Articles | Volume 22, issue 9
https://doi.org/10.5194/acp-22-5961-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-5961-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantification of methane emissions from hotspots and during COVID-19 using a global atmospheric inversion
Joe McNorton
CORRESPONDING AUTHOR
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK
Nicolas Bousserez
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK
Anna Agustí-Panareda
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK
Gianpaolo Balsamo
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK
Luca Cantarello
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK
Richard Engelen
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK
Vincent Huijnen
Royal Netherlands Meteorological Institute (KNMI), De Bilt, 3731,
the Netherlands
Antje Inness
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK
Zak Kipling
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK
Mark Parrington
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK
Roberto Ribas
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK
Viewed
Total article views: 3,047 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Jan 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,159 | 840 | 48 | 3,047 | 246 | 18 | 21 |
- HTML: 2,159
- PDF: 840
- XML: 48
- Total: 3,047
- Supplement: 246
- BibTeX: 18
- EndNote: 21
Total article views: 1,933 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 06 May 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,510 | 402 | 21 | 1,933 | 81 | 11 | 15 |
- HTML: 1,510
- PDF: 402
- XML: 21
- Total: 1,933
- Supplement: 81
- BibTeX: 11
- EndNote: 15
Total article views: 1,114 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Jan 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
649 | 438 | 27 | 1,114 | 165 | 7 | 6 |
- HTML: 649
- PDF: 438
- XML: 27
- Total: 1,114
- Supplement: 165
- BibTeX: 7
- EndNote: 6
Viewed (geographical distribution)
Total article views: 3,047 (including HTML, PDF, and XML)
Thereof 3,339 with geography defined
and -292 with unknown origin.
Total article views: 1,933 (including HTML, PDF, and XML)
Thereof 1,994 with geography defined
and -61 with unknown origin.
Total article views: 1,114 (including HTML, PDF, and XML)
Thereof 1,345 with geography defined
and -231 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
8 citations as recorded by crossref.
- Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021 L. Feng et al. 10.5194/acp-23-4863-2023
- An Urban Scheme for the ECMWF Integrated Forecasting System: Global Forecasts and Residential CO2 Emissions J. McNorton et al. 10.1029/2022MS003286
- East Asian methane emissions inferred from high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis R. Liang et al. 10.5194/acp-23-8039-2023
- Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020 A. Agustí-Panareda et al. 10.5194/acp-23-3829-2023
- Towards near-real-time air pollutant and greenhouse gas emissions: lessons learned from multiple estimates during the COVID-19 pandemic M. Guevara et al. 10.5194/acp-23-8081-2023
- Anomalies of O3, CO, C2H2, H2CO, and C2H6 detected with multiple ground-based Fourier-transform infrared spectrometers and assessed with model simulation in 2020: COVID-19 lockdowns versus natural variability I. Ortega et al. 10.1525/elementa.2023.00015
- Assimilation of S5P/TROPOMI carbon monoxide data with the global CAMS near-real-time system A. Inness et al. 10.5194/acp-22-14355-2022
- Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations D. Varon et al. 10.5194/acp-23-7503-2023
8 citations as recorded by crossref.
- Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021 L. Feng et al. 10.5194/acp-23-4863-2023
- An Urban Scheme for the ECMWF Integrated Forecasting System: Global Forecasts and Residential CO2 Emissions J. McNorton et al. 10.1029/2022MS003286
- East Asian methane emissions inferred from high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis R. Liang et al. 10.5194/acp-23-8039-2023
- Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020 A. Agustí-Panareda et al. 10.5194/acp-23-3829-2023
- Towards near-real-time air pollutant and greenhouse gas emissions: lessons learned from multiple estimates during the COVID-19 pandemic M. Guevara et al. 10.5194/acp-23-8081-2023
- Anomalies of O3, CO, C2H2, H2CO, and C2H6 detected with multiple ground-based Fourier-transform infrared spectrometers and assessed with model simulation in 2020: COVID-19 lockdowns versus natural variability I. Ortega et al. 10.1525/elementa.2023.00015
- Assimilation of S5P/TROPOMI carbon monoxide data with the global CAMS near-real-time system A. Inness et al. 10.5194/acp-22-14355-2022
- Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations D. Varon et al. 10.5194/acp-23-7503-2023
Latest update: 25 Sep 2023
Short summary
Concentrations of atmospheric methane continue to grow, in recent years at an increasing rate, for unknown reasons. Using newly available satellite observations and a state-of-the-art weather prediction model we perform global estimates of emissions from hotspots at high resolution. Results show that the system can accurately report on biases in national inventories and is used to conclude that the early COVID-19 slowdown period (March–June 2020) had little impact on global methane emissions.
Concentrations of atmospheric methane continue to grow, in recent years at an increasing rate,...
Altmetrics
Final-revised paper
Preprint