formation with Pyridines and Aliphatic Amines1, J. Am. Chem. Soc., 76, 3983–3985, https://doi.org/10.1021/ja01644a035, 1954.
Tovar, C. M., Haack, A., Barnes, I., Bejan, I. G., and Wiesen, P.:
Experimental and theoretical study of the reactivity of a series of epoxides
with chlorine atoms at 298 K, Phys. Chem. Chem. Phys., 23,
5176–5186, https://doi.org/10.1039/D0CP06033J, 2021.
Vereecken, L.: Reaction Mechanisms for the Atmospheric Oxidation of
Monocyclic Aromatic Compounds, in: Advances in Atmospheric Chemistry, edited by: Barker, J. R., Steiner, A. L., and Wallington, T. J., World Scientific, 377–527, https://doi.org/10.1142/9789813271838_0006, 2018.
Vereecken, L., Glowacki, D. R., and Pilling, M. J.: Theoretical Chemical
Kinetics in Tropospheric Chemistry: Methodologies and Applications, Chem.
Rev., 115, 4063–4114, https://doi.org/10.1021/cr500488p, 2015.
Vereecken, L., Aumont, B., Barnes, I., Bozzelli, J. W., Goldman, M. J.,
Green, W. H., Madronich, S., Mcgillen, M. R., Mellouki, A., Orlando, J. J.,
Picquet-Varrault, B., Rickard, A. R., Stockwell, W. R., Wallington, T. J.,
and Carter, W. P. L.: Perspective on Mechanism Development and
Structure-Activity Relationships for Gas-Phase Atmospheric Chemistry,
Int. J. Chem. Kinet., 50, 435–469, https://doi.org/10.1002/kin.21172, 2018.
Villanueva, F., Cabañas, B., Monedero, E., Salgado, S., Bejan, I., and
Martin, P.: Atmospheric degradation of alkylfurans with chlorine atoms:
Product and mechanistic study, Atmos. Environ., 43, 2804–2813,
https://doi.org/10.1016/j.atmosenv.2009.02.030, 2009.
Virmani, A., Walavalkar, M. P., Sharma, A., Sengupta, S., Saha, A., and
Kumar, A.: Kinetic studies of the gas phase reaction of 1,2-propylene oxide
with the OH radical over a temperature range of 261–335 K, Atmos. Environ., 237, 117709, https://doi.org/10.1016/j.atmosenv.2020.117709, 2020.
Wallington, T. J., Dagaut, P., and Kurylo, M. J.: Correlation between
gas-phase and solution-phase reactivities of hydroxyl radicals towards
saturated organic compounds, J. Phys. Chem., 92, 5024–5028,
https://doi.org/10.1021/j100328a039, 1988a.
Wallington, T. J., Liu, R., Dagaut, P., and Kurylo, M. J.: The gas phase
reactions of hydroxyl radicals with a series of aliphatic ethers over the
temperature range 240–440 K, 20, 41–49,
https://doi.org/10.1002/kin.550200106, 1988b.
Wallington, T. J., Dagaut, P., Liu, R., and Kurylo, M. J.: The gas phase
reactions of hydroxyl radicals with a series of esters over the temperature
range 240–440 K, Int. J. Chem. Kinet., 20, 177–186,
https://doi.org/10.1002/kin.550200210, 1988c.
Walsh, A. D.: The structures of ethylene oxide, cyclopropane, and related
molecules, T. Faraday Soc., 45, 179–190,
https://doi.org/10.1039/TF9494500179, 1949.
Wang, Q., Ni, S., Bai, F., and Pan, X.: Theoretical investigation on
atmospheric reaction mechanism, kinetics and SAR estimations of four-carbon
ketones and alcohols, Atmos. Environ., 271, 118915,
https://doi.org/10.1016/j.atmosenv.2021.118915, 2022.
Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee, B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Huey, G. L., and Liao, H.: The role of chlorine in global tropospheric chemistry, Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, 2019.
Wiberg, K. B.: Bent Bonds in Organic Compounds, Acc. Chem. Res., 29,
229–234, https://doi.org/10.1021/ar950207a, 1996.
Young, C. J., Washenfelder, R. A., Edwards, P. M., Parrish, D. D., Gilman, J. B., Kuster, W. C., Mielke, L. H., Osthoff, H. D., Tsai, C., Pikelnaya, O., Stutz, J., Veres, P. R., Roberts, J. M., Griffith, S., Dusanter, S., Stevens, P. S., Flynn, J., Grossberg, N., Lefer, B., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E. L., Blake, D. R., and Brown, S. S.: Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles, Atmos. Chem. Phys., 14, 3427–3440, https://doi.org/10.5194/acp-14-3427-2014, 2014.
Zhang, F., Wang, Y., Zhang, X., Zhang, X., Liu, H., and Han, B.: Recent
advances in the coupling of CO2 and epoxides into cyclic carbonates under halogen-free condition, Green Chemical Engineering, 1, 82–93,
https://doi.org/10.1016/j.gce.2020.09.008, 2020.
Zhang, Q., Jimenez, J. L., Worsnop, D. R., and Canagaratna, M.: A Case Study
of Urban Particle Acidity and Its Influence on Secondary Organic Aerosol,
Environ. Sci. Technol., 41, 3213–3219, https://doi.org/10.1021/es061812j, 2007.
Zhou, S., Yeung, L. W. Y., Forbes, M. W., Mabury, S., and Abbatt, J. P. D.:
Epoxide formation from heterogeneous oxidation of benzo[a]pyrene with
gas-phase ozone and indoor air, Environ. Sci.-Proc. Imp., 19, 1292–1299, https://doi.org/10.1039/C7EM00181A, 2017.
Zou, B. and Hu, C.: Halogen-free processes for organic carbonate synthesis
from CO2, Current Opinion in Green and Sustainable Chemistry, 3,
11–16, https://doi.org/10.1016/j.cogsc.2016.10.007, 2017.
Short summary
This work explores the kinetics and reactivity of epoxides towards the OH radical using two different simulation chambers. Estimation of the rate coefficients has also been made using different structure–activity relationship (SAR) approaches. The results indicate a direct influence of the structural and geometric properties of the epoxides not considered in SAR estimations, influencing the reactivity of these compounds. The outcomes of this work are in very good agreement with previous studies.
This work explores the kinetics and reactivity of epoxides towards the OH radical using two...
Altmetrics
Final-revised paper
Preprint