Articles | Volume 22, issue 24
https://doi.org/10.5194/acp-22-15767-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-15767-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Equilibrium climate sensitivity increases with aerosol concentration due to changes in precipitation efficiency
Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew
University, Jerusalem, Israel
Related authors
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024, https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Short summary
We examine the combined effect of aerosols and sea surface temperature (SST) on clouds under equilibrium conditions in cloud-resolving radiative–convective equilibrium simulations. We demonstrate that the aerosol–cloud interaction's effect on top-of-atmosphere energy gain strongly depends on the underlying SST, while the shortwave part of the spectrum is significantly more sensitive to SST. Furthermore, increasing aerosols influences upper-troposphere stability and thus anvil cloud fraction.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Tom Dror, J. Michel Flores, Orit Altaratz, Guy Dagan, Zev Levin, Assaf Vardi, and Ilan Koren
Atmos. Chem. Phys., 20, 15297–15306, https://doi.org/10.5194/acp-20-15297-2020, https://doi.org/10.5194/acp-20-15297-2020, 2020
Short summary
Short summary
We used in situ aerosol measurements over the Atlantic, Caribbean, and Pacific to initialize a cloud model and study the impact of aerosol concentration and sizes on warm clouds. We show that high aerosol concentration increases cloud mass and reduces surface rain when giant particles (diameter > 9 µm) are present. The large aerosols changed the timing and magnitude of internal cloud processes and resulted in an enhanced evaporation below cloud base and dramatically reduced surface rain.
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024, https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Short summary
We examine the combined effect of aerosols and sea surface temperature (SST) on clouds under equilibrium conditions in cloud-resolving radiative–convective equilibrium simulations. We demonstrate that the aerosol–cloud interaction's effect on top-of-atmosphere energy gain strongly depends on the underlying SST, while the shortwave part of the spectrum is significantly more sensitive to SST. Furthermore, increasing aerosols influences upper-troposphere stability and thus anvil cloud fraction.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Tom Dror, J. Michel Flores, Orit Altaratz, Guy Dagan, Zev Levin, Assaf Vardi, and Ilan Koren
Atmos. Chem. Phys., 20, 15297–15306, https://doi.org/10.5194/acp-20-15297-2020, https://doi.org/10.5194/acp-20-15297-2020, 2020
Short summary
Short summary
We used in situ aerosol measurements over the Atlantic, Caribbean, and Pacific to initialize a cloud model and study the impact of aerosol concentration and sizes on warm clouds. We show that high aerosol concentration increases cloud mass and reduces surface rain when giant particles (diameter > 9 µm) are present. The large aerosols changed the timing and magnitude of internal cloud processes and resulted in an enhanced evaporation below cloud base and dramatically reduced surface rain.
Cited articles
Abbott, T. H. and Cronin, T. W.: Aerosol invigoration of
atmospheric convection through increases in humidity, Science, 371,
83–85, 2021.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness,
Science, 245, 1227, https://doi.org/10.1126/science.245.4923.1227, 1989.
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P.,
Watson-Parris, D., Boucher, O., Carslaw, K., Christensen, M., and Daniau,
A.-L.: Bounding aerosol radiative forcing of climate change, Rev.
Geophys., 58, e2019RG000660,
https://doi.org/10.1029/2019RG000660, 2019.
Ceppi, P., Brient, F., Zelinka, M. D., and Hartmann, D. L.: Cloud feedback
mechanisms and their representation in global climate models, WIREs Climate
Change, 8, e465,
https://doi.org/10.1002/wcc.465, 2017.
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R.,
Williamson, D. L., Briegleb, B. P., Bitz, C. M., Lin, S.-J., and Zhang, M.:
The formulation and atmospheric simulation of the Community Atmosphere Model
version 3 (CAM3), J. Climate, 19, 2144–2161, 2006.
Dagan, G.: Data for the paper: Equilibrium climate sensitivity increases with aerosol concentration due to changes in precipitation efficiency, Zenodo [data set], https://doi.org/10.5281/zenodo.7306706, 2022.
Dagan, G., Koren, I., and Altaratz, O.: Competition between core and periphery-based processes in warm convective clouds – from invigoration to suppression, Atmos. Chem. Phys., 15, 2749–2760, https://doi.org/10.5194/acp-15-2749-2015, 2015a.
Dagan, G., Koren, I., and Altaratz, O.: Aerosol effects on the timing of
warm rain processes, Geophys. Res. Lett., 42, 4590–4598,
https://doi.org/10.1002/2015GL063839, 2015b.
Dagan, G., Stier, P., and Watson-Parris, D.: Contrasting response of
precipitation to aerosol perturbation in the tropics and extra-tropics
explained by energy budget considerations, Geophys. Res. Lett., 46, 7828–7837,
https://doi.org/10.1029/2019GL083479,
2019.
Dingley, B., Dagan, G., and Stier, P.: Forcing convection to aggregate using
diabatic heating perturbations, J. Adv. Model. Earth
Sy., 13, e2021MS002579, https://doi.org/10.1029/2021MS002579, 2021.
Freud, E. and Rosenfeld, D.: Linear relation between convective cloud drop
number concentration and depth for rain initiation, J. Geophys.
Res.-Atmos., 117, D02207,
https://doi.org/10.1029/2011JD016457, 2012.
Gettelman, A. and Sherwood, S.: Processes Responsible for Cloud Feedback,
Current Climate Change Reports, 2, 179–189, 2016.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to
global warming, J. Climate, 19, 5686–5699, 2006.
Igel, A. L. and van den Heever, S. C.: Invigoration or Enervation of
Convective Clouds by Aerosols?, Geophys. Res. Lett., 48,
e2021GL093804, https://doi.org/10.1029/2021GL093804, 2021.
Khain, A. P.: Notes on state-of-the-art investigations of aerosol effects on
precipitation: a critical review, Environ. Res. Lett., 4, 015004, https://doi.org/10.1088/1748-9326/4/1/015004, 2009.
Khairoutdinov, M.: System for Atmospheric Modeling code, [code], http://rossby.msrc.sunysb.edu/~marat/SAM/, last access: 14 December 2022.
Khairoutdinov, M. F. and Randall, D. A.: Cloud resolving modeling of the
ARM summer 1997 IOP: Model formulation, results, uncertainties, and
sensitivities, J. Atmos. Sci., 60, 607–625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2, 2003.
Khairoutdinov, M. F. and Yang, C.-E.: Cloud-resolving modelling of aerosol indirect effects in idealised radiative-convective equilibrium with interactive and fixed sea surface temperature, Atmos. Chem. Phys., 13, 4133–4144, https://doi.org/10.5194/acp-13-4133-2013, 2013.
Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y.:
Aerosol invigoration and restructuring of Atlantic convective
clouds, Geophys. Res. Lett., 32, https://doi.org/10.1029/2005GL023187, 2005.
Koren, I., Altaratz, O., Remer, L. A., Feingold, G., Martins, J. V., and
Heiblum, R. H.: Aerosol-induced intensification of rain from the
tropics to the mid-latitudes, Nat. Geosci., 5, 118–122,
https://doi.org/10.1038/ngeo1364, 2012.
Koren, I., Dagan, G., and Altaratz, O.: From aerosol-limited to invigoration
of warm convective clouds, Science, 344, 1143–1146, 2014.
Li, R., Storelvmo, T., Fedorov, A. V., and Choi, Y.-S.: A positive IRIS
feedback: Insights from climate simulations with temperature-sensitive
cloud–rain conversion, J. Climate, 32, 5305–5324, 2019.
Li, R. L., Studholme, J. H., Fedorov, A. V., and Storelvmo, T.:
Precipitation efficiency constraint on climate change, Nat. Clim.
Change, 12, 642–648, 2022.
Lindzen, R. S., Chou, M.-D., and Hou, A. Y.: Does the earth have an adaptive
infrared iris?, B. Am. Meteorol. Soc., 82,
417–432, 2001.
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G.,
Liang, L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the earth's
radiant energy system (CERES) energy balanced and filled (EBAF)
top-of-atmosphere (TOA) edition-4.0 data product, J. Climate, 31,
895–918, 2018.
Lutsko, N. J. and Cronin, T. W.: Increase in precipitation efficiency with
surface warming in radiative-convective equilibrium, J. Adv.
Model. Earth Sy., 10, 2992–3010, 2018.
Lutsko, N., Sherwood, S. C., and Zhao, M.: Precipitation efficiency and climate sensitivity (invited chapter for the AGU geophysical monograph series “clouds and climate”), ESS Open Archive,
https://doi.org/10.1002/essoar.10507822.1, 2021.
Mauritsen, T. and Stevens, B.: Missing iris effect as a possible cause of
muted hydrological change and high climate sensitivity in models, Nat.
Geosci., 8, 346–351, https://doi.org/10.1038/ngeo2414, 2015.
Morrison, H., Curry, J., and Khvorostyanov, V.: A new double-moment
microphysics parameterization for application in cloud and climate models.
Part I: Description, J. Atmos. Sci., 62, 1665–1677,
2005.
Muller, C. J. and Held, I. M.: Detailed investigation of the
self-aggregation of convection in cloud-resolving simulations, J.
Atmos. Sci., 69, 2551–2565, 2012.
Mülmenstädt, J. and Feingold, G.: The Radiative Forcing of
Aerosol–Cloud Interactions in Liquid Clouds: Wrestling and Embracing
Uncertainty, Current Climate Change Reports, 4, 23–40, 2018.
Nishant, N., Sherwood, S. C., and Geoffroy, O.: Aerosol-induced modification
of organised convection and top-of-atmosphere radiation, npj Climate and
Atmospheric Science, 2, 1–10, 2019.
Nuijens, L. and Siebesma, A. P.: Boundary Layer Clouds and Convection over
Subtropical Oceans in our Current and in a Warmer Climate, Current Climate
Change Reports, 5, 80–94,
https://doi.org/10.1007/s40641-019-00126-x, 2019.
Quaas, J., Jia, H., Smith, C., Albright, A. L., Aas, W., Bellouin, N., Boucher, O., Doutriaux-Boucher, M., Forster, P. M., Grosvenor, D., Jenkins, S., Klimont, Z., Loeb, N. G., Ma, X., Naik, V., Paulot, F., Stier, P., Wild, M., Myhre, G., and Schulz, M.: Robust evidence for reversal of the trend in aerosol effective climate forcing, Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, 2022.
Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S. S., Wernli, H., Andreae, M. O., and Pöschl, U.: Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN), Atmos. Chem. Phys., 9, 7067–7080, https://doi.org/10.5194/acp-9-7067-2009, 2009.
Romps, D. M.: Climate sensitivity and the direct effect of carbon dioxide in
a limited-area cloud-resolving model, J. Climate, 33, 3413–3429,
2020.
Rosenfeld, D.: Suppression of rain and snow by urban and industrial air
pollution, Science, 287, 1793–1796, https://doi.org/10.1126/science.287.5459.1793, 2000.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala,
M., Fuzzi, S., Reissell, A., and Andreae, M. O.: Flood or drought: How do aerosols affect precipitation?,
Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606, 2008.
Schneider, T., Teixeira, J., Bretherton, C. S., Brient, F., Pressel, K. G.,
Schär, C., and Siebesma, A. P.: Climate goals and computing the future
of clouds, Nat. Clim. Change, 7, 3–5, 2017.
Sherwood, S., Webb, M. J., Annan, J. D., Armour, K., Forster, P. M.,
Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., and Rohling, E.
J.: An assessment of Earth's climate sensitivity using multiple lines of
evidence, Rev. Geophys., 58, e2019RG000678, https://doi.org/10.1029/2019RG000678, 2020.
Twomey, S.: The nuclei of natural cloud formation part II: The
supersaturation in natural clouds and the variation of cloud droplet
concentration, Geofisica pura e applicata, 43, 243–249, 1959.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ.,
8, 1251–1256, 1974.
Twomey, S.: The influence of pollution on the shortwave albedo of clouds,
J. Atmos. Sci., 34, 1149–1152, 1977.
Warner, J. and Twomey, S.: The production of cloud nuclei by cane fires and
the effect on cloud droplet concentration, J. Atmos. Sci., 24, 704–706, 1967.
White, B., Gryspeerdt, E., Stier, P., Morrison, H., Thompson, G., and Kipling, Z.: Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects, Atmos. Chem. Phys., 17, 12145–12175, https://doi.org/10.5194/acp-17-12145-2017, 2017.
Wing, A. A., Reed, K. A., Satoh, M., Stevens, B., Bony, S., and Ohno, T.: Radiative–convective equilibrium model intercomparison project, Geosci. Model Dev., 11, 793–813, https://doi.org/10.5194/gmd-11-793-2018, 2018.
Yanase, T., Nishizawa, S., Miura, H., Takemi, T., and Tomita, H.: New
critical length for the onset of self-aggregation of moist convection,
Geophys. Res. Lett., 47, e2020GL088763, https://doi.org/10.1029/2020GL088763, 2020.
Short summary
Using idealized simulations we demonstrate that the equilibrium climate sensitivity (ECS), i.e. the increase in surface temperature under equilibrium conditions due to doubling of the CO2 concentration, increases with the aerosol concentration. The ECS increase is explained by a faster increase in precipitation efficiency with warming under high aerosol concentrations, which more efficiently depletes the water from the cloud and thus is manifested as an increase in the cloud feedback parameter.
Using idealized simulations we demonstrate that the equilibrium climate sensitivity (ECS), i.e....
Altmetrics
Final-revised paper
Preprint