Articles | Volume 22, issue 5
Atmos. Chem. Phys., 22, 2955–2973, 2022
Atmos. Chem. Phys., 22, 2955–2973, 2022

Research article 04 Mar 2022

Research article | 04 Mar 2022

An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO2 or accumulation-mode sulfuric acid aerosols

Debra K. Weisenstein et al.

Data sets

AM-H2SO4 Intercomparison Data D. K. Weisenstein, D. Visioni, H. Franke, U. Niemeier, S. Vattioni, G. Chiodo, T. Peter, and D. W. Keith

Short summary
This paper explores a potential method of geoengineering that could be used to slow the rate of change of climate over decadal scales. We use three climate models to explore how injections of accumulation-mode sulfuric acid aerosol change the large-scale stratospheric particle size distribution and radiative forcing response for the chosen scenarios. Radiative forcing per unit sulfur injected and relative to the change in aerosol burden is larger with particulate than with SO2 injections.
Final-revised paper