Articles | Volume 22, issue 3
https://doi.org/10.5194/acp-22-2121-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2121-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using carbon-14 and carbon-13 measurements for source attribution of atmospheric methane in the Athabasca oil sands region
Regina Gonzalez Moguel
CORRESPONDING AUTHOR
Earth and Planetary Sciences Department, McGill University, Geotop Research Center, Montreal, Canada
Felix Vogel
Environment and Climate Change Canada, Climate research division, Toronto, Canada
Sébastien Ars
Environment and Climate Change Canada, Climate research division, Toronto, Canada
Hinrich Schaefer
National Institute for Water and Atmospheric Research of New Zealand, Wellington, New Zealand
Jocelyn C. Turnbull
GNS Science, Lower Hutt, New Zealand
CIRES, University of Colorado at Boulder, Boulder, Colorado, USA
Peter M. J. Douglas
CORRESPONDING AUTHOR
Earth and Planetary Sciences Department, McGill University, Geotop Research Center, Montreal, Canada
Related authors
No articles found.
Olga Albot, Joshua Ratcliffe, Richard Levy, Sebastian Naeher, Daniel King, Catherine Ginnane, Jocelyn Turnbull, Mary Jill Ira Banta, Christopher Wood, Jenny Dahl, Jannine Cooper, and Andy Phillips
EGUsphere, https://doi.org/10.5194/egusphere-2025-2949, https://doi.org/10.5194/egusphere-2025-2949, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Saltmarshes store carbon in their soils, contributing to climate change mitigation. We analysed five sites across Aotearoa New Zealand and found that carbon storage varies widely with land use and sediment inputs. Plant material was a major source of carbon in the soil and has been preserved for several centuries. Restoration increased soil carbon accumulation at two sites. These results improve national blue carbon estimates and highlight the role of saltmarshes as natural climate solutions.
Judith Tettenborn, Daniel Zavala-Araiza, Daan Stroeken, Hossein Maazallahi, Carina van der Veen, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Felix Vogel, Lawson Gillespie, Sebastien Ars, James France, David Lowry, Rebecca Fisher, and Thomas Röckmann
Atmos. Meas. Tech., 18, 3569–3584, https://doi.org/10.5194/amt-18-3569-2025, https://doi.org/10.5194/amt-18-3569-2025, 2025
Short summary
Short summary
Measurements of methane with vehicle-based sensors are an effective method to identify and quantify leaks from urban gas distribution systems. We deliberately released methane in different environments and calibrated the response of different methane analysers when they transected the plumes in a vehicle. We derived an improved statistical function for consistent emission estimations using different instruments. Repeated transects reduce the uncertainty in emission rate estimates.
Benjamin Gwinneth, Kevin Johnston, Andy Breckenridge, and Peter M. J. Douglas
EGUsphere, https://doi.org/10.5194/egusphere-2025-3237, https://doi.org/10.5194/egusphere-2025-3237, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Over time, traces of humans, fire, and plants accumulate at the bottom of lakes. They reveal the history of how the lowland Maya, a society thought to have declined due to drought, transformed their environment over time. We show how forest was cleared, agriculture expanded, and population levels rose then declined. However, the record does not show drought even though population declines. This challenges the idea that climate was the primary cause of the societal changes.
Beata Bukosa, Sara Mikaloff-Fletcher, Gordon Brailsford, Dan Smale, Elizabeth D. Keller, W. Troy Baisden, Miko U. F. Kirschbaum, Donna L. Giltrap, Lìyǐn Liáng, Stuart Moore, Rowena Moss, Sylvia Nichol, Jocelyn Turnbull, Alex Geddes, Daemon Kennett, Dóra Hidy, Zoltán Barcza, Louis A. Schipper, Aaron M. Wall, Shin-Ichiro Nakaoka, Hitoshi Mukai, and Andrea Brandon
Atmos. Chem. Phys., 25, 6445–6473, https://doi.org/10.5194/acp-25-6445-2025, https://doi.org/10.5194/acp-25-6445-2025, 2025
Short summary
Short summary
We used atmospheric measurements and inverse modelling to estimate New Zealand's carbon dioxide (CO2) emissions and removals from 2011 to 2020. Our study reveals that New Zealand's land absorbs more CO2 than previously estimated, particularly in areas dominated by indigenous forests. Our results highlight gaps in current national CO2 estimates and methods, suggesting a need for further research to improve emissions reports and refine approaches to track progress toward climate mitigation goals.
Alexie Roy-Lafontaine, Rebecca Lee, Peter M. J. Douglas, Dustin Whalen, and André Pellerin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2570, https://doi.org/10.5194/egusphere-2025-2570, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
As Arctic coastlines change with the climate, we studied how these changes might affect methane release, a powerful greenhouse gas. We found that coastal sediments can produce a lot of methane, even when exposed to seawater, which was thought to prevent it. This suggests that Arctic coasts could be an overlooked source of methane to the atmosphere as the climate continues to warm and sea levels rise.
Sara M. Defratyka, Julianne M. Fernandez, Getachew A. Adnew, Guannan Dong, Peter M. J. Douglas, Daniel L. Eldridge, Giuseppe Etiope, Thomas Giunta, Mojhgan A. Haghnegahdar, Alexander N. Hristov, Nicole Hultquist, Iñaki Vadillo, Josue Jautzy, Ji-Hyun Kim, Jabrane Labidi, Ellen Lalk, Wil Leavitt, Jiawen Li, Li-Hung Lin, Jiarui Liu, Lucia Ojeda, Shuhei Ono, Jeemin Rhim, Thomas Röckmann, Barbara Sherwood Lollar, Malavika Sivan, Jiayang Sun, Gregory T. Ventura, David T. Wang, Edward D. Young, Naizhong Zhang, and Tim Arnold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-41, https://doi.org/10.5194/essd-2025-41, 2025
Preprint under review for ESSD
Short summary
Short summary
Measurement of methane’s doubly substituted isotopologues at natural abundances holds promise for better constraining the Earth’s atmospheric CH4 budget. We compiled 1475 measurements from field samples and laboratory experiments, conducted since 2014, to facilitate the differentiation of CH4 formation pathways and processes, to identify existing gaps limiting application of Δ13CH3D and Δ12CH2D2, and to develop isotope ratio source signature inputs for global CH4 flux modelling.
Hanyu Liu, Felix R. Vogel, Misa Ishizawa, Zhen Zhang, Benjamin Poulter, Doug E. J. Worthy, Leyang Feng, Anna L. Gagné-Landmann, Ao Chen, Ziting Huang, Dylan C. Gaeta, Joe R. Melton, Douglas Chan, Vineet Yadav, Deborah Huntzinger, and Scot M. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2025-2150, https://doi.org/10.5194/egusphere-2025-2150, 2025
Short summary
Short summary
We find that the state-of-the-art process-based methane flux models have both lower flux magnitude and reduced inter-model uncertainty compared to a previous model inter-comparison from over a decade ago. Despite these improvements, methane flux estimates from process-based models are still likely too high compared to atmospheric observations. We also find that models with simpler parameterizations often result in better agreement with atmospheric observations in high-latitude North America.
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
SOIL, 11, 371–379, https://doi.org/10.5194/soil-11-371-2025, https://doi.org/10.5194/soil-11-371-2025, 2025
Short summary
Short summary
Permafrost peatlands are large reservoirs of carbon. As frozen permafrost thaws, drier peat moisture conditions can arise, affecting the microbial production of climate-warming greenhouse gases like CO2 and N2O. Our study suggests that future peat CO2 and N2O production depends on whether drier peat plateaus thaw into wetter fens or bogs and on their diverging responses of peat respiration to more moisture-limited conditions.
Marjolaine Verret, Sebastian Naeher, Denis Lacelle, Catherine Ginnane, Warren Dickinson, Kevin Norton, Jocelyn Turnbull, and Richard Levy
EGUsphere, https://doi.org/10.5194/egusphere-2025-786, https://doi.org/10.5194/egusphere-2025-786, 2025
Short summary
Short summary
15 million years ago, the McMurdo Dry Valleys of Antarctica were dominated by a tundra environment. In contrast, the modern environment is amongst the coldest and driest on Earth. Using a permafrost core, this paper investigates the shift from a tundra- to a bacteria-dominated landscape. By differentiating between ancient and modern organic material, we further our understanding of preservation of ancient organic material and its response and contribution to future climate change.
Christian Blair Lewis, Rachel Corran, Sara Mikaloff-Fletcher, Erik Behrens, Rowena Moss, Gordon Brailsford, Andrew Lorrey, Margaret Norris, and Jocelyn Turnbull
EGUsphere, https://doi.org/10.5194/egusphere-2024-4107, https://doi.org/10.5194/egusphere-2024-4107, 2025
Short summary
Short summary
The Southern Ocean carbon sink is a balance between two opposing forces: CO2 absorption at mid-latitudes and CO2 outgassing at high-latitudes. Radiocarbon analysis can be used to constrain the latter, as upwelling waters outgas old CO2, diluting atmospheric radiocarbon content. We present tree-ring radiocarbon measurements from New Zealand and Chile. We show that low radiocarbon in New Zealand’s Campbell Island is linked to outgassing in the critical Antarctic Southern Zone.
Misa Ishizawa, Douglas Chan, Doug Worthy, Elton Chan, Felix Vogel, Joe R. Melton, and Vivek K. Arora
Atmos. Chem. Phys., 24, 10013–10038, https://doi.org/10.5194/acp-24-10013-2024, https://doi.org/10.5194/acp-24-10013-2024, 2024
Short summary
Short summary
Methane (CH4) emissions in Canada for 2007–2017 were estimated using Canada’s surface greenhouse gas measurements. The estimated emissions show no significant trend, but emission uncertainty was reduced as more measurement sites became available. Notably for climate change, we find the wetland CH4 emissions show a positive correlation with surface air temperature in summer. Canada’s measurement network could monitor future CH4 emission changes and compliance with climate change mitigation goals.
Pramod Kumar, Christopher Caldow, Grégoire Broquet, Adil Shah, Olivier Laurent, Camille Yver-Kwok, Sebastien Ars, Sara Defratyka, Susan Warao Gichuki, Luc Lienhardt, Mathis Lozano, Jean-Daniel Paris, Felix Vogel, Caroline Bouchet, Elisa Allegrini, Robert Kelly, Catherine Juery, and Philippe Ciais
Atmos. Meas. Tech., 17, 1229–1250, https://doi.org/10.5194/amt-17-1229-2024, https://doi.org/10.5194/amt-17-1229-2024, 2024
Short summary
Short summary
This study presents a series of mobile measurement campaigns to monitor the CH4 emissions from an active landfill. These measurements are processed using a Gaussian plume model and atmospheric inversion techniques to quantify the landfill CH4 emissions. The methane emission estimates range between ~0.4 and ~7 t CH4 per day, and their variations are analyzed. The robustness of the estimates is assessed depending on the distance of the measurements from the potential sources in the landfill.
Douglas E. J. Worthy, Michele K. Rauh, Lin Huang, Felix R. Vogel, Alina Chivulescu, Kenneth A. Masarie, Ray L. Langenfelds, Paul B. Krummel, Colin E. Allison, Andrew M. Crotwell, Monica Madronich, Gabrielle Pétron, Ingeborg Levin, Samuel Hammer, Sylvia Michel, Michel Ramonet, Martina Schmidt, Armin Jordan, Heiko Moossen, Michael Rothe, Ralph Keeling, and Eric J. Morgan
Atmos. Meas. Tech., 16, 5909–5935, https://doi.org/10.5194/amt-16-5909-2023, https://doi.org/10.5194/amt-16-5909-2023, 2023
Short summary
Short summary
Network compatibility is important for inferring greenhouse gas fluxes at global or regional scales. This study is the first assessment of the measurement agreement among seven individual programs within the World Meteorological Organization community. It compares co-located flask air measurements at the Alert Observatory in Canada over a 17-year period. The results provide stronger confidence in the uncertainty estimation while using those datasets in various data interpretation applications.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Lawson David Gillespie, Sébastien Ars, James Phillip Williams, Louise Klotz, Tianjie Feng, Stephanie Gu, Mishaal Kandapath, Amy Mann, Michael Raczkowski, Mary Kang, Felix Vogel, and Debra Wunch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-193, https://doi.org/10.5194/amt-2023-193, 2023
Preprint withdrawn
Short summary
Short summary
We investigate techniques for calculating emissions from mobile in situ gas concentrations recorded during downwind plume transects. We find that using the enhancement area to estimate emissions is the most consistent method when comparing different setups and instruments. Observations from a multi year urban methane survey and controlled release experiment are analyzed, and emissions rates for combined sewage overflow basins and a large wastewater treatment plant in Toronto are calculated.
Nasrin Mostafavi Pak, Jacob K. Hedelius, Sébastien Roche, Liz Cunningham, Bianca Baier, Colm Sweeney, Coleen Roehl, Joshua Laughner, Geoffrey Toon, Paul Wennberg, Harrison Parker, Colin Arrowsmith, Joseph Mendonca, Pierre Fogal, Tyler Wizenberg, Beatriz Herrera, Kimberly Strong, Kaley A. Walker, Felix Vogel, and Debra Wunch
Atmos. Meas. Tech., 16, 1239–1261, https://doi.org/10.5194/amt-16-1239-2023, https://doi.org/10.5194/amt-16-1239-2023, 2023
Short summary
Short summary
Ground-based remote sensing instruments in the Total Carbon Column Observing Network (TCCON) measure greenhouse gases in the atmosphere. Consistency between TCCON measurements is crucial to accurately infer changes in atmospheric composition. We use portable remote sensing instruments (EM27/SUN) to evaluate biases between TCCON stations in North America. We also improve the retrievals of EM27/SUN instruments and evaluate the previous (GGG2014) and newest (GGG2020) retrieval algorithms.
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Short summary
Space-borne greenhouse gas missions require ground-based validation networks capable of providing fiducial reference measurements. Here, considerable refinements of the calibration procedures for the COllaborative Carbon Column Observing Network (COCCON) are presented. Laboratory and solar side-by-side procedures for the characterization of the spectrometers have been refined and extended. Revised calibration factors for XCO2, XCO and XCH4 are provided, incorporating 47 new spectrometers.
Peter M. J. Douglas, Emerald Stratigopoulos, Sanga Park, and Dawson Phan
Biogeosciences, 18, 3505–3527, https://doi.org/10.5194/bg-18-3505-2021, https://doi.org/10.5194/bg-18-3505-2021, 2021
Short summary
Short summary
Hydrogen isotopes could be a useful tool to help resolve the geographic distribution of methane emissions from freshwater environments. We analyzed an expanded global dataset of freshwater methane hydrogen isotope ratios and found significant geographic variation linked to water isotopic composition. This geographic variability could be used to resolve changing methane fluxes from freshwater environments and provide more accurate estimates of the relative balance of global methane sources.
Haeyoung Lee, Edward J. Dlugokencky, Jocelyn C. Turnbull, Sepyo Lee, Scott J. Lehman, John B. Miller, Gabrielle Pétron, Jeong-Sik Lim, Gang-Woong Lee, Sang-Sam Lee, and Young-San Park
Atmos. Chem. Phys., 20, 12033–12045, https://doi.org/10.5194/acp-20-12033-2020, https://doi.org/10.5194/acp-20-12033-2020, 2020
Short summary
Short summary
To understand South Korea's CO2 emissions and sinks as well as those of the surrounding region, we used flask-air samples collected for 2 years at Anmyeondo (36.53° N, 126.32° E; 46 m a.s.l.), South Korea, for analysis of observed 14C in atmospheric CO2 as a tracer of fossil fuel CO2 contribution (Cff). Here, we showed our observation result of 14C and Cff. SF6 and CO can be good proxies of Cff in this study, and the ratio of CO to Cff was compared to a bottom-up inventory.
Cited articles
Ahad, J. M. E. and Pakdel, H.:
Direct evaluation of in situ biodegradation in Athabasca oil sands tailings ponds using natural abundance radiocarbon,
Environ. Sci. Technol.,
47, 10214–10222, https://doi.org/10.1021/es402302z, 2013.
Alberta Energy Regulator:
ST98-2015: Alberta's Energy Reserves 2014 and Supply/Demand, Alberta Energy Regulator,
available at: https://static.aer.ca/prd/documents/sts/ST98/ST98-2015.pdf (last access: 19 January 2022), 2015.
Baray, S., Darlington, A., Gordon, M., Hayden, K. L., Leithead, A., Li, S.-M., Liu, P. S. K., Mittermeier, R. L., Moussa, S. G., O'Brien, J., Staebler, R., Wolde, M., Worthy, D., and McLaren, R.: Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance, Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, 2018.
Baray, S., Jacob, D. J., Maasakkers, J. D., Sheng, J.-X., Sulprizio, M. P., Jones, D. B. A., Bloom, A. A., and McLaren, R.: Estimating 2010–2015 anthropogenic and natural methane emissions in Canada using ECCC surface and GOSAT satellite observations, Atmos. Chem. Phys., 21, 18101–18121, https://doi.org/10.5194/acp-21-18101-2021, 2021.
Bari, M. and Kindzierski, W. B.:
Fifteen-year trends in criteria air pollutants in oil sands communities of Alberta, Canada,
Environ. Int.,
74, 200–208, https://doi.org/10.1016/J.ENVINT.2014.10.009, 2015.
Bergerson, J. A., Kofoworola, O., Charpentier, A. D., Sleep, S., and MacLean, H. L.:
Life Cycle Greenhouse Gas Emissions of Current Oil Sands Technologies: Surface Mining and In Situ Applications,
Environ. Sci. Technol.,
46, 7865–7874, https://doi.org/10.1021/ES300718H, 2012.
Chanton, J. P., Bauer, J. E., Glaser, P. A., Siegel, D. I., Kelley, C. A., Tyler, S. C., Romanowicz, E. H., and Lazrus, A.: Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands, Geochim. Cosmochim. Ac., 59, 3663–3668, 1995.
Cooper, M. D. A., Estop-Aragonés, C., Fisher, J. P., Thierry, A., Garnett, M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R., Kokelj, S. V., Wolfe, S. A., Lewkowicz, A. G., Williams, M., and Hartley, I. P.:
Limited contribution of permafrost carbon to methane release from thawing peatlands,
Nat. Clim. Change,
7, 507–511, https://doi.org/10.1038/nclimate3328, 2017.
Donahue, D. J., Linick, T. W., and Jull, A. J. T.:
Isotope-Ratio and Background Corrections for Accelerator Mass Spectrometry Radiocarbon Measurements,
Radiocarbon,
32, 135–142, https://doi.org/10.1017/S0033822200040121, 1990.
Douglas, P. M. J., Stratigopoulos, E., Park, S., and Phan, D.: Geographic variability in freshwater methane hydrogen isotope ratios and its implications for global isotopic source signatures, Biogeosciences, 18, 3505–3527, https://doi.org/10.5194/bg-18-3505-2021, 2021.
Eisma, R., van der Borg, K., de Jong, A. F. M., Kieskamp, W. M., and Veltkamp, A. C.:
Measurements of the 14C content of atmospheric methane in The Netherlands to determine the regional emissions of 14CH4,
Nucl. Instrum. Meth. B,
92, 410–412, https://doi.org/10.1016/0168-583X(94)96044-5, 1994.
Estop-Aragonés, C., Olefeldt, D., Abbott, B. W., Chanton, J. P., Czimczik, C. I., Dean, J. F., Egan, J. E., Gandois, L., Garnett, M. H., Hartley, I. P., Hoyt, A., Lupascu, M., Natali, S. M., O'Donnell, J. A., Raymond, P. A., Tanentzap, A. J., Tank, S. E., Schuur, E. A. G., Turetsky, M., and Anthony, K. W.:
Assessing the Potential for Mobilization of Old Soil Carbon After Permafrost Thaw: A Synthesis of 14C Measurements From the Northern Permafrost Region,
Global Biogeochem. Cy.,
34, 1–26, https://doi.org/10.1029/2020GB006672, 2020.
Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.:
Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing,
Geophys. Res. Lett.,
43, 12614–12623, https://doi.org/10.1002/2016GL071930, 2016.
Fisher, R. E., Sriskantharajah, S., Lowry, D., Lanoisellé, M., Fowler, C. M. R., James, R. H., Hermansen, O., Myhre, C. L., Stohl, A., Greinert, J., Nisbet-Jones, P. B. R., Mienert, J., and Nisbet, E. G.:
Arctic methane sources: Isotopic evidence for atmospheric inputs,
Geophys. Res. Lett.,
38, L2180, https://doi.org/10.1029/2011GL049319, 2011.
Ganesan, A. L., Stell, A. C., Gedney, N., Comyn-Platt, E., Hayman, G., Rigby, M., Poulter, B., and Hornibrook, E. R. C.:
Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions,
Geophys. Res. Lett.,
45, 3737–3745, https://doi.org/10.1002/2018GL077536, 2018.
Goad, C.:
Methane biogeochemical cycling over seasonal and annual scales in an oil sands tailings end pit lake,
MS thesis, McMaster University, McSphere Institutional Repository,
available at: http://hdl.handle.net/11375/21956 (last access: January 2022), 2017.
Golder Associates Ltd.:
Terrestrial vegetation and wetlands resources environmental setting report for the Suncor voyageur south project, 50–55, Sect. 3.1, Golder associates Ltd., available at: https://open.alberta.ca/dataset/ea88e773-42b6-4d92-ba28-40aa636996c7/resource/e11c9cdb-293a-4776-af7d-3d609db70aba/download/vegetation.pdf (last access: 19 January 2022), 2002.
Gonzalez Moguel, R., Douglas, P., Vogel, F., Ars, S., Schaefer, H., and Turnbull, J.: Fort McKay South CH4 and CO2 mole fractions August 2019, figshare [data set], https://doi.org/10.6084/m9.figshare.17217542.v1, 2021.
Government of Canada:
Pan-Canadian Framework on clean Growth and Climate Change, Government of Canada,
available at: http://publications.gc.ca/collections/collection_2017/eccc/En4-294-2016-eng.pdf (last access: 19 January 2022), 2016.
Government of Canada:
National pollutant Release Inventory's (NPIR) Sector Overview Series, Government of Canada,
available at: https://maps.canada.ca/journal/content-en.html?lang= en&appid=703d9327d99d445eb4c1e94a47c1933e&appidalt=6d f630d9067240059ccc7cb33a68e188 (last access: May 2021), 2017.
Government of Canada:
National Inventory Report 1990–2015: Greenhouse Gas Sources and Sinks in Canada, Canada's Submission to the United Nations Framework Convention on Climate Change, Part 1. Environment and Climate Change Canada,
available at: http://publications.gc.ca/collections/collection_2020/eccc/En81-4-2018-1-eng.pdf (last access: 19 January 2022), 2018.
Graven, H., Hocking, T., and Zazzeri, G.:
Detection of fossil and biogenic methane at regional scales using atmospheric radiocarbon,
Earths Future,
7, 283–299 https://doi.org/10.1029/2018EF001064, 2019.
Hammer, S. and Levin, I.:
Monthly mean atmospheric D14CO2 at Jungfraujoch and Schauinsland from 1986 to 2016, V2, heiDATA [data set],
https://doi.org/10.11588/data/10100, 2017.
Head, I., Jones, D., and Larter, S.:
Biological activity in the deep subsurface and the origin of heavy oil,
Nature,
426, 344–352, https://doi.org/10.1038/nature02134, 2003.
Holly, C., Mader, M., Soni S., and Toor, J.:
Alberta Energy: Oil sands production profile 2004-2014, Government of Alberta,
available at: https://open.alberta.ca/dataset/cd892173-c37f-4c68-bf5d-f79ef7d49e72/resource/ebd6b451-dfda-4218-b855-1416d94306fd/download/initiativeospp.pdf (last access: January 2022), 2016.
Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R., Bergamaschi, P., Niwa, Y., Segers, A., and Tsuruta, A.:
Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources,
Environ. Res. Lett.,
15, 071002, https://doi.org/10.1088/1748-9326/ab9ed2, 2020.
Jha, K. N., Gray, J., and Strausz, O. P.:
The isotopic composition of carbon in the Alberta oil sand,
Geochim. Cosmochim. Ac.,
43, 1571–1573, https://doi.org/10.1016/0016-7037(79)90150-9, 1979.
Johnson, M. R., Crosland, B. M., McEwen, J. D., Hager, D. B., Armitage, J. R., Karimi-Golpayegani, M., and Picard, D. J.:
Estimating fugitive methane emissions from oil sands mining using extractive core samples,
Atmos. Environ.,
144, 111–123, https://doi.org/10.1016/J.ATMOSENV.2016.08.073, 2016.
Jones, D. M., Head, I. M., Gray, N. D., Adams, J. J., Rowan, A. K., Aitken, C. M., Bennett, B., Huang, H., Brown, A., Bowler, B. F. J., Oldenburg, T., Erdmann, M., and Larter, S. R.:
Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs,
Nature,
451, 176–180, https://doi.org/10.1038/nature06484, 2008.
Keeling, C. D.:
The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas,
Geochim. Cosmochim. Ac.,
13, 322–334, https://doi.org/10.1016/0016-7037(58)90033-4, 1958.
Keeling, C. D.:
The concentration and isotopic abundance of carbon dioxide in rural and marine air,
Geochim. Cosmochim. Acta,
24, 277–298, 1961.
Larter, S. R. and Head, I. M.:
Oil sands and heavy oil: Origin and exploitation, Elements,
10, 277–283, https://doi.org/10.2113/gselements.10.4.277, 2014.
Lassey, K. R., Lowe, D. C., and Smith, A. M.: The atmospheric cycling of radiomethane and the “fossil fraction” of the methane source, Atmos. Chem. Phys., 7, 2141–2149, https://doi.org/10.5194/acp-7-2141-2007, 2007.
Liggio, J., Li, S.-M., Staebler, R. M., Hayden, K., Darlington, A., Mittermeier, R. L., O'Brien, J., McLaren, R., Wolde, M., Worthy, D., and Vogel, F.:
Measured Canadian oil sands CO2 emissions are higher than estimates made using internationally recommended methods,
Nat. Commun.,
101, 1–9, https://doi.org/10.1038/s41467-019-09714-9, 2019.
Lopez, M., Schmidt, M., Delmotte, M., Colomb, A., Gros, V., Janssen, C., Lehman, S. J., Mondelain, D., Perrussel, O., Ramonet, M., Xueref-Remy, I., and Bousquet, P.: CO, NOx and 13CO2 as tracers for fossil fuel CO2: results from a pilot study in Paris during winter 2010, Atmos. Chem. Phys., 13, 7343–7358, https://doi.org/10.5194/acp-13-7343-2013, 2013.
Lopez, M., Sherwood, O. A., Dlugokencky, E. J., Kessler, R., Giroux, L., and Worthy, D. E. J.:
Isotopic signatures of anthropogenic CH4 sources in Alberta, Canada,
Atmos. Environ.,
164, 280–288, https://doi.org/10.1016/j.atmosenv.2017.06.021, 2017.
Lowe, D. C., Brenninkmeijer, C. A. M., Tyler, S. C., and Dlugkencky, E. J.:
Determination of the isotopic composition of atmospheric methane and its application in the Antarctic,
J. Geophys. Res.-Atmos.,
96, 15455–15467, https://doi.org/10.1029/91JD01119, 1991.
Lowry, D., Holmes, C. W., Rata, N. D., O'Brien, P., and Nisbet, E. G.:
London methane emissions: Use of diurnal changes in concentration and δ13C to identify urban sources and verify inventories,
J. Geophys. Res.-Atmos.,
106, 7427–7448, https://doi.org/10.1029/2000JD900601, 2001.
Maazallahi, H., Fernandez, J. M., Menoud, M., Zavala-Araiza, D., Weller, Z. D., Schwietzke, S., von Fischer, J. C., Denier van der Gon, H., and Röckmann, T.: Methane mapping, emission quantification, and attribution in two European cities: Utrecht (NL) and Hamburg (DE), Atmos. Chem. Phys., 20, 14717–14740, https://doi.org/10.5194/acp-20-14717-2020, 2020.
Miller, J. B., Lehman, S. J., Verhulst, K. R., Miller, C. E., Duren, R. M., Yadav, V., Newman, S., and Sloop, C. D.:
Large and seasonally varying biospheric CO2 fluxes in the Los Angeles megacity revealed by atmospheric radiocarbon,
P. Natl. Acad. Sci. USA,
117, 26681–26687, https://doi.org/10.1073/pnas.2005253117, 2020.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.:
2013: Anthropogenic and Natural Radiative Forcing,
in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, vol. 9781107057,
edited by: Stocker, T. F., Qin, D., Plattner, Q.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, 659–740, https://doi.org/10.1017/CBO9781107415324.018, 2013.
MNP LLP:
Spring 2019 Wildfire review, Government of Alberta,
available at: https://wildfire.alberta.ca/resources/reviews/documents/af-spring-2019-wildfire-review-final-report.pdf (last access: 19 January 2022),
2020.
Mossop, G. D.:
Geology of the Athabasca Oil Sands,
Science,
207, 145–152, https://doi.org/10.1126/SCIENCE.207.4427.145, 1980.
Ocko, I. B., Sun, T., Shindell, D., Oppenheimer, M., Hristov, A. N., Pacala, S. W., Mauzerall, D. L., Xu, Y., and Hamburg, S. P.:
Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming,
Environ. Res. Lett.,
16, 054042, https://doi.org/10.1088/1748-9326/ABF9C8, 2021.
Penner, T. J. and Foght, J. M.: Mature fine tailings from oil sands processing harbour diverse methanogenic communities, Can. J. Microbiol., 56, 459–470, https://doi.org/10.1139/W10-029, 2010.
Reimer, P. J., Brown, T. A., and Reimer, R. W.:
Discussion: Reporting and Calibration of Post-Bomb 14C Data,
Radiocarbon,
46, 1299–1304, https://doi.org/10.1017/S0033822200033154, 2004.
Rooney, R. C., Bayley, S. E., and Schindler, D. W.:
Oil sands mining and reclamation cause massive loss of peatland and stored carbon,
P. Natl. Acad. Sci. USA,
109, 4933–4937, 2012.
Rubino, M., Etheridge, D. M., Thornton, D. P., Howden, R., Allison, C. E., Francey, R. J., Langenfelds, R. L., Steele, L. P., Trudinger, C. M., Spencer, D. A., Curran, M. A. J., van Ommen, T. D., and Smith, A. M.: Revised records of atmospheric trace gases CO2 , CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica, Earth Syst. Sci. Data, 11, 473–492, https://doi.org/10.5194/essd-11-473-2019, 2019.
Saidi-Mehrabad, A., He, Z., Tamas, I., Sharp, C. E., Brady, A. L., Rochman, F. F., Bodrossy, L., Abell, G. C., Penner, T., Dong, X., Sensen, C. W., and Dunfield, P. F.:
Methanotrophic bacteria in oilsands tailings ponds of northern Alberta,
ISME J.,
75, 908–921, https://doi.org/10.1038/ismej.2012.163, 2013.
Shahimin, M. F. M., Foght, J. M., and Siddique, T.:
Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds,
Sci. Total Environ.,
553, 250–257, https://doi.org/10.1016/j.scitotenv.2016.02.061, 2016.
Sherwood, O. A., Schwietzke, S., Arling, V. A., and Etiope, G.: Global Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Burning Sources, version 2017, Earth Syst. Sci. Data, 9, 639–656, https://doi.org/10.5194/essd-9-639-2017, 2017.
Siddique, T., Fedorak, P. M., and Foght, J. M.:
Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions,
Environ. Sci. Technol.,
40, 5459–5464, https://doi.org/10.1021/es060993m, 2006.
Siddique, T., Fedorak, P. M., Mackinnon, M. D., and Foght, J. M.:
Metabolism of BTEX and naphtha compounds to methane in oil sands tailings,
Environ. Sci. Technol.,
41, 2350–2356, https://doi.org/10.1021/es062852q, 2007.
Siddique, T., Penner, T., Semple, K., and Foght, J. M.:
Anaerobic Biodegradation of Longer-Chain n-Alkanes Coupled to Methane Production in Oil Sands Tailings,
Environ. Sci. Technol.,
45, 5892–5899, https://doi.org/10.1021/ES200649T, 2011.
Siddique, T., Penner, T., Klassen, J., Nesbø, C., and Foght, J. M.: Microbial communities involved in methane production from hydrocarbons in oil sands tailings, Environ. Sci. Technol., 46, 9802–9810, https://doi.org/10.1021/es302202c, 2012
Small, C. C., Cho, S., Hashisho, Z., and Ulrich, A. C.:
Emissions from oil sands tailings ponds: Review of tailings pond parameters and emission estimates,
J. Petrol. Sci. Eng.,
127, 490–501, https://doi.org/10.1016/j.petrol.2014.11.020, 2015.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.:
NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System,
B. Am. Meteorol. Soc.,
96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Stock, B. C., Jackson, A. L., Ward, E. J., Parnell, A. C., Phillips, D. L., and Semmens, B. X.:
Analyzing mixing systems using a new generation of Bayesian tracer mixing models,
PeerJ,
6, e5096, https://doi.org/10.7717/PEERJ.5096, 2018.
Stuiver, M. and Polach, H. A.:
Discussion Reporting of 14C Data,
Radiocarbon,
19, 355–363, https://doi.org/10.1017/S0033822200003672, 1977.
Takamura, K.:
Microscopic structure of athabasca oil sand,
Can. J. Chem. Eng.,
60, 538–545, https://doi.org/10.1002/CJCE.5450600416, 1982.
Tilley, B. and Muehlenbachs, K.: Isotopically Determined Mannville Group Gas Families,
in: CSPG/CSEG Convention 2007, 14–17 May 2007, Calgary, Alberta, Canada, 2007.
Townsend-Small, A., Tyler, S. C., Pataki, D. E., Xu, X., and Christensen, L. E.:
Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “fugitive” fossil fuel emissions,
J. Geophys. Res.-Atmos.,
117, 1–11, https://doi.org/10.1029/2011JD016826, 2012.
Townsend-Small, A., Botner, E. C., Jimenez, K. L., Schroeder, J. R., Blake, N. J., Meinardi, S., Blake, D. R., Sive, B. C., Bon, D., Crawford, J. H., Pfister, G., and Flocke, F. M.:
Using stable isotopes of hydrogen to quantify biogenic and thermogenic atmospheric methane sources: A case study from the Colorado Front Range,
Geophys. Res. Lett.,
43, 11462–11471, https://doi.org/10.1002/2016GL071438, 2016.
Turnbull, J. C., Zondervan, A., Kaiser, J., Norris, M., Dahl, J., Baisden, T., and Lehman, S.:
High-Precision Atmospheric 14CO2 Measurement at the Rafter Radiocarbon Laboratory,
Radiocarbon,
57, 377–388, https://doi.org/10.2458/AZU_RC.57.18390, 2015a.
Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P. P., Davis, K. J., Lauvaux, T., Miles, N. L., Richardson, S. J., Cambaliza, M. O., Shepson, P. B., Gurney, K., Patarasuk, R., and Razlivanov, I.:
Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment,
J. Geophys. Res.-Atmos.,
120, 292–312, https://doi.org/10.1002/2014JD022555, 2015b.
Turner, A. J., Frankenberg, C., and Kort, E. A.:
Interpreting contemporary trends in atmospheric methane,
P. Natl. Acad. Sci. USA,
116, 2805–2813, https://doi.org/10.1073/PNAS.1814297116, 2019.
Ward, E. J., Semmens, B. X., and Schindler, D. E.:
Including Source Uncertainty and Prior Information in the Analysis of Stable Isotope Mixing Models,
Environ. Sci. Technol.,
44, 4645–4650, https://doi.org/10.1021/ES100053V, 2010.
Whalen, M., Tanaka, N., Henry, R., Deck, B., Zeglen, J., Vogel, J. S., Southon, A., Shemesh, A., Fairbanks, R., and Broecker, W.:
Carbon-14 in Methane Sources in Atmospheric Methane: The contribution from fossil carbon,
Science,
245, 286–290, https://doi.org/10.1126/science.245.4915.286, 1989.
Whiticar, M. J.:
Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane,
Chem. Geol.,
161, 291–314, https://doi.org/10.1016/S0009-2541(99)00092-3, 1999.
Whiticar, M. J., Faber, E., and Schoell, M.:
Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence,
Geochim. Cosmochim. Acta,
50, 693–709, https://doi.org/10.1016/0016-7037(86)90346-7, 1986.
You, Y., Staebler, R. M., Moussa, S. G., Beck, J., and Mittermeier, R. L.: Methane emissions from an oil sands tailings pond: a quantitative comparison of fluxes derived by different methods, Atmos. Meas. Tech., 14, 1879–1892, https://doi.org/10.5194/amt-14-1879-2021, 2021.
York, D., Evensen, N. M., Lopez Martinez, M., and De Basabe Delgado, J.:
Unified equations for the slope, intercept, and standard errors of the best straight line,
Am. J. Phys.,
72, 367–375, 2004.
Zazzeri, G., Xu, X., and Graven, H.:
Efficient Sampling of Atmospheric Methane for Radiocarbon Analysis and Quantification of Fossil Methane,
Environ. Sci. Technol.,
55, 8541, https://doi.org/10.1021/ACS.EST.0C03300, 2021.
Zhou, L., Li, K. P., Mbadinga, S. M., Yang, S. Z., Gu, J. D., and Mu, B. Z.: Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques, Ecotoxicology, 21, 1680–1691, https://doi.org/10.1007/s10646-012-0949-5, 2012.
Zimnoch, M., Jelen, D., Galkowski, M., Kuc, T., Necki, J., Chmura, L., Gorczyca, Z., Jasek, A., and Rozanski, K.:
Partitioning of atmospheric carbon dioxide over Central Europe: insights from combined measurements of CO2 mixing ratios and their carbon isotope composition,
Isot. Environ. Healt. S.,
48, 421–433, https://doi.org/10.1080/10256016.2012.663368, 2012.
Zondervan, A., Hauser, T. M., Kaiser, J., Kitchen, R. L., Turnbull, J. C., and West, J. G.:
XCAMS: The compact 14C accelerator mass spectrometer extended for 10Be and 26Al at GNS Science, New Zealand,
Nucl. Instrum. Meth. B,
361, 25–33, https://doi.org/10.1016/J.NIMB.2015.03.013, 2015.
Short summary
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to effectively mitigate CH4 emissions. We tested the use of carbon isotopes to estimate source contributions from key CH4 sources in the AOSR and found that 56 ± 18 % of CH4 emissions originated from surface mining and processing facilities, 34 ± 18 % from tailings ponds, and 10 ± < 1 % from wetlands, confirming previous findings and showing that this method can be successfully used to partition CH4 sources.
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to...
Altmetrics
Final-revised paper
Preprint