Articles | Volume 22, issue 6
https://doi.org/10.5194/acp-22-3875-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-3875-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of total ozone column (TOC) on the occurrence of tropospheric ozone depletion events (ODEs) in the Antarctic
Le Cao
CORRESPONDING AUTHOR
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
Linjie Fan
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
Simeng Li
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
Shuangyan Yang
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
Related authors
Xiaochun Zhu, Le Cao, Xin Yang, Simeng Li, Jiandong Wang, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3873, https://doi.org/10.5194/egusphere-2024-3873, 2025
Short summary
Short summary
We applied various criteria to identify springtime ODEs at Utqiagvik, Arctic, and investigated the influences of using different criteria on conclusions regarding the characteristics of ODEs. We found criteria using a constant threshold and using thresholds based on the monthly averaged ozone more suitable for identifying ODEs than the others. Applying a threshold varying with the monthly average or stricter thresholds also signifies a more significant reduction in the ODE occurrences.
Kai Meng, Tianliang Zhao, Yongqing Bai, Ming Wu, Le Cao, Xuewei Hou, Yuehan Luo, and Yongcheng Jiang
Atmos. Chem. Phys., 24, 12623–12642, https://doi.org/10.5194/acp-24-12623-2024, https://doi.org/10.5194/acp-24-12623-2024, 2024
Short summary
Short summary
We studied the impact of stratospheric intrusions (SIs) on tropospheric and near-surface ozone in Central and Eastern China from a stratospheric source tracing perspective. SIs contribute the most in the eastern plains, with a contribution exceeding 15 %, and have a small contribution to the west and south. Western Siberia and Mongolia are the most critical source areas for indirect and direct SIs, with the Rossby wave and northeast cold vortex being important driving circulation systems.
Le Cao, Simeng Li, Yicheng Gu, and Yuhan Luo
Atmos. Chem. Phys., 23, 3363–3382, https://doi.org/10.5194/acp-23-3363-2023, https://doi.org/10.5194/acp-23-3363-2023, 2023
Short summary
Short summary
We performed a 3-D mesoscale model study on ozone depletion events (ODEs) occurring in the spring of 2019 at Barrow using an air quality model, CMAQ. Many ODEs observed at Barrow were captured by the model, and the contribution from each physical or chemical process to ozone and bromine species during ODEs was quantitatively evaluated. We found the ODEs at Barrow to be strongly influenced by horizontal transport. In contrast, over the sea, local chemistry significantly reduced the surface ozone.
Hongyi Ding, Le Cao, Haimei Jiang, Wenxing Jia, Yong Chen, and Junling An
Geosci. Model Dev., 14, 6135–6153, https://doi.org/10.5194/gmd-14-6135-2021, https://doi.org/10.5194/gmd-14-6135-2021, 2021
Short summary
Short summary
We performed a WRF model study to figure out the mechanism of how the change in minimum eddy diffusivity (Kzmin) in the planetary boundary layer (PBL) closure scheme (ACM2) affects the simulated near-surface temperature in Beijing, China. Moreover, the influence of changing Kzmin on the temperature prediction in areas with different land-use categories was studied. The model performance using a functional-type Kzmin for capturing the temperature change in this area was also clarified.
Le Cao, Simeng Li, and Luhang Sun
Atmos. Chem. Phys., 21, 12687–12714, https://doi.org/10.5194/acp-21-12687-2021, https://doi.org/10.5194/acp-21-12687-2021, 2021
Short summary
Short summary
Gas-phase chemical reaction mechanisms, e.g., CB6 mechanism, are essential parts of the atmospheric transport model. In order to better understand the changes caused by the updates between different versions of the CB6 mechanism, in this study, the behavior of three different CB6 mechanisms in simulating ozone, nitrogen oxides and formaldehyde under two different emission conditions was analyzed using a concentration sensitivity analysis, and the reasons causing the deviations were figured out.
Zhuozhi Shu, Yubao Liu, Tianliang Zhao, Junrong Xia, Chenggang Wang, Le Cao, Haoliang Wang, Lei Zhang, Yu Zheng, Lijuan Shen, Lei Luo, and Yueqing Li
Atmos. Chem. Phys., 21, 9253–9268, https://doi.org/10.5194/acp-21-9253-2021, https://doi.org/10.5194/acp-21-9253-2021, 2021
Short summary
Short summary
Focusing on a heavy haze pollution event in the Sichuan Basin (SCB), we investigated the elevated 3D structure of PM2.5 and trans-boundary transport with the WRF-Chem simulation. It is remarkable for vertical PM2.5 that the unique hollows were structured, which which occurred by the interaction of vortex circulations and topographic effects. The SCB was regarded as the major air pollutant source with the trans-boundary transport of PM2.5 affecting atmospheric environment changes.
Simeng Li, Enrico Dammers, Arjo Segers, and Jan Willem Erisman
EGUsphere, https://doi.org/10.5194/egusphere-2025-2826, https://doi.org/10.5194/egusphere-2025-2826, 2025
Short summary
Short summary
Between 2019 and 2022, a notable reduction in livestock numbers has been observed on Schiermonnikoog, a small island in the north of the Netherlands. We have assessed ammonia emissions using real-world measurements on the island, demonstrated emission decrease, and proposed a network to improve emission monitoring.
Xiaochun Zhu, Le Cao, Xin Yang, Simeng Li, Jiandong Wang, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3873, https://doi.org/10.5194/egusphere-2024-3873, 2025
Short summary
Short summary
We applied various criteria to identify springtime ODEs at Utqiagvik, Arctic, and investigated the influences of using different criteria on conclusions regarding the characteristics of ODEs. We found criteria using a constant threshold and using thresholds based on the monthly averaged ozone more suitable for identifying ODEs than the others. Applying a threshold varying with the monthly average or stricter thresholds also signifies a more significant reduction in the ODE occurrences.
Kai Meng, Tianliang Zhao, Yongqing Bai, Ming Wu, Le Cao, Xuewei Hou, Yuehan Luo, and Yongcheng Jiang
Atmos. Chem. Phys., 24, 12623–12642, https://doi.org/10.5194/acp-24-12623-2024, https://doi.org/10.5194/acp-24-12623-2024, 2024
Short summary
Short summary
We studied the impact of stratospheric intrusions (SIs) on tropospheric and near-surface ozone in Central and Eastern China from a stratospheric source tracing perspective. SIs contribute the most in the eastern plains, with a contribution exceeding 15 %, and have a small contribution to the west and south. Western Siberia and Mongolia are the most critical source areas for indirect and direct SIs, with the Rossby wave and northeast cold vortex being important driving circulation systems.
Le Cao, Simeng Li, Yicheng Gu, and Yuhan Luo
Atmos. Chem. Phys., 23, 3363–3382, https://doi.org/10.5194/acp-23-3363-2023, https://doi.org/10.5194/acp-23-3363-2023, 2023
Short summary
Short summary
We performed a 3-D mesoscale model study on ozone depletion events (ODEs) occurring in the spring of 2019 at Barrow using an air quality model, CMAQ. Many ODEs observed at Barrow were captured by the model, and the contribution from each physical or chemical process to ozone and bromine species during ODEs was quantitatively evaluated. We found the ODEs at Barrow to be strongly influenced by horizontal transport. In contrast, over the sea, local chemistry significantly reduced the surface ozone.
Hongyi Ding, Le Cao, Haimei Jiang, Wenxing Jia, Yong Chen, and Junling An
Geosci. Model Dev., 14, 6135–6153, https://doi.org/10.5194/gmd-14-6135-2021, https://doi.org/10.5194/gmd-14-6135-2021, 2021
Short summary
Short summary
We performed a WRF model study to figure out the mechanism of how the change in minimum eddy diffusivity (Kzmin) in the planetary boundary layer (PBL) closure scheme (ACM2) affects the simulated near-surface temperature in Beijing, China. Moreover, the influence of changing Kzmin on the temperature prediction in areas with different land-use categories was studied. The model performance using a functional-type Kzmin for capturing the temperature change in this area was also clarified.
Le Cao, Simeng Li, and Luhang Sun
Atmos. Chem. Phys., 21, 12687–12714, https://doi.org/10.5194/acp-21-12687-2021, https://doi.org/10.5194/acp-21-12687-2021, 2021
Short summary
Short summary
Gas-phase chemical reaction mechanisms, e.g., CB6 mechanism, are essential parts of the atmospheric transport model. In order to better understand the changes caused by the updates between different versions of the CB6 mechanism, in this study, the behavior of three different CB6 mechanisms in simulating ozone, nitrogen oxides and formaldehyde under two different emission conditions was analyzed using a concentration sensitivity analysis, and the reasons causing the deviations were figured out.
Zhuozhi Shu, Yubao Liu, Tianliang Zhao, Junrong Xia, Chenggang Wang, Le Cao, Haoliang Wang, Lei Zhang, Yu Zheng, Lijuan Shen, Lei Luo, and Yueqing Li
Atmos. Chem. Phys., 21, 9253–9268, https://doi.org/10.5194/acp-21-9253-2021, https://doi.org/10.5194/acp-21-9253-2021, 2021
Short summary
Short summary
Focusing on a heavy haze pollution event in the Sichuan Basin (SCB), we investigated the elevated 3D structure of PM2.5 and trans-boundary transport with the WRF-Chem simulation. It is remarkable for vertical PM2.5 that the unique hollows were structured, which which occurred by the interaction of vortex circulations and topographic effects. The SCB was regarded as the major air pollutant source with the trans-boundary transport of PM2.5 affecting atmospheric environment changes.
Cited articles
Akimoto, H.: Atmospheric Reaction Chemistry, in: Springer Atmospheric Sciences, edition no. 1, Springer, Japan, https://doi.org/10.1007/978-4-431-55870-5, 2016. a, b
Anderson, P. S. and Neff, W. D.: Boundary layer physics over snow and ice, Atmos. Chem. Phys., 8, 3563–3582, https://doi.org/10.5194/acp-8-3563-2008, 2008. a
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. a
Balis, D., Kroon, M., Koukouli, M. E., Brinksma, E. J., Labow, G., Veefkind,
J. P., and McPeters, R. D.: Validation of Ozone Monitoring Instrument total
ozone column measurements using Brewer and Dobson spectrophotometer
ground-based observations, J. Geophys. Res.-Atmos., 112, D24S46,
https://doi.org/10.1029/2007JD008796, 2007. a
Beare, R., Macvean, M., Holtslag, A., Cuxart, J., Esau, I., Golaz, J.-C.,
Jimenez, M., Khairoutdinov, M., Kosovic, B., Lewellen, D., Lund, T.,
Lundquist, J., Mccabe, A., Moene, A., Noh, Y., Raasch, S., and Sullivan, P.:
An intercomparison of large-eddy simulations of the stable boundary layer,
Boundary Layer Meteorol., 118, 247–272, https://doi.org/10.1007/s10546-004-2820-6,
2006. a
Bedjanian, Y. and Poulet, G.: Kinetics of Halogen Oxide Radicals in the
Stratosphere, Chem. Rev., 103, 4639–4656, https://doi.org/10.1021/cr0205210,
pMID: 14664627, 2003. a
Bian, L., Ye, L., Ding, M., Gao, Z., Zheng, X., and Schnell, R.: Surface Ozone
Monitoring and Background Concentration at Zhongshan Station, Antarctica,
Atmospheric and Climate Sciences, 8, 1–14, https://doi.org/10.4236/acs.2018.81001,
2018. a, b
Bottenheim, J. W. and Chan, E.: A trajectory study into the origin of spring
time Arctic boundary layer ozone depletion, J. Geophys. Res.-Atmos., 111, D19301, https://doi.org/10.1029/2006JD007055, 2006. a
Bottenheim, J. W., Netcheva, S., Morin, S., and Nghiem, S. V.: Ozone in the boundary layer air over the Arctic Ocean: measurements during the TARA transpolar drift 2006–2008, Atmos. Chem. Phys., 9, 4545–4557, https://doi.org/10.5194/acp-9-4545-2009, 2009. a, b, c
Boylan, P., Helmig, D., Staebler, R., Turnipseed, A., Fairall, C., and Neff,
W.: Boundary layer dynamics during the Ocean-Atmosphere-Sea-Ice-Snow (OASIS)
2009 experiment at Barrow, AK, J. Geophys. Res.-Atmos.,
119, 2261–2278, https://doi.org/10.1002/2013JD020299, 2014. a
Brasseur, G. and Solomon, S.: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Edition no. 3, Springer, https://doi.org/10.1007/1-4020-3824-0, 2005. a
Burkholder, J., Sander, S., Abbatt, J., Barker, J., Huie, R., Kolb, C., Kurylo, M., Orkin, V., Wilmouth, D., and Wine, P.: Chemical Kinetics and
Photochemical Data for Use in Atmospheric Studies, Evaluation Number 18,
Tech. rep., JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, https://doi.org/10.13140/RG.2.1.2504.2806, 2015. a
Cao, L.: The observational data and the source code of the models as well as
the computational results for “Influence of Total Ozone Column (TOC) on the
Occurrence of Tropospheric Ozone Depletion Events (ODEs) in the Antarctic”,
NUIST Information Platform [code and data set], https://faculty.nuist.edu.cn/caole/en/kyxm/72647/content/17580.htm#kyxm, last access: 14 February 2022. a
Cao, L., Sihler, H., Platt, U., and Gutheil, E.: Numerical analysis of the chemical kinetic mechanisms of ozone depletion and halogen release in the polar troposphere, Atmos. Chem. Phys., 14, 3771–3787, https://doi.org/10.5194/acp-14-3771-2014, 2014. a, b, c
Cao, L., He, M., Jiang, H., Grosshans, H., and Cao, N.: Sensitivity of the
Reaction Mechanism of the Ozone Depletion Events during the Arctic Spring on
the Initial Atmospheric Composition of the Troposphere, Atmosphere, 7, 124,
https://doi.org/10.3390/atmos7100124, 2016a. a, b
Cao, L., Platt, U., and Gutheil, E.: Role of the boundary layer in the
occurrence and termination of the tropospheric ozone depletion events in
polar spring, Atmos. Environ., 132, 98–110,
https://doi.org/10.1016/j.atmosenv.2016.02.034, 2016b. a
Cao, L., Wang, C., Mao, M., Grosshans, H., and Cao, N.: Derivation of the reduced reaction mechanisms of ozone depletion events in the Arctic spring by using concentration sensitivity analysis and principal component analysis, Atmos. Chem. Phys., 16, 14853–14873, https://doi.org/10.5194/acp-16-14853-2016, 2016c. a
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total
ozone in Antarctica reveal seasonal ClOx NOx interaction,
Nature, 315, 207–210, https://doi.org/10.1038/315207a0, 1985. a
Finlayson-Pitts, B. and Pitts, J.: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications, Edition no. 1, Academic Press, San Deigo, https://doi.org/10.1016/B978-0-12-257060-5.X5000-X, 1999. a
Fishman, J. and Crutzen, P. J.: The origin of ozone in the troposphere, Nature,
274, 855–858, 1978. a
Frieß, U., Hollwedel, J., König-Langlo, G., Wagner, T., and Platt, U.: Dynamics and chemistry of tropospheric bromine explosion events in the
Antarctic coastal region, J. Geophys. Res., 109, D06305, https://doi.org/10.1029/2003JD004133, 2004. a
Heinemann, G.: The polar regions: a natural laboratory for boundary layer
meteorology a review, Meteorologische Z., 17, 589–601,
https://doi.org/10.1127/0941-2948/2008/0327, 2008. a
Hopper, J. F., Barrie, L. A., Silis, A., Hart, W., Gallant, A. J., and
Dryfhout, H.: Ozone and meteorology during the 1994 Polar Sunrise Experiment,
J. Geophys. Res., 103, 1481–1492, https://doi.org/10.1029/97JD02888, 1998. a
Hu, X.-M., Zhang, F., Yu, G., Fuentes, J. D., and Wu, L.: Contribution of
mixed-phase boundary layer clouds to the termination of ozone depletion
events in the Arctic, Geophys. Res. Lett., 38, L21801,
https://doi.org/10.1029/2011GL049229, 2011. a
Hutterli, M. A., McConnell, J. R., Chen, G., Bales, R. C., Davis, D. D., and
Lenschow, D. H.: Formaldehyde and hydrogen peroxide in air, snow and
interstitial air at South Pole, Atmos. Environ., 38, 5439–5450,
https://doi.org/10.1016/j.atmosenv.2004.06.003, 2004. a, b
Jacobi, H.-W., Kaleschke, L., Richter, A., Rozanov, A., and Burrows, J. P.:
Observation of a fast ozone loss in the marginal ice zone of the Arctic
Ocean, J. Geophys. Res.-Atmos., 111, D15309, https://doi.org/10.1029/2005JD006715, 2006. a
Jacobi, H.-W., Morin, S., and Bottenheim, J. W.: Observation of widespread
depletion of ozone in the springtime boundary layer of the central Arctic
linked to mesoscale synoptic conditions, J. Geophys. Res., 115, D17302,
https://doi.org/10.1029/2010JD013940, 2010. a
Jones, A. E., Anderson, P. S., Wolff, E. W., Turner, J., Rankin, A. M., and
Colwell, S. R.: A role for newly forming sea ice in springtime polar
tropospheric ozone loss? Observational evidence from Halley station,
Antarctica, J. Geophys. Res.-Atmos., 111, D08306, https://doi.org/10.1029/2005JD006566, 2006. a, b, c, d
Jones, A. E., Wolff, E. W., Ames, D., Bauguitte, S. J.-B., Clemitshaw, K. C., Fleming, Z., Mills, G. P., Saiz-Lopez, A., Salmon, R. A., Sturges, W. T., and Worton, D. R.: The multi-seasonal NOy budget in coastal Antarctica and its link with surface snow and ice core nitrate: results from the CHABLIS campaign, Atmos. Chem. Phys., 11, 9271–9285, https://doi.org/10.5194/acp-11-9271-2011, 2011. a, b
Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J.,
Rankin, A. M., Roscoe, H. K., Hollwedel, J., Wagner, T., and Jacobi, H.-W.:
Frost flowers on sea ice as a source of sea salt and their influence on
tropospheric halogen chemistry, Geophys. Res. Lett., 31, L16114,
https://doi.org/10.1029/2004GL020655, 2004. a
Koo, J.-H., Wang, Y., Kurosu, T. P., Chance, K., Rozanov, A., Richter, A., Oltmans, S. J., Thompson, A. M., Hair, J. W., Fenn, M. A., Weinheimer, A. J., Ryerson, T. B., Solberg, S., Huey, L. G., Liao, J., Dibb, J. E., Neuman, J. A., Nowak, J. B., Pierce, R. B., Natarajan, M., and Al-Saadi, J.: Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations, Atmos. Chem. Phys., 12, 9909–9922, https://doi.org/10.5194/acp-12-9909-2012, 2012. a, b
Koo, J.-H., Wang, Y., Jiang, T., Deng, Y., Oltmans, S. J., and Solberg, S.:
Influence of climate variability on near-surface ozone depletion events in
the Arctic spring, Geophys. Res. Lett., 41, 2582–2589,
https://doi.org/10.1002/2014GL059275, 2014. a
Kreher, K., Johnston, P. V., Wood, S. W., Nardi, B., and Platt, U.:
Ground-based measurements of tropospheric and stratospheric BrO at Arrival
Heights, Antarctica, Geophys. Res. Lett., 24, 3021–3024,
https://doi.org/10.1029/97GL02997, 1997. a
Krueger, A. J. and Minzner, R. A.: A mid-latitude ozone model for the 1976 U.S.
Standard Atmosphere, J. Geophys. Res., 81,
4477–4481, https://doi.org/10.1029/JC081i024p04477, 1976. a
Kumar, P., Kuttippurath, J., Gathen, P., Petropavlovskikh, I., Johnson, B.,
McClure-Begley, A., Cristofanelli, P., Bonasoni, P., Barlasina, M., and
Sánchez, R.: The Increasing Surface Ozone and Tropospheric Ozone in
Antarctica and Their Possible Drivers, Environ. Sci. Technol., 55, 8542–8553, https://doi.org/10.1021/acs.est.0c08491, 2021. a
Kuttippurath, J., Goutail, F., Pommereau, J.-P., Lefèvre, F., Roscoe, H. K., Pazmiño, A., Feng, W., Chipperfield, M. P., and Godin-Beekmann, S.: Estimation of Antarctic ozone loss from ground-based total column measurements, Atmos. Chem. Phys., 10, 6569–6581, https://doi.org/10.5194/acp-10-6569-2010, 2010. a
Langendörfer, U., Lehrer, E., Wagenbach, D., and Platt, U.: Observation of
filterable bromine variabilities during Arctic tropospheric ozone depletion
events in high (1 h) time resolution, J. Atmos. Chem., 34, 39–54,
https://doi.org/10.1023/A:1006217001008, 1999. a
Lehrer, E., Hönninger, G., and Platt, U.: A one dimensional model study of the mechanism of halogen liberation and vertical transport in the polar troposphere, Atmos. Chem. Phys., 4, 2427–2440, https://doi.org/10.5194/acp-4-2427-2004, 2004. a, b
Lippmann, M.: Health effects of tropospheric ozone, Environ. Sci. Technol., 25,
1954–1962, https://doi.org/10.1021/es00024a001, 1991. a
Madronich, S. and Flocke, S.: Theoretical Estimation of Biologically Effective UV Radiation at the Earth's Surface, in: Solar Ultraviolet Radiation, NATO ASI Series, vol. 52, edited by: Zerefos, C. S. and Bais, A. F., Springer, Berlin, Heidelberg, 23–48, https://doi.org/10.1007/978-3-662-03375-3_3, 1997. a, b
Madronich, S. and Flocke, S.: The Role of Solar Radiation in Atmospheric
Chemistry, in: Environmental Photochemistry. The Handbook of Environmental Chemistry, vol. 2/2L, edited by: Boule, P., Springer, Berlin, Heidelberg, 1–26, https://doi.org/10.1007/978-3-540-69044-3_1, 1999. a, b
Michalowski, B. A., Francisco, J. S., Li, S.-M., Barrie, L. A., Bottenheim,
J. W., and Shepson, P. B.: A computer model study of multiphase chemistry in
the Arctic boundary layer during polar sunrise, J. Geophys. Res.-Atmos., 105,
15131–15145, https://doi.org/10.1029/2000JD900004, 2000. a
Molina, M. J. and Rowland, F. S.: Stratospheric sink for chlorofluoromethanes:
chlorine atom-catalysed destruction of ozone, Nature, 249, 810–812, 1974. a
Oltmans, S. J.: Surface ozone measurements in clean air, J. Geophys. Res., 86,
1174–1180, https://doi.org/10.1029/JC086iC02p01174, 1981. a
Piot, M.: Modeling Halogen Chemistry during Ozone Depletion Events in Polar
Spring: A Model Study, PhD thesis, University of Heidelberg, Germany, https://doi.org/10.11588/heidok.00007876,, 2007. a, b
Platt, U. and Janssen, C.: Observation and role of the free radicals
NO3, ClO, BrO and IO in the troposphere,
Faraday Discuss., 100, 175–198, https://doi.org/10.1039/FD9950000175, 1995. a
Platt, U. and Lehrer, E.: Arctic tropospheric ozone chemistry, ARCTOC, no. 64
in Air pollution research report, European Commission Directorate-General,
Science, Research and Development, Luxembourg, ISBN 92-828-2350-4, 1997. a
Prather, M. and Jaffe, A. H.: Global impact of the Antarctic ozone hole:
Chemical propagation, J. Geophys. Res.-Atmos., 95,
3473–3492, https://doi.org/10.1029/JD095iD04p03473, 1990. a
Riedel, K., Allan, W., Weller, R., and Schrems, O.: Discrepancies between
formaldehyde measurements and methane oxidation model predictions in the
Antarctic troposphere: An assessment of other possible formaldehyde sources,
J. Geophys. Res.-Atmos., 110, D15308, https://doi.org/10.1029/2005JD005859, 2005. a, b
Rogers, J. D.: Ultraviolet absorption cross sections and atmospheric
photodissociation rate constants of formaldehyde, J. Phys. Chem., 94, 4011–4015, https://doi.org/10.1021/j100373a025, 1990. a
Roscoe, H. K. and Roscoe, J.: Polar tropospheric ozone depletion events observed in the International Geophysical Year of 1958, Atmos. Chem. Phys., 6, 3303–3314, https://doi.org/10.5194/acp-6-3303-2006, 2006. a
Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frieß, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418, https://doi.org/10.5194/acp-7-4375-2007, 2007. a, b
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Edition no. 1, Springer, Dordrecht, https://doi.org/10.1007/978-94-009-3027-8, 1988. a
Tarasick, D. W. and Bottenheim, J. W.: Surface ozone depletion episodes in the Arctic and Antarctic from historical ozonesonde records, Atmos. Chem. Phys., 2, 197–205, https://doi.org/10.5194/acp-2-197-2002, 2002. a, b
Vaghjiani, G. L. and Ravishankara, A. R.: Absorption cross sections of CH3OOH,
H2O2, and D2O2 vapors between 210 and 365 nm at 297 K, J. Geophys. Res.-Atmos., 94, 3487–3492,
https://doi.org/10.1029/JD094iD03p03487, 1989. a
van Oss, R. F. and Spurr, R. J.: Fast and accurate 4 and 6 stream linearized
discrete ordinate radiative transfer models for ozone profile retrieval,
J. Quant. Spectrosc Ra., 75, 177–220,
https://doi.org/10.1016/S0022-4073(01)00246-1, 2002. a
Wagner, T., Ibrahim, O., Sinreich, R., Frieß, U., von Glasow, R., and Platt, U.: Enhanced tropospheric BrO over Antarctic sea ice in mid winter observed by MAX-DOAS on board the research vessel Polarstern, Atmos. Chem. Phys., 7, 3129–3142, https://doi.org/10.5194/acp-7-3129-2007, 2007. a
Wennberg, P.: Atmospheric chemistry: Bromine explosion, Nature, 397, 299–301,
https://doi.org/10.1038/16805, 1999. a
Wilmouth, D. M., Hanisco, T. F., Donahue, N. M., and Anderson, J. G.: Fourier
Transform Ultraviolet Spectroscopy of the A Transition of BrO, J. Phys. Chem. A, 103, 8935–8945,
https://doi.org/10.1021/jp991651o, 1999. a
Zhou, J., Cao, L., and Li, S.: Influence of the Background Nitrogen Oxides on
the Tropospheric Ozone Depletion Events in the Arctic during Springtime,
Atmosphere, 11, 344, https://doi.org/10.3390/atmos11040344, 2020. a
Short summary
We analyzed the observational data and used models to discover the impact of the total ozone column (TOC) on the occurrence of tropospheric ozone depletion events (ODE) in the Antarctic. The results suggest that the decrease of TOC favors the occurrence of ODE. When TOC varies the rates of major ODE accelerating reactions are substantially altered but the rates of major ODE decelerating reactions remain unchanged. As a result, the occurrence of ODE negatively depends on the TOC.
We analyzed the observational data and used models to discover the impact of the total ozone...
Altmetrics
Final-revised paper
Preprint