Articles | Volume 22, issue 22
https://doi.org/10.5194/acp-22-14859-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-14859-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Intra- and interannual variability and source apportionment of volatile organic compounds during 2018–2020 in Zhengzhou, central China
Shijie Yu
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
Shenbo Wang
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
Ruixin Xu
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
Dong Zhang
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
Meng Zhang
Pingdingshan Ecological Environment Monitoring Center of Henan Province, Pingdingshan 467000, China
Fangcheng Su
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
Xuan Lu
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
Xiao Li
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
Ruiqin Zhang
CORRESPONDING AUTHOR
Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
Lingling Wang
CORRESPONDING AUTHOR
Environmental Monitoring Center of Henan Province, Zhengzhou 450000, China
Related authors
Shijie Yu, Hongyu Liu, Hui Wang, Fangcheng Su, Beibei Wang, Minghao Yuan, Kunao Song, Zixian Wang, Daoqing Xu, and Ruiqin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4178, https://doi.org/10.5194/egusphere-2024-4178, 2025
Preprint archived
Short summary
Short summary
This study investigates O3 pollution in Zhengzhou. The results show that traffic and industrial emissions are the main sources of O3 and its precursors. The study highlights the significant impact of local emissions and the role of atmospheric free radicals in ozone formation. Reducing emissions of aromatics and alkenes can effectively reduce ozone pollution. These findings stress the importance of controlling traffic and industrial sources to mitigate O3 pollution.
Shijie Yu, Fangcheng Su, Shasha Yin, Shenbo Wang, Ruixin Xu, Bing He, Xiangge Fan, Minghao Yuan, and Ruiqin Zhang
Atmos. Chem. Phys., 21, 15239–15257, https://doi.org/10.5194/acp-21-15239-2021, https://doi.org/10.5194/acp-21-15239-2021, 2021
Short summary
Short summary
This study measured 106 VOC species using a GC-MS/FID. Meanwhile, the WRF-CMAQ model was used to investigate the nonlinearity of the O3 response to precursor reductions. This study highlights the effectiveness of stringent emission controls in relation to solvent utilization and coal combustion. However, unreasonable emission reduction may aggravate ozone pollution during control periods. It is suggested that emission-reduction ratios of the precursors (VOC : NOx) should be more than 2.
Qixiang Xu, Zilin Jin, Qi Ying, Ke Wang, Fangcheng Su, Ruiqin Zhang, and Michael J. Kleeman
Atmos. Chem. Phys., 25, 9431–9449, https://doi.org/10.5194/acp-25-9431-2025, https://doi.org/10.5194/acp-25-9431-2025, 2025
Short summary
Short summary
This paper introduces a novel approach for improving the computational efficiency and scalability of source-oriented chemical mechanisms by simplifying the representation of reactions involving source-tagged species and implementing a source-oriented Euler backward iterative (EBI) solver. These advancements reduce simulation times by up to 74 % while maintaining accuracy, offering significant practical benefits for long-term source apportionment studies.
Hongyu Zhang, Shenbo Wang, Zhangsen Dong, Xiao Li, and Ruiqin Zhang
Atmos. Chem. Phys., 25, 6943–6955, https://doi.org/10.5194/acp-25-6943-2025, https://doi.org/10.5194/acp-25-6943-2025, 2025
Short summary
Short summary
Analyzing 12-year Zhengzhou data revealed post-2019 crustal material rebound caused by soil dust resuspension, elevating particle pH. Similar coarse particle increases are observed across cities of the North China Plain. Long-term particle acidity evolution in this region requires an integrated assessment of interactions among acidic precursors, ammonia, and crustal components.
Shijie Yu, Hongyu Liu, Hui Wang, Fangcheng Su, Beibei Wang, Minghao Yuan, Kunao Song, Zixian Wang, Daoqing Xu, and Ruiqin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4178, https://doi.org/10.5194/egusphere-2024-4178, 2025
Preprint archived
Short summary
Short summary
This study investigates O3 pollution in Zhengzhou. The results show that traffic and industrial emissions are the main sources of O3 and its precursors. The study highlights the significant impact of local emissions and the role of atmospheric free radicals in ozone formation. Reducing emissions of aromatics and alkenes can effectively reduce ozone pollution. These findings stress the importance of controlling traffic and industrial sources to mitigate O3 pollution.
Haoming Bao, Jiandong Shang, Jinzhu Li, Gang Wu, Haitao Wei, Lingling Wang, Nan Wang, Jingye Shi, Wenge Zhou, Feng Chen, Jiahui Guo, Jinyang Wang, Dujuan Zhang, and Hengliang Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3495, https://doi.org/10.5194/egusphere-2024-3495, 2025
Short summary
Short summary
An analysis of ozone pollution in Henan Province, China, from 2015 to 2022 was conducted. The spatiotemporal distribution patterns of ozone pollution in Henan Province during this period and its driving factors were examined from the perspectives of pollutant concentrations, meteorological conditions, and socioeconomic factors. Time-series analysis and machine learning techniques were employed to predict both short-term and long-term ozone concentrations in the region.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024, https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
Short summary
To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Shijie Yu, Fangcheng Su, Shasha Yin, Shenbo Wang, Ruixin Xu, Bing He, Xiangge Fan, Minghao Yuan, and Ruiqin Zhang
Atmos. Chem. Phys., 21, 15239–15257, https://doi.org/10.5194/acp-21-15239-2021, https://doi.org/10.5194/acp-21-15239-2021, 2021
Short summary
Short summary
This study measured 106 VOC species using a GC-MS/FID. Meanwhile, the WRF-CMAQ model was used to investigate the nonlinearity of the O3 response to precursor reductions. This study highlights the effectiveness of stringent emission controls in relation to solvent utilization and coal combustion. However, unreasonable emission reduction may aggravate ozone pollution during control periods. It is suggested that emission-reduction ratios of the precursors (VOC : NOx) should be more than 2.
Cited articles
Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic
Compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Baudic, A., Gros, V., Sauvage, S., Locoge, N., Sanchez, O., Sarda-Estève, R., Kalogridis, C., Petit, J.-E., Bonnaire, N., Baisnée, D., Favez, O., Albinet, A., Sciare, J., and Bonsang, B.: Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France), Atmos. Chem. Phys., 16, 11961–11989, https://doi.org/10.5194/acp-16-11961-2016, 2016.
Carter, W. P. L.: Development of Ozone Reactivity Scales for Volatile Organic
Compounds, J. Air Waste Manage., 44, 881–899,
https://doi.org/10.1080/1073161X.1994.10467290, 1994.
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism, Atmos. Environ.,
44, 5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010.
Chen, Y., Shen, H., Zhong, Q., Chen, H., Huang, T., Liu, J., Cheng, H., Zeng, E., Smith, K., and Tao, S.: Transition ofhousehold cookfuels in China from 2010 to 2012, Appl. Energy., 184, 800–809, https://doi.org/10.1016/j.apenergy.2016.07.136, 2016.
Eckert, C., Xu, W., Xiong, W., Lynch, S., Ungerer, J., Tao, L., Gill, R., Maness, P.-C., and Yu, J.: Ethylene-forming enzyme and bioethylene production, Biotechnol. Biofuels, 7, 1–11, https://doi.org/10.1186/1754-6834-7-33, 2014.
Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G., Gramsch, E., Rickard, A. R., Pilling, M. J., and Kleffmann, J.: Oxidation capacity of the city air of Santiago, Chile, Atmos. Chem. Phys., 9, 2257–2273, https://doi.org/10.5194/acp-9-2257-2009, 2009.
Fan, M., Zhang, Y., Lin, Y., Li, L., Xie, F., Hu, J., Mozaffar, A., and Cao,
F.: Source apportionments of atmospheric volatile organic compounds in
Nanjing, China during high ozone pollution season, Chemosphere, 263, 128025, https://doi.org/10.1016/j.chemosphere.2020.128025, 2021.
Fu, S., Guo, M., Luo, J., Han, D., Chen, X., Jia, H., Jin, X., Liao, H.,
Wang, X., Fan, L., and Cheng, J.: Improving VOCs control strategies based on
source characteristics and chemical reactivity in a typical coastal city of
South China through measurement and emission inventory, Sci. Total Environ.,
744, 140825, https://doi.org/10.1016/j.scitotenv.2020.140825, 2020.
Gaimoz, C., Sauvage, S., Gros, V., Herrmann, F., Williams, J., Locoge, N., Perrussel, O., Bonsang, B., d'Argouges, O., SardaEsteve, R., and Sciare, J.: Volatile organic compounds sources in Paris in spring 2007. Part II: source apportionment using positive matrix factorisation, Environ. Chem., 8, 91–103, https://doi.org/10.1071/EN10067, 2011.
Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., and Tang, D.: Source profiles of volatile organic compounds (VOCs) measured in China: Part I, Atmos. Environ., 42, 6247–6260, https://doi.org/10.1016/j.atmosenv.2008.01.070, 2008.
Gao, J., Zhang, J., Li, H., Li, L., Xu, L., Zhang, Y., Wang, Z., Wang, X.,
Zhang, W., Chen, Y., Cheng, X., Zhang, H., Peng, L., Chai, F., and Wei, Y.:
Comparative study of volatile organic compounds in ambient air using
observed mixing ratios and initial mixing ratios taking chemical loss into
account – A case study in a typical urban area in Beijing, Sci. Total
Environ., 628–629, 791–804, https://doi.org/10.1016/j.scitotenv.2018.01.175, 2018.
Geyer, A., Alicke, B., Konrad, S., Schmitz, T., Stutz, J., and Platt, U.:
Chemistry and oxidation capacity of the nitrate radical in the continental
boundary layer near Berlin, J. Geophys. Res.-Atmos., 106, 8013–8025,
https://doi.org/10.1029/2000JD900681, 2001.
Gu, X., Yin, S., Lu, X., Zhang, H., Wang, L., Bai, L., Wang, C., Zhang, R.,
and Yuan, M.: Recent development of a refined multiple air pollutant
emission inventory of vehicles in the Central Plains of China, J. Environ.
Sci., 84, 80–96, https://doi.org/10.1016/j.jes.2019.04.010, 2019.
Gu, Y., Li, Q., Wei, D., Gao, L., Tan, L., Su, G., Liu, G., Liu, W., Li, C.,
and Wang, Q.: Emission characteristics of 99 NMVOCs in different seasonal
days and the relationship with air quality parameters in Beijing, China,
Ecotox. Environ. Safe., 169, 797–806, https://doi.org/10.1016/j.ecoenv.2018.11.091,
2019.
Gu, Y., Liu, B., Li, Y., Zhang, Y., Bi, X., Wu, J., Song, C., Dai, Q., Han,
Y., Ren, G., and Feng, Y.: Multi-scale volatile organic compound (VOC)
source apportionment in Tianjin, China, using a receptor model coupled with
1-hr resolution data, Environ. Pollut., 265, 115023,
https://doi.org/10.1016/j.envpol.2020.115023, 2020.
Guo, H., Cheng, H., Ling, Z., Louie, P., and Ayoko, G.: Which emission
sources are responsible for the volatile organic compounds in the atmosphere
of Pearl River Delta, J. Hazard. Mater., 188, 116–124,
https://doi.org/10.1016/j.jhazmat.2011.01.081, 2011.
Hsu, C., Chiang, H., Shie, R., Ku, C., Lin, T., Chen, M., Chen, N., and
Chen, Y.: Ambient VOCs in residential areas near a large-scale petrochemical
complex: Spatiotemporal variation, source apportionment and health risk,
Environ. Pollut., 240, 95–104, https://doi.org/10.1016/j.envpol.2018.04.076, 2018.
Huang, X., Zhang, Y., Wang, Y., Ou, Y., Chen, D., Pei, C., Huang, Z., Zhang,
Z., Liu, T., and Luo, S.: Evaluating the effectiveness of multiple emission
control measures on reducing volatile organic compounds in ambient air based
on observational data: A case study during the 2010 Guangzhou Asian Games,
Sci. Total Environ., 723, 138171, https://doi.org/10.1016/j.scitotenv.2020.138171, 2020.
Huang, Y. and Hsieh, C.: Ambient volatile organic compound presence in the
highly urbanized city: source apportionment and emission position, Atmos.
Environ., 206, 45–59, https://doi.org/10.1016/j.atmosenv.2019.02.046, 2019.
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., and Jiang,
M.: Characteristics, source apportionment and contribution of VOCs to ozone
formation in Wuhan, Central China, Atmos. Environ., 192, 55–71,
https://doi.org/10.1016/j.atmosenv.2018.08.042, 2018.
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., and Cheng, N.: VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China, Sci. Total Environ., 650, 2624–2639, 2019.
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., Deng, Y.,
Zhai, R., and Wang, Z.: VOC characteristics, chemical reactivity and sources
in urban Wuhan, central China, Atmos. Environ., 224, 117340,
https://doi.org/10.1016/j.atmosenv.2020.117340, 2020.
Hui, L., Ma, T., Gao, Z., Gao, J., Wang, Z., Xue, L., Liu, H., and Liu, J.:
Characteristics and sources of volatile organic compounds during high ozone
episodes: A case study at a site in the eastern Guanzhong Plain, China,
Chemosphere., 265, 129072, https://doi.org/10.1016/j.chemosphere.2020.129072, 2021.
Jiang, N., Duan, S., Yu, X., Zhang, R., and Wang, K.: Comparative major
components and health risks of toxic elements and polycyclic aromatic
hydrocarbons of PM2.5 in winter and summer in Zhengzhou: Based on
three-year data, Atmos. Res., 213, 173–184, https://doi.org/10.1016/j.atmosres.2018.06.008, 2018.
Jin, B., Zhu, R., Mei, H., Wang, M., Zu, L., Yu, S., Zhang, R., Li, S., Bao, X.: Volatile organic compounds from a mixed fleet with numerous E10-fuelled vehicles in a tunnel study in China: Emission characteristics, ozone formation and secondary organic aerosol formation, Environ. Res., 200, 111463, https://doi.org/10.1016/j.envres.2021.111463, 2021.
Kumar, A., Hakkim, H., Sinha, B., Sinha, V.: Gridded 1 km × 1 km emission inventory for paddy stubble burning emissions over north-west India constrained by measured emission factors of 77 VOCs and district-wise crop yield data, Sci. Total Environ., 789, 148064, https://doi.org/10.1016/j.scitotenv.2021.148064, 2021.
Li, B., Ho, S. S. H., Gong, S., Ni, J., Li, H., Han, L., Yang, Y., Qi, Y., and Zhao, D.: Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods, Atmos. Chem. Phys., 19, 617–638, https://doi.org/10.5194/acp-19-617-2019, 2019.
Li, K., Li, J., Tong, S., Wang, W., Huang, R.-J., and Ge, M.: Characteristics of wintertime VOCs in suburban and urban Beijing: concentrations, emission ratios, and festival effects, Atmos. Chem. Phys., 19, 8021–8036, https://doi.org/10.5194/acp-19-8021-2019, 2019.
Li, Q., Badia, A., Wang, T., Sarwar, G., Fu, X., Zhang, L., Zhang, Q., Fung,
J., Cuevas, C., Wang, S., Zhou, B., and Saiz-Lopez, A.: Potential effect of
halogens on atmospheric oxidation and air quality in China, J. Geophys.
Res.-Atmos., 125, e2019JD032058, https://doi.org/10.1029/2019JD032058, 2020a.
Li, Q., Su, G., Li, C., Liu, P., Zhao, X., Zhang, C., Sun, X., Mu, Y., Wu,
M., Wang, Q., and Sun, B.: An investigation into the role of VOCs in SOA and
ozone production in Beijing, China, Sci. Total. Environ., 720, 137536,
https://doi.org/10.1016/j.scitotenv.2020.137536, 2020b.
Li, Y., Yin, S., Yu, S., Yuan, M., Dong, Z., Zhang, D., Yang, L., and Zhang,
R.: Characteristics, source apportionment and health risks of ambient VOCs
during high ozone period at an urban site in central plain, China,
Chemosphere, 25, 126283, https://doi.org/10.1016/j.chemosphere.2020.126283, 2020.
Liebmann, J. M., Muller, J. B. A., Kubistin, D., Claude, A., Holla, R., Plass-Dülmer, C., Lelieveld, J., and Crowley, J. N.: Direct measurements of NO3 reactivity in and above the boundary layer of a mountaintop site: identification of reactive trace gases and comparison with OH reactivity, Atmos. Chem. Phys., 18, 12045–12059, https://doi.org/10.5194/acp-18-12045-2018, 2018.
Liu, B., Liang, D., Yang, J., Dai, Q., Bi, X., Feng, Y., Yuan, J., Xiao, Z.,
Zhang, Y., and Xu, H.: Characterization and source apportionment of volatile
organic compounds based on 1-year of observational data in Tianjin, China,
Environ. Pollut., 218, 757–769, https://doi.org/10.1016/j.envpol.2016.07.072, 2016.
Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., and Tang, D.: Source profiles of volatile organic compounds (VOCs) measured in China: Part I, Atmos. Environ., 42, 6247–6260, https://doi.org/10.1016/j.atmosenv.2008.01.070, 2008.
Liu, Y., Song, M., Liu, X., Zhang, Y., Hui, L., Kong, L., Zhang, Y., Zhang,
C., Qu, Y., An, J., Ma, D., Tan, Q., and Feng, M.: Characterization and
sources of volatile organic compounds (VOCs) and their related changes
during ozone pollution days in 2016 in Beijing, China, Environ. Pollut.,
257, 113599, https://doi.org/10.1016/j.envpol.2019.113599, 2019a.
Liu, Y., Wang, H., Jing, S., Gao, Y., Peng, Y., Lou, S., Cheng, T., Tao, S.,
Li, L., Li, Y., Huang, D., Wang, Q., and An, J.: Characteristics and sources
of volatile organic compounds (VOCs) in Shanghai during summer: Implications
of regional transport, Atmos. Environ., 215, 116902,
https://doi.org/10.1016/j.atmosenv.2019.116902, 2019b.
Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Häseler, R., Kita, K., Kondo, Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang, Y., Wang, W., and Hofzumahaus, A.: Atmospheric OH reactivities in the Pearl River Delta – China in summer 2006: measurement and model results, Atmos. Chem. Phys., 10, 11243–11260, https://doi.org/10.5194/acp-10-11243-2010, 2010.
Lu, K. D., Hofzumahaus, A., Holland, F., Bohn, B., Brauers, T., Fuchs, H., Hu, M., Häseler, R., Kita, K., Kondo, Y., Li, X., Lou, S. R., Oebel, A., Shao, M., Zeng, L. M., Wahner, A., Zhu, T., Zhang, Y. H., and Rohrer, F.: Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO2 concentrations in summer 2006, Atmos. Chem. Phys., 13, 1057–1080, https://doi.org/10.5194/acp-13-1057-2013, 2013.
Maji, S., Beig, G., and Yadav, R.: Winter VOCs and OVOCs measured with
PTR-MS at an urban site of India: Role of emissions, meteorology and
photochemical sources, Environ. Pollut., 258, 113651,
https://doi.org/10.1016/j.envpol.2019.113651, 2020.
Mao, J., Ren, X., Chen, S., Brune, W., Chen, Z., Martinez, M., Harder, H.,
Lefer, B., Rappengluck, B., Flynn, J., and Leuchner, M.: Atmospheric
oxidation capacity in the summer of Houston 2006: comparison with summer
measurements in other metropolitan studies, Atmos. Environ., 44, 4107–4115,
https://doi.org/10.1016/j.atmosenv.2009.01.013, 2010.
McCarthy, M., Aklilu, Y., Brown, S., and Lyder, D.: Source apportionment of volatile organic compounds measured in Edmonton, Alberta, Atmos. Environ., 81, 504–516, https://doi.org/10.1016/j.atmosenv.2013.09.016, 2013.
Mo, Z., Shao, M., Lu, S., Niu, H., Zhou, M., and Sun, J.: Characterization
of non-methane hydrocarbons and their sources in an industrialized coastal
city, Yangtze River Delta, China, Sci. Total. Environ., 593–594, 641–653,
https://doi.org/10.1016/j.scitotenv.2017.03.123, 2017.
Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide, U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/108 (NTIS PB2015-105147), 2014.
Prinn, R.: The cleansing capacity of the atmosphere, Annu. Rev. Env. Resour., 28, 29–57, https://doi.org/10.1146/annurev.energy.28.011503.163425, 2003.
Ren, X., Brune, W., Mao, J., Mitchell, M., Lesher, R., Simpas, J., Metcalf,
A., Schwab, J., Cai, C., and Li, Y.: Behavior of OH and HO2 in the
winter atmosphere in New York City, Atmos. Environ., 40, 252–263,
https://doi.org/10.1016/j.atmosenv.2005.11.073, 2006.
Ren, Y., Ma, S., Wang, W., Yu, S., Li, Y., Zhang, R., and Yin, S.: Ambient
VOCs characteristics, ozone formation potential, and source apportionment of
air pollution in spring in Zhengzhou, Environ. Sci., 41, 2577–2585,
https://doi.org/10.13227/j.hjkx.201911081, 2020 (in Chinese).
Sadeghi, B., Pouyaei, A., Choi, Y., and Rappenglueck, B.: Influence of
seasonal variability on source characteristics of VOCs at Houston industrial
area, Atmos. Environ., 277, 119077, https://doi.org/10.1016/j.atmosenv.2022.119077, 2022.
Shao, P., An, J., Xin, J., Wu, F., Wang, J., Ji, D., and Wang, Y.: Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China, Atmos. Res., 176–177, 64–74, https://doi.org/10.1016/j.atmosres.2016.02.015, 2016.
Shen, L., Xiang, P., Liang, S., Chen, W., Wang, M., Lu, S., and Wang, Z.: Sources profiles of volatile organic compounds (VOCs) measured in a typical industrial process in Wuhan, Central China, Atmosphere, 9, 297, https://doi.org/10.3390/atmos9080297, 2018.
Song, C., Liu, B., Dai, Q., Li, H., and Mao, H.: Temperature dependence and
source apportionment of volatile organic compounds (VOCs) at an urban site
on the north China plain, Atmos. Environ., 207, 167–181,
https://doi.org/10.1016/j.atmosenv.2019.03.030, 2019.
Song, M., Tan, Q., Feng, M., Qu, Y., Liu, X., An, J., and Zhang, Y.: Source
apportionment and secondary transformation of atmospheric nonmethane
hydrocarbons in Chengdu, southwest China, J. Geophys. Res.-Atmos., 123,
9741–9763, https://doi.org/10.1029/2018JD028479, 2018.
Song, M., Liu, X., Zhang, Y., Shao, M., Lu, K., Tan, Q., Feng, M., and Qu,
Y.: Sources and abatement mechanisms of VOCs in southern China, Atmos.
Environ., 201, 28–40, https://doi.org/10.1016/j.atmosenv.2018.12.019, 2019.
Song, S., Shon, Z., Kang, Y., Kim, K., Han, S., Kang, M., Bang, J., and Oh,
I.: Source apportionment of VOCs and their impact on air quality and health
in the megacity of Seoul, Environ. Pollut, 247, 763–774, https://doi.org/10.1016/j.envpol.2019.01.102, 2019.
Steiner, A. L., Cohen, R. C., Harley, R. A., Tonse, S., Millet, D. B., Schade, G. W., and Goldstein, A. H.: VOC reactivity in central California: comparing an air quality model to ground-based measurements, Atmos. Chem. Phys., 8, 351–368, https://doi.org/10.5194/acp-8-351-2008, 2008”.
Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., Chen, D., Wang, Z., Xie, S., Zeng, L., and Zhang, Y.: Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation, Atmos. Chem. Phys., 19, 3493–3513, https://doi.org/10.5194/acp-19-3493-2019, 2019.
Tao, S., Ru, M., Du, W., Zhu, X., Zhong, Q., Li, B., Shen, G., Pan, X., Meng, W., Chen, Y., Shen, H., Lin, N., Su, S., Zhuo, S., Huang, T., Xu, Y., Yun, X., Liu, J., Wang, X., Liu, W., Cheng, H., and Zhu, D.: Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey, Nature Energy, 3, 567–573,
https://doi.org/10.1038/s41560-018-0158-4, 2018.
Tsai, S., Zhang, J., Smith, K., Ma, Y., Rasmussen, R., and Khalil, M.: Characterization of Non-methane Hydrocarbons Emitted from Various Cookstoves Used in China, Environ. Sci. Technol., 37, 2869–2877, https://doi.org/10.1021/es026232a, 2003.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
Uttamang, P., Campbell, P. C., Aneja, V. P., and Hanna, A. F.: A multi-scale model analysis of ozone formation in the Bangkok Metropolitan Region, Thailand, Atmos. Environ., 229, 117433, https://doi.org/10.1016/j.atmosenv.2020.117433, 2020.
Wang, M., Lu, S., Shao, M., Zeng, L., Zheng, J., Xie, F., Lin, H., Hu, K.,
and Lu, X.: Impact of COVID-19 lockdown on ambient levels and sources of
volatile organic compounds (VOCs) in Nanjing, China, Sci. Total Environ.,
757, 143823, https://doi.org/10.1016/j.scitotenv.2020.143823, 2021.
Wang, S., Yin, S., Zhang, R., Yang, L., Zhao, Q., Zhang, L., Yan, Q., Jiang,
N., and Tang, X.: Insight into the formation of secondary inorganic aerosol
based on high-time-resolution data during haze episodes and snowfall periods
in Zhengzhou, China, Sci. Total Environ., 660, 47–56,
https://doi.org/10.1016/j.scitotenv.2018.12.465, 2019.
Wang, Y., Zhu, S., Ma, J., Shen, J., Wang, P., Wang, P., and Zhang, H.:
Enhanced atmospheric oxidation capacity and associated ozone increases
during COVID-19 lockdown in the Yangtze River Delta, Sci. Total Environ.,
768, 144796, https://doi.org/10.1016/j.scitotenv.2020.144796, 2021.
Warneke, C., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Williams, E. J., Lerner, B. M., Jakoubek, R., Brown, S. S., Stark, H., Aldener, M., Ravishankara, A. R., Roberts, J. M., Marchewka, M., Bertman, S., Sueper, D. T., McKeen, S. A., Meagher, J. F., and Fehsenfeld, F. C.: Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New england coast in summer during New england air quality study 2002, J. Geophys. Res., 109, D10309, https://doi.org/10.1029/2003JD004424, 2004.
Wu, F., Yu, Y., Sun, J., Zhang, J., Wang, J., Tang, G., and Wang, Y.:
Characteristics, source apportionment and reactivity of ambient volatile
organic compounds at Dinghu Mountain in Guangdong Province, China, Sci.
Total Environ., 548–549, 347–359, https://doi.org/10.1016/j.scitotenv.2015.11.069, 2016.
Xiong, Y. and Du, K.: Source-resolved attribution of ground-level ozone
formation potential from VOC emissions in Metropolitan Vancouver, BC, Sci.
Total Environ., 721, 137698, https://doi.org/10.1016/j.scitotenv.2020.137698, 2020.
Xu, Z., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Sun, P., and Ding,
A.: Influence of synoptic condition and holiday effects on VOCs and ozone
production in the Yangtze River Delta region, China, Atmos. Environ., 168,
112–124, https://doi.org/10.1016/j.atmosenv.2017.08.035, 2017.
Xue, L., Gu, R., Wang, T., Wang, X., Saunders, S., Blake, D., Louie, P. K. K., Luk, C. W. Y., Simpson, I., Xu, Z., Wang, Z., Gao, Y., Lee, S., Mellouki, A., and Wang, W.: Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode, Atmos. Chem. Phys., 16, 9891–9903, https://doi.org/10.5194/acp-16-9891-2016, 2016.
Yadav, R., Sahu, L., Tripathi, N., Pal, D., Beig, G., and Jaaffrey, S.:
Investigation of emission characteristics of NMVOCs over urban site of
western India, Environ. Pollut., 252, 245–255, https://doi.org/10.1016/j.envpol.2019.05.089, 2019.
Yan, D., Lei, Y., Shi, Y., Zhu, Q., Li, L., and Zhang, Z.: Evolution of the
spatiotemporal pattern of PM2.5 concentrations in China – A case study
from the Beijing-Tianjin-Hebei region, Atmos. Environ., 183, 225–233,
https://doi.org/10.1016/j.atmosenv.2018.03.041, 2018.
Yan, Y., Peng, L., Li, R., Li, Y., Li, L., and Bai, H.: Concentration, ozone
formation potential and source analysis of volatile organic compounds (VOCs)
in a thermal power station centralized area: A study in Shuozhou, China,
Environ. Pollut., 223, 295–304, https://doi.org/10.1016/j.envpol.2017.01.026, 2017.
Yang, Y., Shao, M., Wang, X., Nölscher, A., Kessel, S., Guenther, A., and Williams, J.: Towards a quantitative understanding of total OH reactivity: A review, Atmos. Environ., 134, 147–161, https://doi.org/10.1016/j.atmosenv.2016.03.010, 2016.
Yang, Y., Shao, M., Keßel, S., Li, Y., Lu, K., Lu, S., Williams, J., Zhang, Y., Zeng, L., Nölscher, A. C., Wu, Y., Wang, X., and Zheng, J.: How the OH reactivity affects the ozone production efficiency: case studies in Beijing and Heshan, China, Atmos. Chem. Phys., 17, 7127–7142, https://doi.org/10.5194/acp-17-7127-2017, 2017.
Yang, Y., Liu, X., Zheng, J., Tan, Q., Feng, M., Qu, Y., An, J., and Cheng,
N.: Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China, J. Environ. Sci., 79, 297–310,
https://doi.org/10.1016/j.jes.2018.12.002, 2019.
Yang, Y., Wang, Y., Yao, D., Zhao, S., Yang, S., Ji, D., Sun, J., Wang, Y.,
Liu, Z., Hu, B., Zhang, R., and Wang, Y.: Significant decreases in the
volatile organic compound concentration, atmospheric oxidation capacity and
photochemical reactivity during the National Day holiday over a suburban
site in the North China Plain, Environ. Pollut., 263, 114657,
https://doi.org/10.1016/j.envpol.2020.114657, 2020a.
Yang, Y., Wang, Y., Zhou, P., Yao, D., Ji, D., Sun, J., Wang, Y., Zhao, S., Huang, W., Yang, S., Chen, D., Gao, W., Liu, Z., Hu, B., Zhang, R., Zeng, L., Ge, M., Petäjä, T., Kerminen, V.-M., Kulmala, M., and Wang, Y.: Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin, Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020, 2020b.
Yang, Y., Wang, Y., Huang, W., Yao, D., Zhao, S., Wang, Y., Wang, Y., Ji,
D., Zhang, R., and Wang, Y.: Parameterized atmospheric oxidation capacity
and speciated OH reactivity over a suburban site in the North China Plain: A
comparative study between summer and winter, Sci. Total Environ., 773,
145264, https://doi.org/10.1016/j.scitotenv.2021.145264, 2021.
Yao, D., Tang, G., Wang, Y., Yang, Y., Wang, L., Chen, T., He, H., and Wang,
Y.: Significant contribution of spring northwest transport to volatile
organic compounds in Beijing, J. Environ. Sci., 104, 169–181,
https://doi.org/10.1016/j.jes.2020.11.023, 2021.
Yu, S.: Zhengzhou dataset, Zenodo [data set], https://doi.org/10.5281/zenodo.6815259, 2022.
Yuan, B., Shao, M., de Gouw, J., Parrish, D., Lu, S., Wang, M., Zeng, L.,
Zhang, Q., Song, Y., Zhang, J., and Hu, M.: Volatile organic compounds
(VOCs) in urban air: How chemistry affects the interpretation of positive
matrix factorization (PMF) analysis, J. Geophys. Res.-Atmos., 117, D24302,
https://doi.org/10.1029/2012JD018236, 2012.
Zhang, F., Shang, X., Chen, H., Xie, G., Fu, Y., Wu, D., Sun, W., Liu, P.,
Zhang, C., Mu, Y., Zeng, L., Wan, M., Wang, Y., Xiao, H., Wang, G., and
Chen, J.: Significant impact of coal combustion on VOCs emissions in winter
in a North China rural site, Sci. Total Environ., 720, 137617,
https://doi.org/10.1016/j.scitotenv.2020.137617, 2020.
Zhang, G., Xu, H., Qi, B., Du, R., Gui, K., Wang, H., Jiang, W., Liang, L., and Xu, W.: Characterization of atmospheric trace gases and particulate matter in Hangzhou, China, Atmos. Chem. Phys., 18, 1705–1728, https://doi.org/10.5194/acp-18-1705-2018, 2018.
Zhang, X., Yin, Y., Wen, J., Huang, S., Han, D., Chen, X., and Cheng, J.:
Characteristics, reactivity and source apportionment of ambient volatile
organic compounds (VOCs) in a typical tourist city, Atmos. Environ., 215,
116898, https://doi.org/10.1016/j.atmosenv.2019.116898, 2019.
Zhang, Y., Wang, X., Zhang, Z., Lv, S., Shao, M., Lee, F., and Yu, J.: Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China, Atmos. Environ., 79, 110–118, https://doi.org/10.1016/j.atmosenv.2013.06.029, 2013.
Zhang, Y., Wang, X., Zhang, Z., Lu, S., Huang, Z., and Li, L.: Sources of
C2-C4 alkenes, the most important ozone nonmethane hydrocarbon
precursors in the Pearl River Delta region, Sci. Total Environ., 502,
236–245, https://doi.org/10.1016/j.scitotenv.2014.09.024, 2015.
Zheng, H., Kong, S., Xing, X., Mao, Y., Hu, T., Ding, Y., Li, G., Liu, D., Li, S., and Qi, S.: Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year, Atmos. Chem. Phys., 18, 4567–4595, https://doi.org/10.5194/acp-18-4567-2018, 2018.
Zheng, H., Kong, S., Yan, Y., Chen, N., Yao, L., Liu, X., Wu, F., Cheng, Y.,
Niu, Z., Zheng, S., Zeng, X., Yan, Q., Wu, J., Zheng, M., Liu, D., Zhao, D.,
and Qi, S.: Compositions, sources and health risks of ambient volatile
organic compounds (VOCs) at a petrochemical industrial park along the
Yangtze River, Sci. Total Environ., 703, 135505,
https://doi.org/10.1016/j.scitotenv.2019.135505, 2020.
Zheng, H., Kong, S., Chen, N., Niu, Z., Zhang, Y., Jiang, S., Yan, Y., and
Qi, S.: Source apportionment of volatile organic compounds: Implications to
reactivity, ozone formation, and secondary organic aerosol potential, Atmos.
Res., 249, 105344, https://doi.org/10.1016/j.atmosres.2020.105344, 2021.
Zhou, X., Li, Z., Zhang, T., Wang, F., Wang, F., Tao, Y., Zhang, X., Wang,
F., and Huang, J.: Volatile organic compounds in a typical petrochemical
industrialized valley city of northwest China based on high-resolution
PTR-MS measurements: Characterization, sources and chemical effects, Sci.
Total Environ., 671, 883–896, https://doi.org/10.1016/j.scitotenv.2019.03.283, 2019.
Zhu, J., Wang, S., Wang, H., Jing, S., Lou, S., Saiz-Lopez, A., and Zhou, B.: Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China, Atmos. Chem. Phys., 20, 1217–1232, https://doi.org/10.5194/acp-20-1217-2020, 2020.
Zou, Y., Deng, X. J., Zhu, D., Gong, D. C., Wang, H., Li, F., Tan, H. B., Deng, T., Mai, B. R., Liu, X. T., and Wang, B. G.: Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China, Atmos. Chem. Phys., 15, 6625–6636, https://doi.org/10.5194/acp-15-6625-2015, 2015.
Short summary
In this study, the hourly data of 57 VOC species were collected during 2018–2020 at an urban site in Zhengzhou, China. The research of concentrations, source apportionment, and atmospheric environmental implications clearly elucidated the differences in major reactants observed in different seasons and years. Therefore, the control strategy should focus on key species and sources among interannual and seasonal variations. The results can provide references to develop control strategies.
In this study, the hourly data of 57 VOC species were collected during 2018–2020 at an urban...
Altmetrics
Final-revised paper
Preprint