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Abstract. Concentrations of atmospheric methane (CHy), the second most important greenhouse gas, continue
to grow. In recent years this growth rate has increased further (2020: 4+15.6 ppb), the cause of which remains
largely unknown. Here, we demonstrate a high-resolution (~ 80 km), short-window (24 h) 4D-Var global inver-
sion system based on the ECMWF Integrated Forecasting System (IFS) and newly available satellite observa-
tions. The largest national disagreement found between prior (5.3 Tg per month) and posterior (5.0 Tg per month)
CHy emissions is from China, mainly attributed to the energy sector. Emissions estimated from our global system
are in good agreement with those of previous regional studies and point source-specific studies. Emission events
(leaks or blowouts) > 10t CH4 h~! were detected, but without appropriate prior uncertainty information, were
not well quantified. Our results suggest that global anthropogenic CH4 emissions for the first 6 months of 2020
were, on average, 470 Gg per month (4-1.6 %) higher than for 2019, mainly attributed to the energy and agricul-
tural sectors. Regionally, the largest increases were seen from China (+220 Gg per month, 4.3 %), with smaller
increases from India (450 Gg per month, 1.5 %) and the USA (440 Gg per month, 2.2 %). When assuming a
consistent year-on-year positive trend in emissions, results show that during the onset of the global slowdown
(March—April 2020) energy sector CHs emissions from China increased above expected levels; however, dur-
ing later months (May—June 2020) emissions decreased below expected levels. Results for the first 6 months
of 2019/20 suggest that the accumulated impact of the COVID-19 slowdown on CH4 emissions from March—
June 2020 might be small relative to the long-term positive trend in emissions. Changes in OH concentration,
not investigated here, may have contributed to the observed growth in 2020.

pogenic emissions from agriculture, biomass burning, fossil

Atmospheric methane (CHy) as a long-lived greenhouse
gas (GHG) has contributed to ~ 23 % of the additional radia-
tive forcing since 1750 (Etminan et al., 2016), second only
to CO,. Near-surface concentrations have more than dou-
bled since the pre-industrial era, with the global average dry
air mole fraction reaching 1891 ppb in 2020 (NOAA, 2021).
This growth can mainly be attributed to increased anthro-

fuel extraction and use, and waste (Etheridge et al., 1998).
The reduction in global human activities, triggered by the
COVID-19 pandemic, provided an opportunity to assess the
impact of potential rapid climate mitigation strategies to re-
duce GHG emissions (Diffenbaugh et al., 2020). The sec-
tors most obviously affected by the slowdown, e.g. trans-
port and industry, are directly associated with fluxes of short-
lived pollutants (Ming et al., 2020) and CO, (Le Quéré et al.,
2020), and less so CH4 (Forster et al., 2020). The change in
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energy and fuel demand is estimated to have reduced oil and
gas CHy emissions by 10 % for 2020 compared with 2019
(IEA, 2021). Similarly, a recent study found reduced emis-
sions from the largest oil-producing basin in the USA, the
Permian Basin, between April and May of 2020 (Lyon et
al., 2021). Despite this, during 2020 atmospheric concen-
trations of CHy4 grew by 15.6 £ 0.4 ppb, the largest amount
since records began in the early 1980s (NOAA, 2021). An
alternative hypothesis is that a reduction in demand could
have increased venting when extracting fossil fuels, resulting
in increased atmospheric concentrations. The remaining CHy4
source sectors were not expected to have been noticeably im-
pacted by changes in activity during the slowdown. The re-
duced emissions of OH-forming nitrogen oxides (NO, ) dur-
ing the slowdown may have reduced the CHy sink (Steven-
son et al., 2021); however, another recent study suggests that
this impact might only have accounted for, at most, a 2-ppb
growth, which equates to ~ 35 % of the difference in growth
between 2019 and 2020 (Weber et al., 2020).

The relatively large atmospheric variability of CH4 con-
centrations and relatively accurate available measurements
allow for the quantification and attribution of emissions us-
ing inverse modelling based on both in-situ (e.g. Wilson et
al., 2016; McNorton et al., 2018) and satellite observations
(e.g. Bergamaschi et al., 2009; Maasakkers et al., 2019).
Global atmospheric flux inversions (e.g. Segers and Houwel-
ing, 2018; Qu et al., 2021) are typically performed at a coarse
spatiotemporal resolution (~ monthly, > 1°), for which lo-
calised events (e.g. leaks and blowouts) are difficult to de-
tect. Additionally, previous attempts to quantify emissions
have been restricted by limited surface and satellite observa-
tions. In 2002, the Scanning Imaging Absorption spectrom-
eter for Atmospheric CartograpHY (SCIAMACHY) pro-
vided the first total column CHy (XCHj4) measurements
from space. These observations were superseded by the In-
frared Atmospheric Sounding Interferometer (IASI) in 2006
and the Greenhouse gases Observing SATellite (GOSAT)
in 2009, offering higher sensitivity and spatial resolution
(~ 10km). GOSAT is limited by a relatively narrow spa-
tial sampling restricting the coverage. Both instruments have
been used to constrain CHy surface fluxes in inversion stud-
ies (e.g. Frankenberg et al., 2005; Maasakkers et al., 2019).
The TROPOspheric Monitoring Instrument (TROPOMI) in-
strument on-board Sentinel-5P, launched in 2017, provides
global high-resolution (~ 7 km) XCH,4 observations with an
improved spatiotemporal coverage and precision (Veefkind
etal., 2012; Hu et al., 2018). These newly available observa-
tions provide the opportunity to detect CH4 hotspots (Barré
et al.,, 2021) and potentially constrain CH4 fluxes at high
spatiotemporal resolution (Pandey et al., 2019; Zhang et al.,
2020).

This study presents and evaluates the new capabilities in-
troduced in the European Centre for Medium-Range Weather
Forecasts (ECMWF) Integrated Forecasting System (IFS) to
estimate emissions of greenhouse gases and atmospheric pol-
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lutants using satellite observations of their atmospheric con-
centrations. The system is being developed within the frame-
work of the EU-funded Copernicus CO, project (coco2-
project.eu, 2021) and its precursor, the CO, Human Emis-
sion project (Balsamo et al., 2021) as the global prototype
for a new Copernicus anthropogenic CO; emissions monitor-
ing and verification support capacity (Janssens-Maenhout et
al., 2020). Here, we focus on anthropogenic CH4 emissions,
as they offer a useful testbed for the future CO, system for
three main reasons. First, relatively accurate remote-sensing
observations of CHy are available at a high spatiotempo-
ral resolution. Second, the atmospheric gradients are larger
for CHy, providing a suitably high sensitivity of concentra-
tion to emissions. Third, the anthropogenic contribution to
fluxes is comparable with the natural component, whereas for
CO; the anthropogenic component is considerably smaller.
We address three main outstanding questions. First, are CHy
emission hotspots quantifiable using multiple sensors and a
high-resolution global short-window 4D-Var system when
accounting for meteorological errors? Second, how well do
concentrations generated using posterior emission estimates
agree with independent observations and existing studies?
Third, is the system capable of assessing potential longer-
term trends during the COVID-19 pandemic slowdown?

The following sections, Sect. 2.1 and 2.2, outline model
methodology, detailing the 4D-Var inversion system used and
prior assumptions made. Section 2.3 describes the observa-
tions assimilated into the inversion system. Section 3.1 iden-
tifies suitable prior uncertainty assumptions in CHy fluxes.
Section 3.2 provides a global overview of posterior fluxes
and the relative changes from prior estimates. Section 3.3
evaluates the system using a range of regional and persis-
tent point source case studies. Section 3.4 investigates the
feasibility of quantifying emissions at both a high spatial and
temporal resolution using case studies. Section 3.5 investi-
gates the influence of the global slowdown triggered by the
COVID-19 pandemic on CHy emissions. Section 4 discusses
the findings and relevance to the wider community including
limitations and suggestions for future work.

2 Methods

2.1 Forward model

The ECMWEF global Integrated Forecasting System (IFS),
which provides the operational Copernicus Atmosphere
Monitoring Service (CAMS, https://atmosphere.copernicus.
eu/, last access: 15 January 2022) greenhouse gas (GHG)
forecast (Agusti-Panareda et al., 2019), was used to gener-
ate the forward model integrations used in this study. These
were performed from January to June of 2019 and 2020, with
additional case study simulations performed for June 2018,
November 2019 and July to September of 2020. Computa-
tional cost prevented simulating the full period (2018-2020).
Simulations were performed using a horizontal cubic octahe-
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dral reduced Gaussian grid (TC0399: ~ 25 km) and 137 ver-
tical levels with coupled meteorology at operational forecast
timesteps of 15 min and 3-hourly output.

Monthly gridded prior estimates of anthropogenic emis-
sions were taken from the CAMS global emissions product,
CAMS-GLOB-ANT v4.2, (Granier et al., 2019), which com-
bines existing products (e.g. EDGAR: Crippa et al., 2018;
CEDS: Hoesly et al., 2018). The Global Fire Assimilation
System (GFAS) provided daily biomass burning emissions
(Kaiser et al., 2012). We used a monthly climatology of wet-
land emissions based on the LPJ-WHyMe model (Spahni
et al., 2011). Remaining fluxes from oceans (Lambert and
Schmidt, 1993; Houweling et al., 1999), termites (Sander-
son, 1996) and wild animals (Houweling et al., 1999) were
used at the highest available spatiotemporal resolution.

The atmospheric CHy sink comprised of a monthly mean
climatological loss rate field (Bergamaschi et al., 2009),
which represents loss reactions with hydroxyl, chlorine and
atomic oxygen radicals. A gridded surface soil sink was also
used (Ridgwell et al., 1999). Initial conditions for the 3D at-
mospheric state of CHy were taken from the CAMS CHy4 in-
version product (Segers and Houweling, 2018).

2.2 Inverse model
2.2.1 4D-Variational inversion

We used the 4D-Var IFS system, cycle 47R1, employed op-
erationally at ECMWF between June 2020 and May 2021.
More detailed information on the IFS 4D-Var system can
be found in Rabier et al. (2000) and Courtier et al. (1994).
The incremental algorithm used consists of solving a series
of quadratic minimisation problems (inner-loop) constructed
by linearising the initial (non-linear) cost function around up-
dated estimates of the state vector (outer-loop). To constrain
surface emissions, the state vector is augmented by a param-
eter control vector that consists of a 2D scaling factor ap-
plied to a prior emission inventory (see Sect. 2.2.2), based
on Massart et al. (2021). In our configuration, the posterior
scaling factors are optimised on a regular 2D grid (~ 80 km)
within a 24-h window and then applied to the prior emission
inventory defined on a grid of ~ 10-km resolution (Fig. 1).
Prior emission errors are assumed to be independent between
24-h inversion cycles (i.e. each 24-h inversion uses the same
uniform scaling factor of 1 and the same prior errors). This
choice was driven by the lack of information about temporal
error correlations in current prior inventories. Currently, the
error covariance for the CHy initial state vector is taken from
a climatology and fixed in time (Fig. S3). As a result, poste-
rior errors in methane emissions and 3D state are not propa-
gated forward across data assimilation cycles in this config-
uration, which is a technical limitation of our current system
and will be addressed in subsequent versions. We use an on-
line 4D-Var data assimilation system, where the meteorolog-
ical fields are part of the control vector and optimised jointly
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with the emission scaling factors. As a result, the transport
errors associated with uncertainties in the initial conditions
of the meteorological variables are accounted for in our in-
version. This is in contrast with widely used offline inversion
systems, wherein transport errors are typically prescribed on
an ad-hoc basis and fixed. Note that in our experiments the
background errors for the meteorological variables at the ini-
tial time are constructed based on a climatology, and there-
fore are not flow-dependent.

The scaling factors derived from the inversion were ap-
plied to sector-specific prior maps for source attribution. A
caveat to this approach is the assumption that co-located sec-
tors have the same scaling factor applied, which can only
be overcome with the use of co-emitted species observations
such as ethane or isotopologues (e.g. McNorton et al., 2018).
However, this is unlikely to noticeably impact these results
as at the relatively high increment resolution used (~ 80 km)
CHy sectors are rarely co-located. Missing sources in the
prior are also not accounted for when using a posterior scal-
ing factor.

2.2.2 Prior information

Anthropogenic sector-specific grid cell uncertainties, taken
from Maasakkers et al. (2016), provided the initial prior esti-
mate for countries with well-developed statistical infrastruc-
tures or Annex I countries (IPCC, 2006). For Non-Annex I
countries, the same sector-specific uncertainties were further
increased by 50 %. Globally, constant wetland uncertainties
were estimated at 58 %, taken as the standard deviation from
the WetCHART's ensemble (Bloom et al., 2017). We assume
the standard deviation of the WetCHARTSs ensemble to pro-
vide a reasonable uncertainty estimate of the LPJ-WHyMe
emissions used here. Initially, all other biogenic uncertainties
were estimated as 100 %. The atmospheric sink was not op-
timised by the inversion. Sensitivity experiments where prior
errors were perturbed and validated against independent ob-
servations were used to evaluate prior uncertainty assump-
tions (Table S1 in the Supplement). Given that anthropogenic
emissions are typically from point sources (e.g. fossil fuel ex-
traction), we assumed no spatial prior error correlation given
that the derived increments are at ~ 80km. Wetland emis-
sions would typically require defined spatial correlations;
however, given the uncertainty of these structures, the focus
of this study being anthropogenic emissions and limited oc-
currences of co-located emissions from wetland and anthro-
pogenic sources we have chosen to omit these for simplicity.
Total grid cell uncertainties, used in the control vector, were
calculated using the error propagation method. All prior un-
certainties are assumed to have a log-normal distribution to
prevent negative emissions.
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Figure 1. (a) Schematic of different resolutions used in the inversion shown by pseudo-data for five sectors. The magnitude of prior emissions
at ~ 9km (left panel) and those same emissions used as input to the forward model at ~ 25 km (middle panel). The inversion increment at
~ 80 km, resulting scaling factors are applied to all sectors within the grid cell, the boxes indicate relative contribution per sector (right
panel). (b) Schematic of inversion setup using the 24-h window, correcting for the initial 3D state, emissions, and initial conditions in the

prior of the subsequent window.

2.3 Observations

The observations used in the meteorological component of
the IFS 4D-Var system include satellite radiances, conven-
tional ground-based and radiosondes, and aircrafts and ships
data, for which the coverage and quality is constantly mon-
itored prior the assimilation. With specific focus on CHy,
the TROPOMI instrument on-board the Sentinel-5 Precur-
sor satellite provides near-global daily coverage of XCHy
with a nadir ground pixel size of 7km x 7km and near-
surface sensitivity (Veefkind et al., 2012; Lorente et al.,
2021). We used operational observations, which became
available in April 2018 and were bias corrected, as in Barré et
al. (2021). An example representation of daily satellite cov-
erage, which is applicable within a 24-h 4D-Var window, is
shown in Fig. S1 in the Supplement. TROPOMI uncertainties
(< 1 %) provided as part of the CH4 product were applied
within the minimisation routine and averaging kernels were
used (Hasekamp et al., 2019). Additional XCHy4 observations
from IASI and GOSAT, and their associated uncertainties of
~2% and < 1 %, respectively, are assimilated into the sys-
tem to provide additional constraints as described by Massart
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et al. (2014). Poor quality data are removed based on the pro-
vided quality flags.

3 Results

Several simulations were performed. First, a suite of sensi-
tivity experiments was performed to identify an appropri-
ate prior flux uncertainty (Sect. 3.1). This was then used
to investigate global emissions (Sect. 3.2), specific emission
events (Sect. 3.3 and 3.4) and perform comparative source
attribution of CHy fluxes during the COVID-19 global slow-
down (Sect. 3.5). A full list of simulations is provided in Ta-
ble S1. Between mid and late March 2020 most of the coun-
tries in the world implemented slowdown measures, which
reduced socioeconomic activities (Hale et al., 2021). These
measures typically lasted until May or June when certain ac-
tivities were progressively reintroduced, although not to pre-
slowdown levels. China is a slight exception, with an earlier
slowdown occurring from the end of January. To investigate
the impact of these measures on CHy4 emissions, relative to
previous years, we perform simulations from January to June
for 2019 and 2020. We assume that January and February
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were business-as-usual months for both 2019 and 2020 and
that the relative difference in emissions for these two months
between each year represents the long-term trend in emis-
sions.

3.1 Evaluation

To assess the suitability of our prescribed prior error in CHy
emissions, six sensitivity inversions with a range of uncer-
tainties were performed (see Table S1). We also performed an
additional experiment where only the initial 3D atmospheric
concentration of CHy was optimised. Optimised emissions
were then used in forward model simulations, which were
evaluated against XCH4 measurements from 16 Total Col-
umn Carbon Observing Network (TCCON) sites (Wunch et
al., 2011). TCCON averaging kernels were applied to model
profiles as described in Massart et al. (2016). Results show
improved performance when including flux scaling factors
in the control vector compared with only optimising the ini-
tial 3D-state (Fig. S2). When evaluating XCH4 concentra-
tions simulated with optimised emissions, the lowest all-
site average standard error (6.8 ppb) and absolute mean bias
(7.52 ppb) was found for the mapped prior error described in
Sect. 2.2.2. Using the mapped prior error resulted in a lower
standard error in 12 of the 16 sites when compared with the
control; furthermore, the absolute mean bias was improved
at 10 of the 16 sites. The mapped prior error also produced
the highest all-site average R-value (0.74), an improvement
compared with the control at 9 of the 16 sites. All subse-
quent experiments used the mapped prior uncertainty, typi-
cally ranging from 50 to 150 %.

3.2 Global emission estimates

As human activities changed in 2020 in response to the
COVID-19 pandemic we first investigated the difference be-
tween prior and posterior emissions for the first half of a
business-as-usual year, 2019. Emissions were estimated us-
ing the 4D-Var global inversion system described in Sect. 2.2
from January to June 2019. The resulting fire and wetland
emissions are likely to be an inaccurate estimate of annual
emissions because of the strong seasonality of both sources.
TROPOMI observations do not provide full global coverage
within our 24 h 4D-Var window, resulting in emissions not
being constrained over large areas. To produce meaningful
spatiotemporal budgets of posterior emissions the posterior
error covariance should be accounted for. Because this latter
quantity is currently lacking in our system, we chose to com-
pute posterior emission budgets based on a subset of grid
cells that are significantly constrained by the observations.
With this aim in mind, in our analysis, grid cells whose dis-
tance to an observation were greater than 1° were discarded.
When considering monthly average emissions, the difference
in coverage between years is unlikely to significantly im-
pact the results, assuming that the variability within a sin-
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Figure 2. (a) Global annual mean prior CHy emissions for 2019
taken from CAMS. (b) Difference between posterior and prior emis-
sions averaged between January and June 2019, derived from the
IFS inversion. (c¢) Posterior adjustment, as a percentage of prior, in
anthropogenic CH,4 emissions per country.

gle month is small. For each selected grid cell, we apply the
monthly mean posterior scaling factor to our prior emission
inventory to provide a posterior emission estimate. Glob-
ally, we found that total average posterior emission estimates
(44.0 Tg per month) for 2019 were 0.4 Tg per month smaller
than prior estimates (44.4 Tg per month). Within national
boundaries, both negative and positive adjustments in emis-
sions often occur (Fig. 2b). Moreover, we found that when
averaged over the 6-month period, considerable changes, rel-
ative to the prior, are from anthropogenic sources (—0.4 Tg
per month).
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On national scales, for the 6-month period, anthropogenic
emission differences between the prior (5.3 Tg per month)
and the posterior (5.0Tg per month) were found to be
largest over China (Fig. 2c). The potential overestimation
in bottom-up emission estimates from China is well doc-
umented (e.g. Cheewaphongphan et al., 2019), although
the magnitude of this overestimation is uncertain. Using
prior emission maps, we distributed total posterior emis-
sions into six sector-specific categories: energy, agriculture,
waste, other anthropogenic (industrial, residential and trans-
port sectors), wetlands and fires. In agreement with mul-
tiple inverse studies (e.g. Deng et al., 2022) most of the
overestimated emissions from China are found to originate
from the energy sector (0.2 Tg per month) and specifically
from the coal mining regions of Inner Mongolia, Shaanxi
and Shanxi. Relative to the prior, posterior emissions are re-
duced from India (—3.0 %) and Pakistan (—1.1 %), increased
from Brazil (4+1.3 %) and less than 1 % different for the USA
(0.5 %), Indonesia (0.3 %), EU27 + UK (+0.1 %) and Rus-
sia (—0.7 %). Except for Russia and Indonesia, these bring
emission estimates in closer agreement with other top-down
studies (e.g. Deng et al., 2022).

3.3 Emission estimates for regions and point sources

The feasibility of detecting and quantifying emission
hotspots on a global scale using a relatively high reso-
lution increment grid (~ 80km, daily), a high-resolution
prior emission grid (~ 9 km, monthly) and multi-sensor data
was evaluated using previously documented case studies
(e.g. Zhang et al., 2020; Varon et al., 2020). Preliminary work
by Barré et al. (2021) combined high-resolution IFS fore-
casts (~ 9km) with TROPOMI observations to detect miss-
ing emission sources based on a statistical analysis; here, we
attempted to extend this to the quantification of emissions in
a robust atmospheric transport inversion framework. To fil-
ter posterior estimates, which provided little or no added in-
formation, we omitted daily grid cells associated with poor
observation constraints (see Fig. S1). When comparing our
results with those of other studies, and in the absence of a
formal posterior uncertainty estimate, the sampling bias in-
troduced by this filtering method may introduce additional
uncertainties. Future developments will account for posterior
error reduction in our analysis. Efforts are ongoing to include
an ensemble-based estimate of the posterior emission errors
in our system to provide a more robust evaluation. Posterior
emissions and comparisons with existing studies for several
case studies are provided in Table 1.

3.3.1 Regional emissions — Permian Basin, USA

The Permian Basin, an area of ~ 400 km?, is the largest oil-
producing basin in the USA. Previous studies identified an
underestimation in inventory estimates of CH4 fluxes in this
region (Alvarez et al., 2018; Robertson et al., 2020; Zhang et
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al., 2020). In recent years oil production in the basin has un-
dergone rapid expansion with output of crude oil quadrupling
and natural gas more than doubling between 2007 and 2018
(Zhang et al., 2020). Given the rapid expansion and the lag
in uptake of statistical information to inform the prior in-
ventory, it is likely that the prior used here underestimates
emissions from the region. Variability in atmospheric trans-
port over the basin noticeably impacts observed XCHy en-
hancements (Crosman, 2021); therefore, an accurate high-
resolution representation of transport is required to quantify
emissions. The IFS system, used here, is suitable for address-
ing such a problem as it performs an online assimilation of
atmospheric composition and meteorological observations,
therefore providing an improved representation of transport
uncertainty.

Using only dates when nearby TROPOMI observations
were available (237/485), inversions for the 15 months
available (January to June 2019 and January to Septem-
ber 2020) provided average posterior emissions of 190 £
39 Gg per month over the 6° x 4° domain, centred around
32°N, 103° W (Fig. 3). This is a considerable increase from
the prior 164 &3 Gg per month. The uncertainty value shown
for this case study and all subsequent cases represents the
standard deviation of the daily fluxes and not the posterior
uncertainty. The estimated flux brings emissions closer to,
but remains lower than, a recent 4D-Var inversion estimate,
240 £40 Gg per month (Zhang et al., 2020). A positive trend
is identified over the basin (+12+4 Gg per month). Although
it is difficult to diagnose the cause of the difference in poste-
rior estimates, one possibility is the larger prior uncertainty
used in Zhang et al. (2020). Additionally, transport uncertain-
ties associated with initial meteorological conditions are ac-
counted for in our online inversion system, which might sig-
nificantly impact the derived emissions. Furthermore, both
studies cover slightly different time periods. Finally, differ-
ences between the treatment of observations and their associ-
ated uncertainties will have influenced derived fluxes in both
studies.

During the 2020 slowdown Lyon et al. (2021) derived
tower and aircraft based CH4 emission estimates from the
Permian Basin. They found that emissions from January to
March 2020 (134 + 12 Gg per month) reduced during the
onset of the slowdown (April: 47 £ 10 Gg per month) and
subsequently increased again as oil price partially recov-
ered in June (107 &= 13 Gg per month). For the same pe-
riod, we find only a small decrease in emissions from Jan-
uary to March averages (188 £45 Gg per month) to April
(183 £34 Gg per month). This decreasing trend continues
into June (178 %+ 14 Gg per month). However, we find that be-
tween July and September emissions noticeably increase to
215+40 Gg per month, suggesting that the rebound found by
Lyon et al. (2021) might be detected, in our system, from July
onwards. The difference in magnitude of emissions between
the two studies is, in part, a result of the different domains
used.
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Figure 3. (a) Average prior Permian Basin CHy emissions for 2019.
(b) Average of posterior minus prior anthropogenic CHy emissions
over the Permian Basin for January—June 2019, excluding days for
which observations were not available. (¢) Time series of total prior
(black circles) and posterior (green triangles) anthropogenic CHy
emission estimates within the 6° x 4° Permian Basin domain, cen-
tred around 32° N, 103° W (black box in b) for 2019-2020, ex-
cluding days for which observations were not available. The shaded
error denotes prior uncertainty.

3.3.2 Regional emissions — Bakken Formation, USA
and Canada

The Bakken Formation, predominantly in North Dakota, is a
major oil-producing region within both the USA and Canada.
The rig count in the region has declined in recent years; how-
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ever, except for during the initial 2020 global slowdown, both
oil and gas production have seen large increases in the past
decade (EIA, 2021). During recent years various manage-
ment methods have sought to reduce fugitive emissions from
the region; however, it remains one of the largest emitting
regions within North America (Schneising et al., 2020).

A previous study estimated average CH4 emissions from
the Bakken Formation between 2018 and 2019 of 74 +47 Gg
per month (Schneising et al., 2020). These were estimated
using a Gaussian integral method and TROPOMI data. Our
prior emissions (87 Gg per month) for a 1° x 1° domain cen-
tred around 48.5° N, 103° W for 2019 are larger than those
previously derived estimates. Our posterior results for 2019
(77 £42 Gg per month) show large variability, but an over-
all positive growth in emissions from the region (Fig. 4).
These estimates agree with those derived by Schneising et
al. (2020). For 2020, a period not included in their study, we
find larger average emissions relative to 2019 (86452 Gg per
month). Unlike the Permian Basin example, the agreement
found here is based upon two different top-down approaches,
our 4D-Var IFS system and the Gaussian integral method of
Schneising et al. (2020).

A possible CH4 emission event is observed on the
4 September 2020 where emissions were estimated to in-
crease by 350 % from a 2020 average of 120 to 410th~!,
which over the 24-h period equates to an additional
7 Gg CHy. The source of this previously undocumented event
is not clear — an incident reported at The Steelman Gas
Plant in Saskatchewan, Canada (ID 48996) is a possibility;
however, accurate attribution requires further investigation
(Saskatchewan.ca, 2021). Several similar events of slightly
smaller magnitude are also observed, the causes of which re-
quire further investigation.

3.3.3 Regional natural emissions — Lake Chad, Central
Africa

The hydrology of Lake Chad and the surrounding area has re-
cently undergone substantial variability on timescales rang-
ing from seasonal to decadal (Pham-Duc et al., 2020), which
is expected to have impacted both natural and anthropogenic
emissions in the region. A recent study, using a similar prior
to the one used here, performed a top-down inversion over
tropical Africa using GEOS-Chem and GOSAT observations
and found that posterior emissions increased relative to their
prior over Lake Chad between 2016 and 2018, although these
are not quantified (Fig. 3¢ of Lunt et al., 2019). Our results
for 2019 and 2020 for a 1° x 1° box centred around the lake
(13.0° N, 14.3°E) show posterior emissions (32 £4 Gg per
month) are 11 % higher than prior emissions (29 + 2 Gg per
month) (Fig. 5). Observations are only available over the re-
gion for 65 out of 485 d, making estimations of the seasonal
shift between the posterior and prior difficult. We are un-
able to attribute the increased emissions to a specific sector;
however, based on prior information, it is likely to be from

https://doi.org/10.5194/acp-22-5961-2022
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agricultural livestock or wetland sources. If this region-wide
increment is the result of wetland emissions, with further re-
finement and accurate characterisation of prior error corre-
lations, our system could be used to quantify emissions over
wetland regions. Detailed comparison with Lunt et al. (2019)
is not performed as the studies cover a different period and a
thorough comparison requires further refinement of how nat-
ural emissions are treated in the prior. Here, we only note that
the sign of the bias in both studies is the same and requires
further investigation.

3.3.4 Point source emissions — Appin colliery, Australia

The Appin colliery (34.2° S, 150.8° E), in New South Wales,
Australia is an underground coal mine previously noted for
having high CH4 emissions (Varon et al., 2020). It repre-
sents a single point source, which is challenging to quan-
tify as there are several nearby emission sources, including
landfills, dairy facilities, and a gas-processing plant. Varon
et al. (2020) used the high-resolution GHGSat-D instrument
and integrated mass enhancement (IME) and cross-sectional
flux (CSF) methods calibrated with large eddy simulations
to derive vent emissions from the mine between 2016 and
2018. They estimated mean CH4 emissions of 4.2 Gg per
month (IME) and 3.6 Gg per month (CSF), lower than the
prior used here (4.9 0.1 Gg per month, fugitive only: 4.3 &
0.1 Gg per month). We derived 2019-2020 average grid cell
emissions of 4.6 £ 0.5 Gg per month. Assuming little or no
change in emissions between their 2016-2018 study period
and our 2019-2020 estimate, our derived fugitive-only emis-
sions (4.1 0.5 Gg per month) agree well with their findings
(Fig. 6). For 2019, a business-as-usual year, which is nearer
to the time period investigated in their study, fugitive emis-
sions are even lower (3.9 &= 0.5 Gg per month). These results
suggest that our inversion might be capable of detecting bi-
ases in the prior from point sources, given sufficient obser-
vations (100/485 d observed), a relatively large point source
(>~ 4 Gg per month) and a suitable prior uncertainty esti-
mate. Prior emission estimates appear to be in better agree-
ment with our posterior in 2020, suggesting an increase in
emissions, most likely from the colliery given that it is the
dominant source in the region.

3.4 Emission estimates for temporary and shifting
sources

The following four cases assess the quantification of emis-
sions from specific release events, step changes in emissions
or short-term observation periods, using documented exam-
ples and previously unexplored sources. As with the regional
comparisons in the previous section, evaluation of the system
is performed against multiple emission estimation systems
beyond the 4D-Var approach used here.

Atmos. Chem. Phys., 22, 5961-5981, 2022
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Figure 5. (a) The Lake Chad domain indicated by the black box (© Google Maps, 2021). (b) Time series of total prior (black circles) and
posterior (green triangles) CHy4 emission estimates within the 1° x 1° domain, centred around 13.0° N, 14.3° E for 2019-2020, excluding
days for which observations were not available. The shaded error denotes prior uncertainty. (¢) Average prior CHy emissions for 2019.
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3.4.1 Feasibility of estimating blow-out emissions —

Eagle Ford blowout, USA (November 2019)

On 1 November 2019, a blowout event occurred at a gas well
in the Eagle Ford Shale in Texas (28.9° N, 97.6° W), which
was followed by a diminishing 20-d release event (Cusworth
et al., 2021). Cusworth et al. (2021) estimated emissions
of the blowout using several estimation techniques, includ-
ing the Integrated Methane Enhancement algorithm (Varon
et al., 2018), and multiple observation platforms, includ-
ing TROPOMI. Observations directly over the blowout were
made from TROPOMI on 2, 3, 15 and 18 November 2019.
We further extended our analysis to all observations made
between 15 October and 28 November 2019 within 2° x 2°
domain centred around the blowout (Fig. 7). We found that
when blowout emissions peaked on 1/2 November 2019, pos-
terior emissions at the site were ~ 40 % higher than prior
emissions; however, the magnitude of the posterior emis-
sions (2.5th™ 1) is noticeably lower than the 28-61 th! pre-
viously estimated (Cusworth et al., 2021). As expected, pos-
terior emission estimates return to near prior levels after the
initial blowout (Fig. 7c—¢). Estimates provided by Cusworth
et al. (2021) would require more than a 1500 % increase

Atmos. Chem. Phys., 22, 5961-5981, 2022

in emissions relative to our prior, which is unlikely to be
achieved with our relatively modest prior error (87 %). It is
likely given the model resolution and prior information that
posterior emissions are incorrectly attributed to nearby grid
cells. This is evident in the mapped scaling factors, which
show increases incorrectly applied slightly to the west of the
blowout location. Within a 4° x 4° domain surrounding the
blowout site posterior and prior emissions typically agree
well for months excluding November, suggesting that any
differences occurring in November could be attributed to the
well blowout. Based on this assumption we used the resid-
ual from the posterior minus the prior to estimate blowout
emissions on 2 November 2019 of 140th~!, which is more
than double the estimate of Cusworth et al. (2021). These re-
sults suggest that the system, as presented here, can detect
such events but cannot accurately quantify a well blowout
of this magnitude over an oil field. It could however be
used as a crude quantification of emissions from such a
blowout over a larger domain, assuming other sources are
well known. A more accurate quantification of emissions
from release events of this nature, requires further develop-
ment and possibly the implementation of alternative tech-
niques well adapted for missing sources (e.g. Yu et al., 2021).

https://doi.org/10.5194/acp-22-5961-2022
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3.4.2 Feasibility of 1-d emission estimates — Upper
Silesian Coal Basin, Poland (June 2018)

The Upper Silesian Coal Basin (USCB) is one of the largest
CHy- emitting regions in Europe, with emissions originating
from ~ 40 coal mines (EEA, 2021). The region extends from
southern Poland across the border to Czechia, where CHy is
released from deep coal deposits and emitted to the atmo-
sphere via ventilation shafts (Fiehn et al., 2020).

To evaluate the feasibility of the system to quantify re-
gional CHy emission sources within a 24-h window we per-
formed a 1-d inversion over the USCB. Results were com-
pared with emission estimates derived using aircraft obser-
vations combined with Eulerian and Lagrangian dispersion
models (Kostinek et al., 2021) and a mass balance approach
(Fiehn et al., 2020). These studies used extensive flight data
from 6 June 2018 to derive regional CH4 emission estimates
of 35-40 Gg per month. The CoMet v2 bottom-up inventory
(Fiehn et al., 2020) was specifically compiled for the purpose
of the flight campaign and estimated emissions in the region
of 48 Gg per month. Our results for 6 June 2018 estimated
USCB emissions of 48 Gg per month, compared with our

https://doi.org/10.5194/acp-22-5961-2022

prior estimate of 53 Gg per month (Fig. 8). This shows good
agreement with CoMet v2 and an improved agreement with
the top-down estimates. From January—June 2019, posterior
estimates (49 + 14 Gg per month) remain low relative to the
prior; however, they increase in 2020, resulting in an average
estimate for 2019-2020 of 52 + 16 Gg per month compared
with a prior of 53 & 1 Gg per month. This suggests that al-
though emissions in the basin increased over the simulation
duration, they might have been consistently overestimated
in the prior. The prior emissions do not consider daily vari-
ability, whereas considerable variability was estimated by the
posterior (1.7 4+0.5Ggd ™).

3.4.3 Detection limit of inversion system — oil fields,
Algeria (2019-2020)

The CH4 emissions from a point source release event from a
well pad at the Hassi Messaoud oil field in Algeria (31.7° N,
5.9°E) from October 2019 until August 2020 were previ-
ously quantified (Varon et al., 2021). Using Sentinel-2 ob-
servations they derived mean emissions of 6.7 £+ 4.0 Gg per
month. From our inversions, and using only dates where

Atmos. Chem. Phys., 22, 5961-5981, 2022
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Figure 7. Prior (black circles) and posterior (green triangles) anthropogenic CHy emission estimates, where observations are available,
over an oil well blowout event in Eagle Ford, USA, during October/November 2019 at the grid scale (a) and within a 4° x 4° domain (b).
The shaded error denotes prior uncertainty. The nearest date (2 November) to the event, which occurred on 1 November, is also indicated.
Regional scaling factor values from the inversion for 1 November (c), 2 (d) and 3 (e). Eagle Ford blowout site marked with an “x” and 4° x 4°

domain denoted.

TROPOMI observations were available within 0.4° of where
the leak occurred (21 d between 9 October 2019 and 9 Au-
gust 2020), we found average CH4 emissions withina 1° x 1°
domain of 17.6 & 2.7 Gg per month (Fig. 9b). After the leak
was sealed average emissions decreased to 15.3 2.6 Gg per
month. Assuming any difference in emissions between the
two time periods was caused by the release event, we esti-
mate mean leak emissions of 2.4 £ 0.6 Gg per month. This
suggests that some detection might have been made, but
quantification was not accurate when compared with a previ-
ous study (Varon et al., 2021). It seems likely that the mag-
nitude of the leak (< 4 Gg per month) approaches the detec-
tion limit of the inversion performed here, and far exceeds
the limit for accurate quantification. Additionally, the low
number of observation days during the 10-month leak period
(21 d), might have contributed to the lack of robust detection.

The Illizi Basin (28.3°N, 9.0°E) is one of the largest
gas-producing regions in Algeria and is currently undergo-
ing planned expansions (Ouki, 2019). Results from a 3° x
1.5° domain within the basin suggest that average emissions
might be ~ 20 % higher (20 & 3.9 Gg per month) than those
estimated by the prior inventory (16.9 £ 0.4 Gg per month)
between 2019 and 2020 (Fig. 9d). These results suggest that
the Illizi Basin might be a larger source of CH4 emissions
than the Hassi Messaoud oil field (17.5 £2.5 Gg per month),

Atmos. Chem. Phys., 22, 5961-5981, 2022

although it should be noted that the domain area is larger.
As with the Hassi Messaoud oil field, with our system, it is
not possible to attribute the emission changes to a specific
facility but rather to the entire region (~ 200 km?).

3.4.4 Detection of unknown sources — Istanbul,
Turkey (2020)

Istanbul is the most populous city in Europe, with prior CHy
emission estimates of 56 Gg per month, making it one of
the largest emitting regions of Europe. Prior information
attributes 86 % of those emissions to the solid waste and
wastewater sector. Inversion results from a 1° x 1° domain
centred around Istanbul (41.0° N, 29.0° E) showed an unex-
pected increase in emissions from July 2020 onwards, before
which posterior (56 &9 Gg per month) emission estimates
were in good agreement with the prior (57+3 Gg per month)
(Fig. 10). From July to September 2020, these emissions in-
creased by 42 % to 81425 Gg per month. The reason for this
step change in emissions is unclear and, assuming that the
posterior estimates are robust, requires further investigation
given the magnitude of the increase. Increased emissions are
derived over a large area of the Istanbul domain; however,
given the results from the Eagle Ford blowout region, it is
possible that the estimated increase is from a point source.

https://doi.org/10.5194/acp-22-5961-2022
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It is also unclear whether this is a new persistent emission
source or if it only occurred over a period of several months.

3.5 CHgy emissions during the COVID-19 period

To evaluate the impact on anthropogenic CHy emissions
from the global slowdown, caused by the COVID-19 pan-
demic, we compared posterior emissions from January to
June of 2019 and 2020. Globally, monthly average an-
thropogenic emissions for the 6-month period in 2020
(30.0 Tg & 1.8 Tg per month) are found to be 1.6 % (470 Gg
per month) higher than for 2019 (29.5 + 2.0 Gg per month)
(Fig. 11). These increased emissions contributed to the ob-
served increased atmospheric growth rate between 2019
(9.840.6 ppbyr—!) and 2020 (15.6+0.4 ppbyr—!) (NOAA,
2021). Sector-specific attribution shows that the energy
(+220 £ 130 Gg per month) and agriculture (+160 £ 40 Gg
per month) sectors are the largest contributors to this in-
crease, with smaller contributions from the waste (4+50+
30 Gg per month) and other anthropogenic sources (+30 £
20 Gg per month).

https://doi.org/10.5194/acp-22-5961-2022

When compared with 2019, anthropogenic CH4 emis-
sions in 2020 were larger pre-slowdown (January—February:
447040 Gg per month), considerably larger during the early
stages of the slowdown (March—April: +680 £ 80 Gg per
month) and only slightly larger in the latter months of the
initial slowdown (May—June: 4270 £ 30 Gg per month). As-
suming that no other factors contributed to this observed dif-
ference in emissions between the two years, this suggests
that, globally, the impact of the slowdown might have ini-
tially increased emissions and subsequently reduced them,
although emissions for all 6 months were higher in 2020
than for 2019. This trend in emissions was mainly driven
by energy sector emissions (January—February: +200Gg
per month, March—April: +390 Gg per month, May—June:
+80 Gg per month), whereas the agricultural sector showed a
relatively consistent increase, relative to 2019, for all months
(+160 Gg per month).

When averaged over all 6 months, an increase in emis-
sions between 2019 and 2020 was estimated in 6 out of
8 of the largest emitting regions, with the only exceptions
being Pakistan (—0.6 Gg per month) and Brazil (—23 Gg
per month). The largest increase was in China (4220 Gg

Atmos. Chem. Phys., 22, 5961-5981, 2022
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per month), of which, over half originated from the energy
sector, specifically from the northern coal mining regions.
The difference in emissions from China, relative to 2019,
was the main driver for the global trend, with increases pre-
slowdown (January—February: +230Gg per month), large
increases during the initial slowdown (March—April: +300
Gg per month) and only small increases in the latter months
(May—June: +120 Gg per month). As with the global signal,
this monthly variability is attributed to changes in energy sec-
tor emissions. It should be noted that the slowdown in China
occurred from the end of January and results show that, rel-
ative to 2019, 2020 emissions from China were noticeable
larger in January (+270Gg per month) and only slightly
larger in February (4190 Gg per month) suggesting a brief
impact from the slowdown.

For the first 6 months emissions for 2020 from India were
on average 65 Gg per month higher than for 2019, with no-
ticeable large increases in emissions from the agricultural
sector in June 2020 (4110 Gg per month), which contributed
to almost half of the global increase for June. The increased
emissions in June mainly originated from the Uttar Pradesh
region in north India. Similar increases in agricultural emis-
sions are found over Bangladesh for June (4110Gg per
month). Poor prior information in the region may have re-
sulted in the misallocation of emissions, which could have
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originated from the large Baghjan Oil Field blowout in As-
sam, India, in May/June 2020. Energy sector emissions from
Indonesia were consistently higher in 2020 (+13 to +46 Gg
per month) and relatively unchanged for the remaining re-
gions (< %25 Gg per month).

Given the limitations of our system we have typically fo-
cused on anthropogenic emissions; however, natural fluxes
were also derived. Global posterior results for the first half
of 2020 show a reduction in both wetland (—36 Gg per
month) and fire (—150 Gg per month) emissions when com-
pared with 2019, with large monthly variability. The total
global decrease in fire emissions is unchanged from the es-
timated prior emissions, taken from GFAS, which is based
on satellite observations. The wetland emission change orig-
inates from South America, mainly from Brazil (—10 Gg per
month) and Argentina (—28 Gg per month). These reduced
emissions were likely caused by large-scale droughts, which
occurred in early 2020 (Marengo et al., 2021). Although the
months simulated are not typically associated with the bo-
real northern hemisphere fire season, most of the reduction
in biomass- burning emissions came from Russia (—110 Gg
per month) and Canada (—44 Gg per month). This change
was caused by a particularly active arctic fire season in 2019
(Zhang et al., 2021) and large wildfires in northern Alberta
in May 2019. Relative to 2019, increased fire emissions from
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Australia are derived for January 2020 (4220 Gg per month).
It is estimated that an unusually intense bushfire season (Shi-
raishi and Hirata, 2021) resulted in the release of 330 Gg CHy
from Australia over the month of January alone. More specif-
ically, the emissions were unusually large from New South
Wales and Victoria.

A limitation of the current system is the use of a cli-
matological OH sink, which is the primary oxidant for at-
mospheric CHy. Currently, OH is not included in the con-
trol vector and does not respond to changes in atmospheric
chemistry. Formation pathways of OH are influenced by
atmospheric NO, concentrations, which were estimated to
have decreased during the slowdown period (Doumbia et al.,
2021). Several simulations were performed using multiple
chemistry schemes to assess the atmospheric impact of OH
when using a slowdown-adjusted emission scenario (Huij-
nen et al., 2021). Results show global OH decreases of 1—
3% during the slowdown period; however, a heterogenous
spatial pattern is observed near the surface with increased
OH concentrations over some regions. This would suggest
that the 2020 increased emissions found here might be over-
estimated; however, the derived emission increases in Jan-
uary and February of 2020, relative to 2019, are unlikely to
have been influenced by OH changes caused by the global
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slowdown. Future developments will include the inversion of
NO, emissions during the global slowdown and their effect
on OH concentrations, resulting in more accurate source-sink
attribution.

4 Conclusions

We have investigated the feasibility of monitoring CH4 emis-
sions using a global online high-resolution (~ 80 km), short-
window 4D-Var (24 h) data assimilation system and satel-
lite observations from multiple sensors. This system opti-
mises both the initial 3D atmospheric concentration of CHy
and surface fluxes, whilst implicitly accounting for transport
errors associated with uncertainty in meteorological initial
conditions. The prior emission errors were selected based on
comparisons with independent TCCON retrievals. We iden-
tify strengths and weaknesses of our inversion system by per-
forming case study comparisons with other well-established
flux estimation systems at a range of spatiotemporal scales.
Globally, a small decrease in annual CHy emissions, rel-
ative to the prior, is estimated by the inversion for 2019 (~
1 %). On a national scale, we found decreased anthropogenic
emissions from China (—5 %) and India (—3 %), with small
increases from the USA (40.5 %) and Brazil (41.3 %) con-

Atmos. Chem. Phys., 22, 5961-5981, 2022



5976
0
2 a Ener
= | @ gy
& 20
]
& L5
Q
S Lo
é 0 A /\
é 00 <2< L b
1. < e \
g 1.0
: Jan Feb Mar Apr May Jun
=8=China ==@=USA Russia Indonesia
2 ©
2 C
2 Waste
o 04
=
a
=
a .
g 02
£ o0
1}
-
C -0.2
< Jan Feb Mar Apr May Jun
~#=China =#=India =—e=EU27+UK =—#=USA
_. 800
=00 [(€) Global
o
& 600
o .
= 500
a
S 400
<
300
£ 200
E 100
= 0
o
< Jan Feb Mar Apr May Jun
mEnergy m Agriculture Waste Other Anthropogenic

ACH4 Emissions, 2020-2019 (Tg/yr)

% Change in Emissions

ACH4 Emissions, 2020-2019 (Tg/yr)

J. McNorton et al.: Quantification of methane emissions from hotspots and during COVID-19

&

b .
(b) Agriculture

1.2

0.8

0.4

—e
0.0
-0.4
Jan Feb Mar Apr May Jun

—~e—China =e=India =e—Brazil —e=EU27+UK

(d) Other Anthropogenic

0.1
— =
0.0 ——
-0.1
Jan Feb Mar Apr May Jun
—&—China =e=India Nigeria =—e=EU27+UK
3
® CHN
.
& 3
o e IDN i
= 2 ® IND
E“!
S ® RUS
o
=]
S a® USA
£ 0 w
S PAK EU27+UK
|
® BRA
-2
0 1 2 3 4 5 6

CH, Emissions (Tg mo™)

Figure 11. Estimated national or regional average CH,4 emission change between 2020 and 2019 for January to June, derived using an
IFS inversion for the largest emitters for (a) energy, (b) agriculture, (c) waste and (d) other anthropogenic sources. (e) Global change in
sector-specific monthly CHy emissions for the same period. (f) National or regional change in total anthropogenic CH4 emissions for the

same period.

tributing to this change. This is in general agreement with a
recent inverse study (Qu et al., 2021).

To evaluate the system on the regional and point scale,
several anthropogenic case studies were selected (Table 1).
Posterior estimates of anthropogenic sources with persistent
emissions typically showed good agreement with previous
studies. In addition, the posterior quantification of emissions
from a large biogenic source region, Lake Chad, compared
well with a previous inversion study (Lunt et al., 2019).

We investigated the feasibility of quantifying emissions at
a high spatial, temporal and spatiotemporal resolution. Emis-
sions from a well leak in the Hassi Messaoud oil field, which
persisted for several months, were found to be at or around
the detection limit of the system (~9tCHzh™!) and be-
yond the limit for accurate quantification. Similarly, emis-
sions from a large well blowout in Eagle Ford were found
to be misallocated to the surrounding region owing to poor
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prior information and too coarse a model resolution. In con-
trast, inverse estimates from a known persistent point source,
the Appin Mine, were found to be in good agreement with a
previous top-down estimate (Varon et al., 2020). For a 1-d pe-
riod over a large region, the Upper Silesian Basin, inverse es-
timates agreed well with previous studies (Fiehn et al., 2020;
Kostinek et al., 2021). Overall, these case studies suggest
that our inverse system might be suitable for regional-scale
(~ 100 km?) emission quantification over a short time-period
(24h), given that sufficient satellite observations are avail-
able. Given adequate prior information our system is also ca-
pable of quantifying emissions from a persistent point source
(e.g. Appin Mine, Australia).

Several previously undocumented CH4 emission sources
were also investigated, including an unknown release event
from the Bakken Formation. Prior emission estimates were
persistently found to be underestimated by ~ 20 % from the
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Illizi Basin between 2019 and 2020, possibly owing to an
expansion in operations. Finally, a noticeable step change in
emissions from Istanbul was observed from July 2020, when
emissions increased by ~ 40 %, the reason for which is un-
known and would require further investigation.

The impact on CHy emissions from the global slowdown
in response to COVID-19 was investigated using inversions
from the first half of 2019 and 2020. The slowdown co-
incided with a year where CHy growth (15.6 ppb) was the
largest since records began in the early 1980s. We found in
the early part of 2020 that atmospheric growth was, in part,
driven by anthropogenic emissions that were larger than for
2019 (January to February: +47040.0 Gg per month). These
emissions further increased during the early stages of the
slowdown (March to April: 4680480 Gg per month), almost
half of which originated from the energy sector in China.
Had this been a sustained increase, the global growth rate
for 2020 would have been even larger. However, during the
later months of the slowdown period emissions reduced, al-
though they were still slightly higher than 2019 values (May
to June: +270 £ 30 Gg per month). Assuming no other con-
tributing factors, this suggests that the slowdown might have
acted to reduce emissions, mainly from the energy sector. By
using the relative differences for January and February as a
reference for the long-term growth between 2020 and 2019
and assuming business-as-usual for those months, we con-
clude that the overall impact of the global slowdown on CHy
emissions is small. The slowdown in China occurred at the
end of January; using the aforementioned assumption but
only for January results in the same conclusion of a mini-
mal impact on emissions during the entire 6-month period
from the slowdown. The increased atmospheric growth is
found to be the result of a continued increasing trend in CHy
emissions and possibly related to changes in atmospheric
chemistry in response to the slowdown (e.g. Stevenson et
al., 2021). The reason for the observed monthly variability
in emissions is unclear; it is possible that a reduction in en-
ergy demand resulted in increased venting of natural gas or
that a change in working practice led to an increase in fugi-
tive emissions, which subsequently fell below previous levels
after several months of reduced demand.

Future developments will be based on a hybrid-ensemble
system that will extend the assimilation window and utilise
observations of co-emitted species (e.g. NO;, CO). Addition-
ally, improved representation of biogenic fluxes as well as
spatiotemporal correlations in the prior will provide more ac-
curate posterior estimates and uncertainties. Finally, the cur-
rent lack of error propagation across the 4D-Var windows,
will be addressed in an upcoming version of the system and
more dynamical approaches to automatically adjusting inac-
curate prior information will be implemented to better con-
strain missing and intermittent sources. These improvements
will allow for constraints of other greenhouse gas emissions,
most notably CO».
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