

Supplement of

Influence of total ozone column (TOC) on the occurrence of tropospheric ozone depletion events (ODEs) in the Antarctic

Le Cao et al.

Correspondence to: Le Cao (le.cao@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Correlation coefficients between the daily TOCs belonging to different stations in the Antarctic.

Year	2007	2008	2009	2010	2011	2012	2013
Halley vs. Belgrano II	0.92	0.85	0.92	0.82	0.92	0.96	0.99
Faraday-Vernadsky vs. Marambio	0.94	0.91	0.95	0.95	0.89	0.92	0.96
Halley vs. Faraday-Vernadsky	0.62	0.35	0.13	0.39	0.41	0.47	0.72

Figure S1. (Continued...)

Figure S1. Time series of the surface ozone detected at the Halley station during the springtime of years 2007-2013. The green-shaded areas in the figure indicate the periods identified as the occurrence of ODEs in the present study. Note that the observational data of the surface ozone for October and November in the year 2012 are missing.

Fable S2. Input parameters of the TUV model.	

Parameter	Option	Value	Unit
	Start	280	nm
Wavelength	End	420	nm
	Increments	140	
Latitude		-65.25	degrees
Longitude		-64.27	degrees
Date		vary with time	
Time		12 PM	
TOC		vary with time	DU
Surface albedo		0.85	
Ground elevation		0.01	km
Measurement altitude		0.21	km
	Optical depth	0.00	km
Clouds	Base	4.00	km
	Тор	5.00	km
	Optical depth	0.235	km
Aerosols	Single scattering albedo	0.990	
	Angstrom exponent	1.000	
	Direct beam	1.0	
Sunlight	Diffuse down	1.0	
	Diffuse up	1.0	

Table S3. The complete chemical reaction mechanism with an implementation of a constant temperature T = 258 K, and the rate of thirdbody reactions is estimated as $k = k_{\infty} \times \frac{k_0/k_{\infty}}{(1+k_0/k_{\infty})} \times F_c^{\frac{1}{1+(\log_{10}(k_0/k_{\infty}))^2}}$ (Atkinson et al., 2006).

Reaction	Reaction	k	Order	Reference
Number		$[(molec. cm^{-3})^{1-n}s^{-1}]$	n	
(SR1)	$\mathrm{O}_3 + h\nu \rightarrow \mathrm{O}(^{1}\mathrm{D}) + \mathrm{O}_2$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR2)	$\mathrm{O(^1D)} + \mathrm{O_2} \rightarrow \mathrm{O_3}$	$3.20 \times 10^{-11} \exp(67/T)$	2	Atkinson et al. (2006)
(SR3)	$\mathrm{O(^1D)} + \mathrm{N_2} \rightarrow \mathrm{O_3} + \mathrm{N_2}$	$1.80 \times 10^{-11} \exp(107/T)$	2	Atkinson et al. (2006)
(SR4)	$\rm O(^1D) + H_2O \rightarrow 2OH$	2.20×10^{-10}	2	Atkinson et al. (2006)
(SR5)	$\rm Br+O_3 \rightarrow BrO+O_2$	$1.70 \times 10^{-11} \exp(-800/T)$	2	Atkinson et al. (2006)
(SR6)	${\rm Br}_2 + h\nu \to 2{\rm Br}$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR7)	$BrO + h\nu \xrightarrow{O_2} Br + O_3$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR8)	$\rm BrO+BrO\rightarrow 2Br+O_2$	2.70×10^{-12}	2	Atkinson et al. (2006)
(SR9)	$\rm BrO+BrO\to Br_2+O_2$	$2.90 \times 10^{-14} \exp(840/T)$	2	Atkinson et al. (2006)
(SR10)	$\rm BrO+HO_2 \rightarrow \rm HOBr+O_2$	$4.5 \times 10^{-12} \exp(500/T)$	2	Atkinson et al. (2006)
(SR11)	$\mathrm{HOBr} + h\nu \to \mathrm{Br} + \mathrm{OH}$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR12)	$\rm CO + OH(+M) \xrightarrow{O_2} HO_2 + CO_2(+M)$	$1.44 \times 10^{-13} \left(1 + \frac{[N_2]}{4 \times 10^{19}}\right)$	2	Atkinson et al. (2006)
(SR13)	$Br + HO_2 \rightarrow HBr + O_2$	$7.70 \times 10^{-12} \exp(-450/T)$	2	Atkinson et al. (2006)
(SR14)	$\mathrm{HOBr} + \mathrm{HBr} \overset{\mathrm{aerosol}}{\longrightarrow} \mathrm{Br}_2 + \mathrm{H}_2\mathrm{O}$	$\left(\frac{r}{D_{\rm g}} + \frac{4}{v_{\rm therm}\gamma}\right)^{-1} \alpha_{\rm eff, aerosol}$		Cao et al. (2014)
(SR15)	$\mathrm{HOBr} + \mathrm{H^{+}} + \mathrm{Br^{-}} \xrightarrow{\mathrm{ice}} \mathrm{Br}_{2} + \mathrm{H_{2}O}$	$(r_a + r_b + r_c)^{-1} \alpha_{\text{eff,ice}}$		Cao et al. (2014)
(SR16)	$\operatorname{Br}+\operatorname{HCHO} \xrightarrow{\operatorname{O}_2} \operatorname{HBr}+\operatorname{CO}+\operatorname{HO}_2$	$7.70 \times 10^{-12} \exp(-580/T)$	2	Atkinson et al. (2006)
(SR17)	$\operatorname{Br} + \operatorname{CH}_3\operatorname{CHO} \xrightarrow{\operatorname{O}_2} \operatorname{HBr} + \operatorname{CH}_3\operatorname{CO}_3$	$1.80 \times 10^{-11} \exp(-460/T)$	2	Atkinson et al. (2006)
(SR18)	$\mathrm{Br}_2 + \mathrm{OH} \to \mathrm{HOBr} + \mathrm{Br}$	$2.0 \times 10^{-11} \exp(240/T)$	2	Atkinson et al. (2006)
(SR19)	$\mathrm{HBr} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{Br}$	$5.50 \times 10^{-12} \exp(205/T)$	2	Atkinson et al. (2006)
(SR20)	$\mathrm{Br} + \mathrm{C}_{2}\mathrm{H}_{2} \overset{\mathrm{3O}_{2}}{\longrightarrow} 2\mathrm{CO} + 2\mathrm{HO}_{2} + \mathrm{Br}$	4.20×10^{-14}	2	Borken (1996)
(SR21)	$\mathrm{Br} + \mathrm{C}_{2}\mathrm{H}_{2} \overset{\mathrm{2O}_{2}}{\longrightarrow} \mathrm{2CO} + \mathrm{HO}_{2} + \mathrm{HBr}$	8.92×10^{-14}	2	Borken (1996)
(SR22)	$\mathrm{Br} + \mathrm{C}_{2}\mathrm{H}_{4} \xrightarrow{3.5\mathrm{O}_{2}} 2\mathrm{CO} + 2\mathrm{HO}_{2} + \mathrm{Br} + \mathrm{H}_{2}\mathrm{O}$	2.52×10^{-13}	2	Barnes et al. (1993)
(SR23)	$\mathrm{Br} + \mathrm{C}_2\mathrm{H}_4 \overset{2.5\mathrm{O}_2}{\longrightarrow} 2\mathrm{CO} + \mathrm{HO}_2 + \mathrm{HBr} + \mathrm{H}_2\mathrm{O}$	5.34×10^{-13}	2	Barnes et al. (1993)
(SR24)	$\mathrm{CH}_4 + \mathrm{OH} \xrightarrow{\mathrm{O}_2} \mathrm{CH}_3\mathrm{O}_2 + \mathrm{H}_2\mathrm{O}$	$1.85 \times 10^{-12} \exp(-1690/T)$	2	Atkinson et al. (2006)
(SR25)	$\rm BrO+CH_3O_2\rightarrow Br+HCHO+HO_2$	1.60×10^{-12}	2	Aranda et al. (1997)
(SR26)	$\rm BrO+CH_3O_2 \rightarrow \rm HOBr+\rm HCHO+0.5O_2$	4.10×10^{-12}	2	Aranda et al. (1997)
(SR27)	$\mathrm{OH} + \mathrm{O}_3 \rightarrow \mathrm{HO}_2 + \mathrm{O}_2$	$1.70 \times 10^{-12} \exp(-940/T)$	2	Atkinson et al. (2006)
(SR28)	$\rm OH+HO_2\rightarrow H_2O+O_2$	$4.80 \times 10^{-11} \exp(250/T)$	2	Atkinson et al. (2006)
(SR29)	$\rm OH+H_2O_2\rightarrow HO_2+H_2O$	$2.90 \times 10^{-12} \exp(-160/T)$	2	Atkinson et al. (2006)
(SR30)	$OH + OH \xrightarrow{O_2} H_2O + O_3$	$6.20 \times 10^{-14} (T/298)^{2.6} \exp(945/T)$	2	Atkinson et al. (2006)
(SR31)	$\mathrm{HO}_2 + \mathrm{O}_3 \rightarrow \mathrm{OH} + 2\mathrm{O}_2$	$2.03 \times 10^{-16} (T/300)^{4.57} \exp(693/T)$	2	Atkinson et al. (2006)
(SR32)	$\mathrm{HO}_2 + \mathrm{HO}_2 \rightarrow \mathrm{O}_2 + \mathrm{H}_2\mathrm{O}_2$	$2.20 \times 10^{-13} \exp(600/T)$	2	Atkinson et al. (2006)
(SR33)	$\mathrm{C_2H_6} + \mathrm{OH} \rightarrow \mathrm{C_2H_5} + \mathrm{H_2O}$	$6.90 \times 10^{-12} \exp(-1000/T)$	2	Atkinson et al. (2006)
(SR34)	$\mathrm{C_2H_5} + \mathrm{O_2} \rightarrow \mathrm{C_2H_4} + \mathrm{HO_2}$	3.80×10^{-15}	2	Atkinson et al. (2006)

Reaction	Reaction	k	Order	Reference
Number		$[(molec. cm^{-3})^{1-n}s^{-1}]$	n	
(SR35)	$\mathrm{C_2H_5} + \mathrm{O_2}(+\mathrm{M}) \rightarrow \mathrm{C_2H_5O_2}(+\mathrm{M})$	$\begin{split} k_0 &= 5.90 \times 10^{-29} (T/300)^{-3.8} [\mathrm{N}_2] \\ k_\infty &= 7.80 \times 10^{-12} \\ F_c &= 0.58 \exp(-T/1250) \end{split}$	2	Atkinson et al. (2006)
(SR36)	$\mathrm{C_2H_4} + \mathrm{OH}(+\mathrm{M}) \xrightarrow{1.5\mathrm{O}_2} \mathrm{CH_3O_2} + \mathrm{CO} + \mathrm{H_2O}(+\mathrm{M})$	+0.42 exp $(-T/183)$ $k_0 = 8.60 \times 10^{-29} (T/300)^{-3.1} [N_2]$ $k_{\infty} = 9.00 \times 10^{-12} (T/300)^{-0.85}$ $F_c = 0.48$	2	Atkinson et al. (2006)
(SR37)	$\mathrm{C_2H_4} + \mathrm{O_3} \rightarrow \mathrm{HCHO} + \mathrm{CO} + \mathrm{H_2O}$	4.33×10^{-19}	2	Sander et al. (1997)
(SR38)	$\mathrm{C_2H_2} + \mathrm{OH}(+\mathrm{M}) \xrightarrow{1.5\mathrm{O}_2} \mathrm{HCHO} + \mathrm{CO} + \mathrm{HO_2}(+\mathrm{M})$	$\begin{split} k_0 &= 5.00 \times 10^{-30} (T/300)^{-1.5} [\mathrm{N}_2] \\ k_\infty &= 1.00 \times 10^{-12} \\ F_c &= 0.37 \end{split}$	2	Atkinson et al. (2006)
(SR39)	$C_3H_8 + OH \xrightarrow{2O_2} C_2H_5O_2 + CO + 2H_2O$	$7.60 \times 10^{-12} \exp(-585/T)$	2	Atkinson et al. (2006)
(SR40)	$\text{HCHO} + \text{OH} \xrightarrow{\text{O}_2} \text{CO} + \text{H}_2\text{O} + \text{HO}_2$	$5.40 \times 10^{-12} \exp(135/T)$	2	Atkinson et al. (2006)
(SR41)	$CH_3CHO + OH \xrightarrow{O_2} CH_3CO_3 + H_2O$	$4.40 \times 10^{-12} \exp(365/T)$	2	Atkinson et al. (2006)
(SR42)	$CH_3O_2 + HO_2 \rightarrow CH_3O_2H + O_2$	$3.42 \times 10^{-13} \exp(780/T)$	2	Atkinson et al. (2006)
(SR43)	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{HO}_2 \rightarrow \mathrm{HCHO} + \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$	$3.79 \times 10^{-14} \exp(780/T)$	2	Atkinson et al. (2006)
(SR44)	$\rm CH_3OOH+OH \rightarrow \rm CH_3O_2 + H_2O$	$1.00 \times 10^{-12} \exp(190/T)$	2	Atkinson et al. (2006)
(SR45)	$\rm CH_3OOH+OH\rightarrow HCHO+OH+H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	2	Atkinson et al. (2006)
(SR46)	$\rm CH_3OOH + Br \rightarrow CH_3O_2 + HBr$	$2.66 \times 10^{-12} \exp(-1610/T)$	2	Mallard et al. (1993)
(SR47)	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{CH}_3\mathrm{O}_2 \rightarrow \mathrm{CH}_3\mathrm{OH} + \mathrm{HCHO} + \mathrm{O}_2$	$6.29 \times 10^{-14} \exp(365/T)$	2	Atkinson et al. (2006)
(SR48)	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{CH}_3\mathrm{O}_2 \xrightarrow{\mathrm{O}_2} 2\mathrm{HCHO} + 2\mathrm{HO}_2$	$3.71 \times 10^{-14} \exp(365/T)$	2	Atkinson et al. (2006)
(SR49)	$\mathrm{CH}_{3}\mathrm{OH} + \mathrm{OH} \xrightarrow{\mathrm{O}_{2}} \mathrm{HCHO} + \mathrm{HO}_{2} + \mathrm{H}_{2}\mathrm{O}$	$2.42 \times 10^{-12} \exp(-345/T)$	2	Atkinson et al. (2006)
(SR50)	$\mathrm{C_2H_5O_2} + \mathrm{C_2H_5O_2} \rightarrow \mathrm{C_2H_5O} + \mathrm{C_2H_5O} + \mathrm{O_2}$	6.40×10^{-14}	2	Atkinson et al. (2006)
(SR51)	$\mathrm{C_2H_5O} + \mathrm{O_2} \rightarrow \mathrm{CH_3CHO} + \mathrm{HO_2}$	7.44×10^{-15}	2	Sander et al. (1997)
(SR52)	$\mathrm{C_2H_5O} + \mathrm{O_2} \rightarrow \mathrm{CH_3O_2} + \mathrm{HCHO}$	7.51×10^{-17}	2	Sander et al. (1997)
(SR53)	$\mathrm{C_2H_5O_2} + \mathrm{HO_2} \rightarrow \mathrm{C_2H_5OOH} + \mathrm{O_2}$	$3.80 \times 10^{-13} \exp(900/T)$	2	Atkinson et al. (2006)
(SR54)	$\mathrm{C_2H_5OOH} + \mathrm{OH} \rightarrow \mathrm{C_2H_5O_2} + \mathrm{H_2O}$	8.21×10^{-12}	2	Sander et al. (1997)
(SR55)	$\mathrm{C_2H_5OOH} + \mathrm{Br} \rightarrow \mathrm{C_2H_5O_2} + \mathrm{HBr}$	5.19×10^{-15}	2	Sander et al. (1997)
(SR56)	$\mathrm{OH} + \mathrm{OH}(+\mathrm{M}) {\longrightarrow} \mathrm{H_2O_2}(+\mathrm{M})$	$k_0 = 6.90 \times 10^{-31} (T/300)^{-0.8} [N_2]$ $k_\infty = 2.60 \times 10^{-11}$ $F_2 = 0.50$	2	Atkinson et al. (2006)
(SR57)	$H_2O_2 + h\nu \rightarrow 2OH$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR58)	$HCHO + h\nu \xrightarrow{2O_2} 2HO_2 + CO$	calculated by TUV model	1	Madronich and Flocke (1997–1999)
(SR59)	$HCHO + h\nu \rightarrow H_0 + CO$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR60)	$C_2H_4O + h\nu \rightarrow CH_3O_2 + CO + +HO_2$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)

Reaction	Reaction	k	Order	Reference
Number		$[(molec. cm^{-3})^{1-n}s^{-1}]$	n	
(SR61)	$\rm CH_3O_2H + h\nu \rightarrow OH + HCHO + HO_2$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR62)	$\mathrm{C_2H_5O_2H} + h\nu \rightarrow \mathrm{C_2H_5O} + \mathrm{OH}$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR63)	$\mathrm{NO} + \mathrm{O}_3 \rightarrow \mathrm{NO}_2 + \mathrm{O}_2$	$1.40 \times 10^{-12} \exp(-1310/T)$	2	Atkinson et al. (2006)
(SR64)	$\rm NO+HO_2 \rightarrow NO_2+OH$	$3.60 \times 10^{-12} \exp(270/T)$	2	Atkinson et al. (2006)
(SR65)	$\mathrm{NO}_2 + \mathrm{O}_3 \rightarrow \mathrm{NO}_3 + \mathrm{O}_2$	$1.40 \times 10^{-13} \exp(-2470/T)$	2	Atkinson et al. (2006)
(SR66)	$\mathrm{NO}_2 + \mathrm{OH}(+\mathrm{M}) \to \mathrm{HNO}_3(+\mathrm{M})$	$k_0 = 3.30 \times 10^{-30} (T/300)^{-3.0} [N_2]$	2	Atkinson et al. (2006)
		$k_{\infty} = 4.10 \times 10^{-11}$		
		$F_c = 0.40$		
(SR67)	$\rm NO + NO_3 \rightarrow 2NO_2$	$1.80 \times 10^{-11} \exp(110/T)$	2	Atkinson et al. (2006)
(SR68)	$\rm HONO + OH \rightarrow \rm NO_2 + H_2O$	$2.50 \times 10^{-12} \exp(260/T)$	2	Atkinson et al. (2006)
(SR69)	$\mathrm{HO}_2 + \mathrm{NO}_2(+\mathrm{M}) \to \mathrm{HNO}_4(+\mathrm{M})$	$k_0 = 1.80 \times 10^{-31} (T/300)^{-3.2} [N_2]$	2	Atkinson et al. (2006)
		$k_{\infty} = 4.70 \times 10^{-12}$		
		$F_c = 0.60$		
(SR70)	$\mathrm{HNO}_4(+\mathrm{M}) \rightarrow \mathrm{NO}_2 + \mathrm{HO}_2(+\mathrm{M})$	$k_0 = 4.10 \times 10^{-5} \exp(-10650/T) [N_2]$	1	Atkinson et al. (2006)
		$k_{\infty} = 4.80 \times 10^{15} \exp(-11170/T)$		
		$F_c = 0.60$		
(SR71)	$\mathrm{HNO}_4 + \mathrm{OH} \rightarrow \mathrm{NO}_2 + \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$	$3.20 \times 10^{-13} \exp(690/T)$	2	Atkinson et al. (2006)
(SR72)	$NO + OH(+M) \rightarrow HONO(+M)$	$k_0 = 7.40 \times 10^{-31} (T/300)^{-2.4} [N_2]$	2	Atkinson et al. (2006)
		$k_{\infty} = 3.30 \times 10^{-11} (T/300)^{-0.3}$		
		$F_c = 0.81$		
(SR73)	$OH + NO_3 \rightarrow NO_2 + HO_2$	2.00×10^{-11}	2	Atkinson et al. (2006)
(SR74)	$HNO_3 + h\nu \rightarrow NO_2 + OH$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR75)	$NO_2 + h\nu \xrightarrow{\sim} O NO + O_3$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR76)	$NO_3 + h\nu \xrightarrow{O_2} NO_2 + O_3$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR77)	$NO_3 + h\nu \rightarrow NO + O_2$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR78)	$\text{NO} + \text{CH}_3\text{O}_2 \xrightarrow{\text{O}_2} \text{HCHO} + \text{HO}_2 + \text{NO}_2$	$2.30 \times 10^{-12} \exp(360/T)$	2	Atkinson et al. (2006)
(SR79)	$\mathrm{NO}_3 + \mathrm{CH}_3\mathrm{OH} \xrightarrow{\mathrm{O}_2} \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{HNO}_3$	$9.40 \times 10^{-13} \exp(-2650/T)$	2	Atkinson et al. (2006)
(SR80)	$\text{NO}_3 + \text{HCHO} \xrightarrow{\text{O}_2} \text{CO} + \text{HO}_2 + \text{HNO}_3$	5.60×10^{-16}	2	Atkinson et al. (2006)
(SR81)	$NO + C_2H_5O_2 \xrightarrow{O_2} CH_3CHO + NO_2 + HO_2$	$2.60 \times 10^{-12} \exp(380/T)$	2	Atkinson et al. (2006)
(SR82)	$NO + CH_2CO_2 \xrightarrow{O_2} CH_2O_2 + NO_2 + CO_2$	$7.50 \times 10^{-12} \exp(290/T)$	2	Atkinson et al. (2006)
(SR83)	$NO_2 + CH_2CO_2(+M) \rightarrow PAN(+M)$	$k_0 = 2.70 \times 10^{-28} (T/300)^{-7.1} [N_2]$	2	Atkinson et al. (2006)
	2 3 3	$k_{\infty} = 1.20 \times 10^{-11} (T/300)^{-0.9}$		× ,
		$F_{c} = 0.30$		
(SR84)	$Br + NO_2(+M) \rightarrow BrNO_2(+M)$	$k_0 = 4.20 \times 10^{-31} (T/300)^{-2.4} [N_2]$	2	Atkinson et al. (2006)
		$k_{\infty} = 2.70 \times 10^{-11}$		
		$F_{c} = 0.55$		
(SR85)	$Br + NO_3 \rightarrow BrO + NO_2$	1.60×10^{-11}	2	Atkinson et al. (2006)

Reaction	Reaction	k	Order	Reference
Number		$[(molec. cm^{-3})^{1-n}s^{-1}]$	n	
(SR86)	$BrO + NO_2(+M) \rightarrow BrONO_2(+M)$	$k_0 = 4.70 \times 10^{-31} (T/300)^{-3.1} [N_2]$	2	Atkinson et al. (2006)
		$k_{\infty} = 1.80 \times 10^{-11}$		
		$F_c = 0.40$		
(SR87)	$\rm BrO+NO \rightarrow \rm Br+NO_2$	$8.70 \times 10^{-12} \exp(260/T)$	2	Atkinson et al. (2006)
(SR88)	${\rm BrONO}_2 + h\nu \rightarrow {\rm NO}_2 + {\rm BrO}$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR89)	${\rm BrNO}_2 + h\nu \to {\rm NO}_2 + {\rm Br}$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR90)	$\operatorname{BrONO}_2 + \operatorname{H}_2\operatorname{O} \overset{\operatorname{aerosol}}{\longrightarrow} \operatorname{HOBr} + \operatorname{HNO}_3$	$\left(\frac{r}{D_{\rm g}} + \frac{4}{v_{\rm therm}\gamma}\right)^{-1} \alpha_{\rm eff, aerosol}$		Cao et al. (2014)
(SR91)	$\mathrm{PAN} + h\nu \rightarrow \mathrm{NO}_2 + \mathrm{CH}_3\mathrm{CO}_3$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR92)	$\operatorname{BrONO}_2 + \operatorname{H}_2 \operatorname{O} \xrightarrow{\operatorname{ice}} \operatorname{HOBr} + \operatorname{HNO}_3$	$(r_a + r_b + r_c)^{-1} \alpha_{\rm eff,ice}$		Cao et al. (2014)
(SR93)	$\mathrm{CH}_3\mathrm{O}_2\mathrm{H} + \mathrm{Cl} \to \mathrm{CH}_3\mathrm{O}_2 + \mathrm{HCl}$	5.90×10^{-11}	2	Atkinson et al. (2006)
(SR94)	$\mathrm{C_2H_5O_2H} + \mathrm{Cl} \rightarrow \mathrm{C_2H_5O_2} + \mathrm{HCl}$	5.70×10^{-11}	2	Sander et al. (1997)
(SR95)	$\rm Cl+HO_2\rightarrow HCl+O_2$	3.61×10^{-11}	2	Atkinson et al. (2006)
(SR96)	$\rm Cl + \rm HO_2 \rightarrow \rm ClO + \rm HO$	$6.30 \times 10^{-11} \exp(-570/T)$	2	Atkinson et al. (2006)
(SR97)	$\rm Cl+H_2O_2 \rightarrow \rm HCl+HO_2$	$1.10 \times 10^{-11} \exp(-980/T)$	2	Atkinson et al. (2006)
(SR98)	$\mathrm{Cl} + \mathrm{O}_3 \rightarrow \mathrm{ClO} + \mathrm{O}_2$	$2.80 \times 10^{-11} \exp(-250/T)$	2	Atkinson et al. (2006)
(SR99)	$\mathrm{Cl} + \mathrm{CH}_4 \rightarrow \mathrm{HCl} + \mathrm{CH}_3\mathrm{O}_2$	$6.60 \times 10^{-12} \exp(-1240/T)$	2	Atkinson et al. (2006)
(SR100)	$\rm Cl+C_2H_2 \rightarrow 2\rm CO+2\rm HO_2+\rm Cl$	2.00×10^{-11}	2	Borken (1996)
(SR101)	$\rm Cl+C_2H_2 \rightarrow 2\rm CO+HO_2+\rm HCl$	4.24×10^{-11}	2	Borken (1996)
(SR102)	$\mathrm{Cl} + \mathrm{C_2H_4(+M)} \rightarrow \mathrm{2CO} + \mathrm{2HO_2} + \mathrm{Cl} + \mathrm{H_2O(+M)}$	$k_0 = 0.59 \times 10^{-29} (T/300)^{-3.3}$ [air]	2	Atkinson et al. (2006)
		$k_{\infty} = 6.00 \times 10^{-10}$		
		$F_c = 0.40$		
(SR103)	$\mathrm{Cl} + \mathrm{C_2H_4(+M)} \rightarrow \mathrm{2CO} + \mathrm{HO_2} + \mathrm{HCl} + \mathrm{H_2O(+M)}$	$k_0 = 1.26 \times 10^{-29} (T/300)^{-3.3}$ [air]	2	Atkinson et al. (2006)
		$k_{\infty} = 6.00 \times 10^{-10}$		
		$F_{c} = 0.40$		
(SR104)	$\mathrm{Cl} + \mathrm{C_2H_6} \rightarrow \mathrm{C_2H_5} + \mathrm{HCl}$	$8.30 \times 10^{-11} \exp(-100/T)$	2	Atkinson et al. (2006)
(SR105)	$\mathrm{Cl} + \mathrm{C_3H_8} \rightarrow \mathrm{C_2H_5O_2} + \mathrm{HCl} + \mathrm{H_2O} + \mathrm{CO_2}$	1.40×10^{-10}	2	Atkinson et al. (2006)
(SR106)	$\rm Cl + \rm HCHO \rightarrow \rm HCl + \rm CO + \rm HO_2$	$8.10 \times 10^{-11} \exp(-34/T)$	2	Atkinson et al. (2006)
(SR107)	$\rm Cl+CH_3CHO\rightarrow CH_3CO_3+HCl$	8.00×10^{-11}	2	Atkinson et al. (2006)
(SR108)	$\mathrm{OH} + \mathrm{Cl}_2 \rightarrow \mathrm{HOCl} + \mathrm{Cl}$	$3.60 \times 10^{-12} \exp(-1200/T)$	2	Atkinson et al. (2006)
(SR109)	$\rm OH + HCl \rightarrow Cl + H_2O$	$1.80 \times 10^{-12} \exp(-240/T)$	2	Atkinson et al. (2006)
(SR110)	$\rm OH + HOCl \rightarrow ClO + H_2O$	5.00×10^{-13}	2	Atkinson et al. (2006)
(SR111)	$OH + ClO \rightarrow Cl + HO_2$	$6.86 \times 10^{-12} \exp(300/T)$	2	Atkinson et al. (2006)
(SR112)	$OH + ClO \rightarrow HCl + O_2$	$4.37 \times 10^{-13} \exp(300/T)$	2	Atkinson et al. (2006)
(SR113)	$ClO + ClO \rightarrow Cl_2 + O_2$	$1.00 \times 10^{-12} \exp(-1590/T)$	2	Atkinson et al. (2006)
(SR114)	$ClO + ClO \rightarrow 2Cl + O_2$	$3.00 \times 10^{-11} \exp(-2450/T)$	2	Atkinson et al. (2006)
(SR115)	$ClO + ClO \rightarrow Cl + OClO$	$3.50 \times 10^{-13} \exp(-1370/T)$	2	Atkinson et al. (2006)

Reaction	Reaction	k	Order	Reference
Number		$[(molec. cm^{-3})^{1-n}s^{-1}]$	n	
(SR116)	$\rm ClO+ClO(+M)\rightarrow Cl_2O_2(+M)$	$k_0 = 2.00 \times 10^{-32} (T/300)^{-4} [\mathrm{N}_2]$	2	Atkinson et al. (2006)
		$k_{\infty} = 1.00 \times 10^{-11}$		
		$F_c = 0.45$		
(SR117)	$\rm Cl_2O_2(+M) \rightarrow 2ClO(+M)$	$k_0 = 3.70 \times 10^{-7} \exp(-7690/T) [N_2]$	1	Atkinson et al. (2006)
		$k_{\infty} = 1.80 \times 10^{14} \exp(-7690/T)$		
		$F_c = 0.45$		
(SR118)	$\rm ClO + HO_2 \rightarrow \rm HOCl + O_2$	$2.20 \times 10^{-12} \exp(340/T)$	2	Atkinson et al. (2006)
(SR119)	$\mathrm{ClO} + \mathrm{CH}_3\mathrm{O}_2 \rightarrow \mathrm{Cl} + \mathrm{CH}_2\mathrm{O} + \mathrm{HO}_2$	$2.40 \times 10^{-12} \exp(-20/T)$	2	Atkinson et al. (2006)
(SR120)	$\rm ClO + \rm NO \rightarrow \rm Cl + \rm NO_2$	$6.20 \times 10^{-12} \exp(295/T)$	2	Atkinson et al. (2006)
(SR121)	$\rm ClO+NO_2(+M) \rightarrow \rm ClONO_2(+M)$	$k_0 = 1.60 \times 10^{-31} (T/300)^{-3.4} [\mathrm{N_2}]$	2	Atkinson et al. (2006)
		$k_{\infty} = 7.00 \times 10^{-11}$		
		$F_c = 0.40$		
(SR122)	$\mathrm{Cl} + \mathrm{ClONO}_2 \rightarrow \mathrm{Cl}_2 + \mathrm{NO}_3$	$6.20 \times 10^{-12} \exp(145/T)$	2	Atkinson et al. (2006)
(SR123)	$\rm OClO + \rm NO \rightarrow \rm NO_2 + ClO$	$1.10 \times 10^{-13} \exp(350/T)$	2	Atkinson et al. (2006)
(SR124)	$\mathrm{OH} + \mathrm{ClONO}_2 \rightarrow \mathrm{HOCl} + \mathrm{NO}_3$	$1.20 \times 10^{-12} \exp(-330/T)$	2	Atkinson et al. (2006)
(SR125)	$\rm ClO + BrO \rightarrow Br + OClO$	$1.60 \times 10^{-12} \exp(430/T)$	2	Atkinson et al. (2006)
(SR126)	$\rm ClO + BrO \rightarrow Br + Cl + O_2$	$2.90 \times 10^{-12} \exp(220/T)$	2	Atkinson et al. (2006)
(SR127)	$\rm ClO + BrO \rightarrow BrCl + O_2$	$5.80 \times 10^{-13} \exp(170/T)$	2	Atkinson et al. (2006)
(SR128)	$\rm Br+OClO\rightarrow BrO+ClO$	$2.70 \times 10^{-11} \exp(-1300/T)$	2	Atkinson et al. (2006)
(SR129)	$\mathrm{Br} + \mathrm{Cl}_2\mathrm{O}_2 \to \mathrm{Br}\mathrm{Cl} + \mathrm{ClOO}$	3.00×10^{-12}	2	Atkinson et al. (2006)
(SR130)	$\mathrm{Br}_2 + \mathrm{Cl} \to \mathrm{Br}\mathrm{Cl} + \mathrm{Br}$	1.20×10^{-10}	2	Sander and Crutzen (1996)
(SR131)	$\mathrm{BrCl} + \mathrm{Br} \to \mathrm{Br}_2 + \mathrm{Cl}$	3.30×10^{-15}	2	Sander and Crutzen (1996)
(SR132)	$\mathrm{Br} + \mathrm{Cl}_2 \to \mathrm{Br}\mathrm{Cl} + \mathrm{Cl}$	1.10×10^{-15}	2	Sander and Crutzen (1996)
(SR133)	$\mathrm{BrCl} + \mathrm{Cl} \to \mathrm{Br} + \mathrm{Cl}_2$	1.50×10^{-11}	2	Sander and Crutzen (1996)
(SR134)	$\mathrm{HOBr} + \mathrm{H^{+}} + \mathrm{Cl^{-}} \xrightarrow{\mathrm{ice}} \mathrm{BrCl} + \mathrm{H_{2}O}$	3.03×10^{-5}	$(r_a + r_b + r_c)^{-1} \alpha_{\rm eff,ice}$	Cao et al. (2014)
(SR135)	${\rm BrCl} + h\nu \to {\rm Br} + {\rm Cl}$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR136)	$\mathrm{Cl}_2 + h\nu \to \mathrm{Cl}$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR137)	${\rm ClO} + h\nu \rightarrow {\rm Cl} + {\rm O}_3$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR138)	$\mathrm{HOCl} + h\nu \to \mathrm{HO} + \mathrm{Cl}$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR139)	${\rm ClONO}_2 + h\nu \rightarrow {\rm NO}_3 + {\rm Cl}$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR140)	${\rm OClO} + h\nu \rightarrow {\rm O}_3 + {\rm ClO}$	calculated by TUV model	1	Madronich and Flocke (1997, 1999)
(SR141)	$\mathrm{HOBr} + \mathrm{HCl} \overset{\mathrm{aerosol}}{\longrightarrow} \mathrm{BrCl} + \mathrm{H_2O}$	$\left(\frac{r}{D_{r}}+\frac{4}{m}\right)^{-1}\alpha_{\text{eff,aerosol}}$		Cao et al. (2014)
	2	Eg therm I		

Figure S2. Time series of the total ozone column (TOC) detected at the Faraday-Vernadsky (FAD) station during the springtime of the year 2008. The gray-shaded areas in the figure indicate the periods investigated in the sensitivity tests of the present study.

References

5

Aranda, A., Le Bras, G., La Verdet, G., and Poulet, G.: The BrO + Ch₃O₂ reaction: Kinetics and role in the atmospheric ozone budget, Geophys. Res. Lett., 24, 2745–2748, https://doi.org/10.1029/97GL02686, 1997.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M., and Troe, J.: Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. Tech. rep., 2006.

Barnes, I., Becker, K., and Overath, R.: Oxidation of organic sulfur compounds, in: The Tropospheric Chemistry of Ozone in the Polar Regions, edited by Niki, H. and Becker, K., vol. 7, pp. 371–383, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-78211-4_27, 1993.

Borken, J.: Ozonabbau durch Halogene in der arktischen Grenzschicht, Ph.D. thesis, Heidelberg University, 1996.

- 10 Cao, L., Sihler, H., Platt, U., and Gutheil, E.: Numerical analysis of the chemical kinetic mechanisms of ozone depletion and halogen release in the polar troposphere, Atmos. Chem. Phys., 14, 3771–3787, https://doi.org/10.5194/acp-14-3771-2014, 2014.
 - Madronich, S. and Flocke, S.: Theoretical Estimation of Biologically Effective UV Radiation at the Earth's Surface, in: Solar Ultraviolet Radiation, edited by Zerefos, C. S. and Bais, A. F., pp. 23–48, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

Madronich, S. and Flocke, S.: The Role of Solar Radiation in Atmospheric Chemistry, pp. 1–26, Springer Berlin Heidelberg, Berlin, Heidel-

15 berg, https://doi.org/10.1007/978-3-540-69044-3_1, 1999.

- Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., and Frizzel, D. H.: NIST chemical kinetics database: version 5.0, Tech. rep., Gaithersburg, 1993.
- Sander, R. and Crutzen, P. J.: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J. Geophys. Res. Atmos., 101, 9121–9138, https://doi.org/10.1029/95JD03793, http://dx.doi.org/10.1029/95JD03793, 1996.
- 20 Sander, R., Vogt, R., Harris, G. W., and Crutzen, P. J.: Modelling the chemistry of ozone, halogen compounds, and hydrocarbons in the arctic troposphere during spring, Tellus B, 49, 522–532, https://doi.org/10.1034/j.1600-0889.49.issue5.8.x, 1997.