Articles | Volume 22, issue 7
https://doi.org/10.5194/acp-22-4581-2022
https://doi.org/10.5194/acp-22-4581-2022
Research article
 | 
08 Apr 2022
Research article |  | 08 Apr 2022

Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation

Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri

Related authors

Regularization and L-curves in ice sheet inverse models: a case study in the Filchner–Ronne catchment
Michael Wolovick, Angelika Humbert, Thomas Kleiner, and Martin Rückamp
The Cryosphere, 17, 5027–5060, https://doi.org/10.5194/tc-17-5027-2023,https://doi.org/10.5194/tc-17-5027-2023, 2023
Short summary
G6-1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, and Temitope S. Egbebiyi
EGUsphere, https://doi.org/10.5194/egusphere-2023-2406,https://doi.org/10.5194/egusphere-2023-2406, 2023
Short summary
Future dust concentration over the Middle East and North Africa region under global warming and stratospheric aerosol intervention scenarios
Seyed Vahid Mousavi, Khalil Karami, Simone Tilmes, Helene Muri, Lili Xia, and Abolfazl Rezaei
Atmos. Chem. Phys., 23, 10677–10695, https://doi.org/10.5194/acp-23-10677-2023,https://doi.org/10.5194/acp-23-10677-2023, 2023
Short summary
Changes in apparent temperature and PM2.5 around the Beijing–Tianjin megalopolis under greenhouse gas and stratospheric aerosol intervention scenarios
Jun Wang, John C. Moore, and Liyun Zhao
Earth Syst. Dynam., 14, 989–1013, https://doi.org/10.5194/esd-14-989-2023,https://doi.org/10.5194/esd-14-989-2023, 2023
Short summary
Future water storage changes over the Mediterranean, Middle East, and North Africa in response to global warming and stratospheric aerosol intervention
Abolfazl Rezaei, Khalil Karami, Simone Tilmes, and John C. Moore
EGUsphere, https://doi.org/10.5194/egusphere-2023-1654,https://doi.org/10.5194/egusphere-2023-1654, 2023
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Stratospherically induced circulation changes under the extreme conditions of the no-Montreal-Protocol scenario
Franziska Zilker, Timofei Sukhodolov, Gabriel Chiodo, Marina Friedel, Tatiana Egorova, Eugene Rozanov, Jan Sedlacek, Svenja Seeber, and Thomas Peter
Atmos. Chem. Phys., 23, 13387–13411, https://doi.org/10.5194/acp-23-13387-2023,https://doi.org/10.5194/acp-23-13387-2023, 2023
Short summary
Vortex preconditioning of the 2021 sudden stratospheric warming: barotropic–baroclinic instability associated with the double westerly jets
Ji-Hee Yoo, Hye-Yeong Chun, and Min-Jee Kang
Atmos. Chem. Phys., 23, 10869–10881, https://doi.org/10.5194/acp-23-10869-2023,https://doi.org/10.5194/acp-23-10869-2023, 2023
Short summary
On the pattern of interannual polar vortex–ozone co-variability during northern hemispheric winter
Frederik Harzer, Hella Garny, Felix Ploeger, Harald Bönisch, Peter Hoor, and Thomas Birner
Atmos. Chem. Phys., 23, 10661–10675, https://doi.org/10.5194/acp-23-10661-2023,https://doi.org/10.5194/acp-23-10661-2023, 2023
Short summary
A mountain ridge model for quantifying oblique mountain wave propagation and distribution
Sebastian Rhode, Peter Preusse, Manfred Ern, Jörn Ungermann, Lukas Krasauskas, Julio Bacmeister, and Martin Riese
Atmos. Chem. Phys., 23, 7901–7934, https://doi.org/10.5194/acp-23-7901-2023,https://doi.org/10.5194/acp-23-7901-2023, 2023
Short summary
Weakening of the tropical tropopause layer cold trap with global warming
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 23, 7447–7460, https://doi.org/10.5194/acp-23-7447-2023,https://doi.org/10.5194/acp-23-7447-2023, 2023
Short summary

Cited articles

Ahlm, L., Jones, A., Stjern, C. W., Muri, H., Kravitz, B., and Kristjánsson, J. E.: Marine cloud brightening – as effective without clouds, Atmos. Chem. Phys., 17, 13071–13087, https://doi.org/10.5194/acp-17-13071-2017, 2017. 
Angel, R.: Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1), P. Natl. Acad. Sci. USA., 103, 17184–17189, 2006. 
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013. 
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review, Rev. Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493, 2016. 
Cao, L., Duan, L., Bala, G., and Caldeira, K.: Simultaneous stabilization of global temperature and precipitation through cocktail geoengineering, Geophys. Res. Lett., 44, 7429–7437, https://doi.org/10.1002/2017GL074281, 2017. 
Download
Short summary
We use data from six Earth system models to estimate Atlantic meridional overturning circulation (AMOC) changes and its drivers under four different solar geoengineering methods. Solar dimming seems relatively more effective than marine cloud brightening or stratospheric aerosol injection at reversing greenhouse-gas-driven declines in AMOC. Geoengineering-induced AMOC amelioration is due to better maintenance of air–sea temperature differences and reduced loss of Arctic summer sea ice.
Altmetrics
Final-revised paper
Preprint