Articles | Volume 22, issue 1
https://doi.org/10.5194/acp-22-641-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-641-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Opportunistic experiments to constrain aerosol effective radiative forcing
Matthew W. Christensen
CORRESPONDING AUTHOR
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
Atmospheric Science & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, Washington, USA
Andrew Gettelman
National Center for Atmospheric Research, Boulder, CO, USA
Jan Cermak
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Karlsruhe, Germany
Karlsruhe Institute of Technology (KIT), Institute of Photogrammetry and Remote Sensing, Karlsruhe, Germany
Guy Dagan
Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
Michael Diamond
Department of Atmospheric Sciences, University of Washington, Seattle, USA
NOAA Chemical Sciences Laboratory (CSL), Boulder, Colorado, USA
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, USA
Alyson Douglas
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
Graham Feingold
NOAA Chemical Sciences Laboratory (CSL), Boulder, Colorado, USA
Franziska Glassmeier
Department Geoscience and Remote Sensing, Delft University of
Technology, P.O. Box 5048, 2600GA Delft, the Netherlands
Tom Goren
Institute for Meteorology, Universität Leipzig, Leipzig, Germany
Daniel P. Grosvenor
National Centre for Atmospheric Sciences, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Edward Gryspeerdt
Space and Atmospheric Physics Group, Imperial College London, London, UK
Ralph Kahn
Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Zhanqing Li
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, USA
Po-Lun Ma
Atmospheric Science & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, Washington, USA
Florent Malavelle
Met Office, Atmospheric Dispersion and Air Quality, Fitzroy Rd, Exeter, EX1 3PB, UK
Isabel L. McCoy
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
Cooperative Programs for the Advancement of Earth System Science (CPAESS), University Corporation for Atmospheric Research, Boulder, CO, USA
Daniel T. McCoy
Department of Atmospheric Sciences, University of Wyoming, Laramie, USA
Greg McFarquhar
Cooperative Institute for Severe and High Impact Weather Research
and Operations (CIWRO) and School of Meteorology, University of Oklahoma, Norman, OK, USA
School of Meteorology, University of Oklahoma, Norman, OK, USA
Johannes Mülmenstädt
Atmospheric Science & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, Washington, USA
Sandip Pal
Department of Geosciences, Texas Tech University, Lubbock, TX, USA
Anna Possner
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
Adam Povey
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
National Centre for Earth Observation, University of Oxford, Oxford, OX1 3PU, UK
Johannes Quaas
Institute for Meteorology, Universität Leipzig, Leipzig, Germany
Daniel Rosenfeld
Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
Anja Schmidt
Department of Geography, University of Cambridge, Cambridge, UK
Department of Chemistry, University of Cambridge, Cambridge, UK
Roland Schrödner
Leibniz Institute for Tropospheric Research, Leipzig, Germany
Armin Sorooshian
Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
Philip Stier
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
Velle Toll
Institute of Physics, University of Tartu, Tartu, Estonia
Duncan Watson-Parris
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
Robert Wood
Department of Atmospheric Sciences, University of Washington, Seattle, USA
Mingxi Yang
Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
Tianle Yuan
Joint Center for Earth Systems Technologies, University of
Maryland, Baltimore County, Baltimore, MD, USA
Earth Science Division, NASA Goddard Space Flight Center,
Greenbelt, MD, USA
Data sets
Natural Laboratories Atmosphere Dataset (v1.0) M. Christensen and A. Gettelman https://doi.org/10.5281/zenodo.5839101
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources...
Altmetrics
Final-revised paper
Preprint